Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

Lingbo Liu^{1, 2} Fahui Wang³

¹ Center for Geography Analysis, Harvard University
 ² School of Urban Design, Wuhan University
 ³ Department of Geography and Anthropology, Louisiana State University

Center for Geographic Analysis Harvard University

CONTENTS

Background

Data and Methodology

Result

Discussion

Spatial Data Lab Project

Center for Geographic Analysis Harvard University

Louisiana State University

BACKGROUND

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

BACKGROUND: Equity in health care delivery

Uneven spatial distribution • Telehealth Benefits

Center for Geographic Analysis Harvard University

Louisiana State University

BACKGROUND: can telehealth reduce the spatial barrier?

Limited internet service

• Irreplaceable Hospital visit

Center for Geographic Analysis Harvard University

Louisiana State University

BACKGROUND: Increasing telehealth, increasing disparity Exacerbate disparity for certain groups • Digital Divide • Challenge of New technology

Certain racial/ethnic groups The elderly and low-income group Rural area

Center for Geographic Analysis Harvard University

ouisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

BACKGROUND: Measuring disparity in Telehealth accessibility Duality of distance dependence and digital divide Integrating Physical accessibility and Virtual accessibility (From 2SFCA to 2SVCA)

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

PaCSS 2022

Cambridge, MA

BACKGROUND : Objectives

Assesses the telehealth accessibility of primary care physicians (PCPs) in the Baton Rouge Metropolitan Statistical Area (BRMSA), Louisiana, and

Examines the disparities across geographic areas and sociodemographic groups

Center for Geographic Analysis Harvard University

Louisiana State University

DATA & METHODOLOGY

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

DATA & METHODOLOGY : Data Source

Primary Care Physicians (FTE)

594 primary care physicians (PCP) in 172 locations by the Centers for Medicare and Medicaid Services (CMS)

Demand and socioeconomic data

574 block groups with total population of 849,530. Poverty status data, Broadband subscription rate is extracted from the 2016-2020 Five-Year American Community Survey (ACS),

Road network data

U.S. Census Bureau web site (2020)

Urbanicity data

U.S. Census Bureau web site (HPSM) (2020)

Broadband connectivity data

Federal Community Commission (FCC) Fixed Broadband Deployment Block Data

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

DATA & METHODOLOGY : Socioeconomics data

Figure 2 African American percent across block groups in Baton Rouge MSA 2020

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

DATA & METHODOLOGY : Broadband Speed

Figure 4 Mean download and upload FBB speeds in BRMSA 2020.

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

DATA & METHODOLOGY : Broadband Speed

Table 1 Demography and broadband access across areas of urbanicity

Area (No.	Population 4	Area sq-km	Area White sq-km %	Black P % %	Black %	Poverty Broad % band		MaxDo	wnload	(mbps)	MaxUp	oload (m	ibps)
block groups)						%	Min	Mean	Max	Min	Mean	Max	
Total (n =570)	849,233	10,776	51.2	38.8	16.8	65.6	33.8	208.7	432.2	2.2	65.6	238.6	
Rural (n = 164)	247,593 (29.2%)	9,807 (91.0%)	65.1	27.7	15.4	57.3	33.8	158.3	369.1	2.2	36.9	226.8	
Low density (n = 82)	133,907 (15.8%)	472 (4.4%)	60.5	29.1	10.4	70.9	104.5	232.1	358.7	5.2	80.32	228.5	
Urban (n=324)	467,733 (55.0%)	497 (4.6%)	41.8	46.8	19.1	68.5	42.3	228.3	432.2	2.4	76.4	238.6	

DATA & METHODOLOGY : 2SFCA and G2SFCA

Legend

Population Centroid Healthcare Service Catchment **2SFCA**

Generalized 2SFCA

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana PaCSS 2022 Cambridge, MA

Center for Geographic Analysis Harvard University

DATA & METHODOLOGY : 2SVCA

Legend

Low Broadband Speed Medium Broadband Speed High Broadband Speed

Catchment

Center for Geographic Analysis Harvard University

Louisiana State University

2SFCA

$$PA_i = \sum_{j \in (d_{ij} \le d_0)}^n [S_j / \sum_{k \in (d_{kj} \le d_0)}^m D_k]$$

2SVCA

$$VA_{i} = \sum_{j \in (d_{ij} \leq d_{0})}^{n} \left[S_{j}f\left(b_{i}, b_{j}\right) / \sum_{k \in (d_{kj} \leq d_{0})}^{m} \left(D_{k}f\left(b_{k}, b_{j}\right)\right) \right]$$

*Conceptualization of the 2-step virtual catchment area method (refined from Alford-Teastor et al. 2021)

Area of Highest Accessibility (within catchment of both facilities, and high underlying broadband speed)

> Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

DATA & METHODOLOGY : 2SVCA

Center for Geographic Analysis Harvard University

Louisiana State University

RESULT

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

RESULT: 2SFCA scores and 2SVCA scores

Figure 6. (a) Virtual accessibility by 2SVCA (d_0 =5-30 minutes, b_0 = 3Mbps) vs.(b) physical accessibility by 2SFCA (d_0 =5-30 minutes)

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth AccessibilityPto Primary Care Physicians in Baton Rouge, LouisianaC

RESULT : 2SFCA scores and 2SVCA scores Sensitive Analysis— 2SVCA

(a) 2SVCA (Varying b_0) Fixed Parameter: d_0 = 30

Center for Geographic Analysis Harvard University

Louisiana State University

(b) 2SVCA (Varying d_0) Fixed Parameter : b_0 = 3

Disparities in Telehealth Accessibility

to Primary Care Physicians in Baton Rouge, Louisiana

(b) 2SVCA (Varying d_0) Fixed Parameter : b_0 = 3

RESULT : 2SFCA scores and 2SVCA scores Sensitive Analysis— 2SVCA-logistic Growth

(d) 2SVCA_Logistic Growth (Varying b_0)

Fixed Parameter: $d_0 = 30$, $\beta_0 = 0.8$

(c) 2SVCA_Logistic Growth(Varying β_0) Fixed Parameter: $d_0 = 30$, $b_0 = 3$

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility Pactor Primary Care Physicians in Baton Rouge, Louisiana Car

PaCSS 2022 Cambridge, MA

(d) 2SVCA_Logistic Growth (Varying b_0) Fixed Parameter: $d_0 = 30$, $\beta_0 = 0.8$

RESULT : Disparity in accessibility by Urbanicity

Table 2. Healthcare accessibility across areas of urbanicity

No. block groups	Travel time from	2SVCA avera (Physiciar	ge accessibility ns per 1000)	2SFCA average accessibility (Physicians		
	PCP	$d_{a} = 25$	$d_{2} = 30$	$d_{a} = 25$	$d_{a} = 30$	
	(minutes)	a ₀ 23			a ₀ 30	
Total (n =570)	4.715	0.686	0.686	0.699	0.699	
UA (n = 324)	2.160	0.876	0.827	0.885	0.838	
LD (n = 82)	3.083	0.699	0.743	0.707	0.751	
RA (n = 164)	10.426	0.320	0.390	0.345	0.410	

RESULT : Disparity in accessibility by Urbanicity

Dummy Variable: the reference category "RA" is coded as $x_1 = 0$, $x_2 = 0$; the category "LD" is coded as $x_1 = 1$, $x_2 = 0$; "UA" as $x_1 = 0$, $x_2 = 1$. The model is written as: $A = b_0 + b_1 x_1 + b_2 x_2$

Table 3 Disparity in average travel time and accessibility across areas of urbanicity

	Travel time from	2SVCA Acce	ssibility score	2SFCA Accessibility score		
	the nearest PCP	(Physicians	s per 1000)	(Physicians per 1000)		
	(minutes)	d ₀ = 25	d ₀ = 30	d ₀ = 25	d ₀ = 30	
Rural Area	10.623***	0.290***	0.354***	0.318***	0.377***	
(reference)	(34.36)	(15.080)	(21.25)	(17.14)	(23.91)	
Low Density	-7.556***	0.427***	0.401***	0.405***	0.384***	
(LD)	(-14.11)	(12.826)	(13.91)	(12.61)	(14.05)	
Urban Area	-8.625***	0.601 ***	0.482***	0.582***	0.471***	
(UA)	(-22.73)	(25.462)	(23.57)	(22.56)	(24.28)	

Center for Geographic Analysis Harvard University

Disparities in Telehealth Accessibility
to Primary Care Physicians in Baton Rouge, LouisianaPaCSS 2022
Cambridge, MA

RESULT : Disparity in accessibility across demographic groups

Table 4. Weighted average travel time and accessibility by demographic groups

	Travel time from	2SVCA Acces (Physicians	sibility score per 1000)	2SFCA Accessibility score (Physicians per 1000)		
	the nearest primary care provider (minutes)	d ₀ = 25	d ₀ = 30	d ₀ = 25	d ₀ = 30	
All population	4.715	0.686	0.686	0.699	0.699	
White	5.456	0.622	0.647	0.636	0.660	
Black	3.858	0.764	0.728	0.778	0.743	
Household under	4.439	0.716	0.697	0.730	0.713	
poverty						

Center for Geographic Analysis Harvard University

RESULT : Disparity in accessibility across demographic groups

Weighted OLS: Y = a + b * Flag

Table 5. disparity in average time and accessibility across demographic groups

	Travel time from the nearest primary care provider (minutes)			2S\ (P	/CA Accessibili hysicians per :	ty score 1000)	2SFCA Accessibility score (physicians per 1000)		
					(d ₀ = 30)		$(d_0 = 30)$		
	≤4.715	>4.715	Difference	>0.686	≤0.686	Difference	>0.699	≤0.699	Difference
	(Flag = 1)	(Flag = 0)	(t-value)	(Flag = 1)	(Flag = 0)	(t-value)	(Flag = 1)	(Flag = 0)	(t-value)
No. block groups (n)	408	162		435	135		433	137	
White %	45.79	64.77	-18.98*** (-6.84)	46.85	65.15	-18.30*** (-6.17)	46.68	65.41	-18.73*** (-6.36)
Black %	49.55	27.93	21.62 *** (5.16)	41.91	28.70	13.21*** (4.20)	42.05	28.46	13.59*** (4.35)
Household under poverty %	17.20	15.67	1.53 (0.99)	16.75	16.84	-0.09 (-0.06)	16.74	16.83	-0.09 (-0.05)

RESULT : How Broadband Subscription Ratio be influenced

 $Y_{\text{Broadband Ratio}} = b_0 + b_1 x_{\text{household under poverty}} + b_2 x_{\text{Black% or White\%}}$

		Black	%		White %					
	Intercept	Household	Black %	R ²	Intercept	Household	White %	R ²		
		under				under poverty				
		poverty %				%				
RA	0.691***	-0.266*	-0.280***	0.174	0.455***	-0.296*	0.251***	0.151		
	(26.987)	(-2.106)	(-4.626)		(8.679)	(-2.324)	(4.053)			
LD	0.810***	-0.708***	-0.095	0.246	0.706***	-0.684***	0.123	0.272		
	(28.634)	(-4.002)	(–1.278)		(11.616)	(–3.895)	(1.589)			
UA	0.885***	-0.411***	-0.260***	0.468	0.647***	-0.408***	0.278***	0.462		
	(59.692)	(-7.992)	(-9.112)		(29.752)	(-7.810)	(8.845)			

RESULT: Difference between 2SVCA and 2SFCA

Louisiana State University

Disparities in Telehealth Accessibility Parto Primary Care Physicians in Baton Rouge, Louisiana Car

RESULT: Difference between 2SVCA and 2SFCA

Category	Intercept	Broadband %	Referer	R ²	
			LD	UA	
Black %- I	-0.159***	0.122*	0.063**	0.048*	0.10
(0-20%)	(-4.390)	(2.427)	(2.856)	(2.535)	
Black %-II	-0.670***	0.641***	0.149*	0.181***	0.43
(20-40%)	(-9.308)	(5.370)	(1.778)	(3.273)	
Black %-III	-0.712***	0.793**	0.044	0.127	0.26
(40-60%)	(-5.369)	(3.293)	(0.255)	(1.218)	
Black %-IV	-0.158	0.127	0.072	0.055	0.02
(60-80%)	(-1.285)	(0.624)	(0.628)	(0.580)	
Black %- V	-0.201*	0.067*	0.159***	0.151***	0.26
(80-100%)	(-6.305)	(1.859)	(4.038)	(5.033)	

Discussion

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

Discussion

The integration of spatial accessibility and Internet access reflects the relative ease by which telehealth activities or services can be accessed from a given location.

Two measures of healthcare accessibility are used for residents at the census block group level, 2SFCA and 2SVCA, based on which we examine the disparities in spatial accessibility across geographic areas of various urbanicity levels and across major racial-ethnic groups and validate whether the disparities are statistically significant.

Center for Geographic Analysis Harvard University

Findings

The urban advantage is evident in both measures of PCP accessibility and is validated in a statistical test.

African Americans (or population under poverty) are disproportionally concentrated in areas closer to their nearest PCP in terms of travel time and also in areas with above-average accessibility, termed "reversed racial advantage". Such an advantage in accessibility may not pan out when multimodal transportation is considered, since a disproportionally higher ratio of African Americans rely on much slower public transits.

The aforementioned racial advantage for African Americans is not applicable to those in rural areas.

The affordability of telehealth reflected by broadband subscription ratio is highly affected by poverty status, which also exacerbate the Africa Americans both living in rural area and urban area.

Most importantly, the comparison between the attenuation effect of 2SVCA-logistic growth and the discrete threshold value in 2SVCA, and the sensitiveness analysis of varying parameters validate the robustness of 2SVCA model.

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

RESULT : Future work

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility PaCSS 2022 to Primary Care Physicians in Baton Rouge, Louisiana Cambridge, MA

OPEN PLATFORM for

Spatiotemporal Computation SPATIAL DATA LAB @ CGA, IQSS

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth Accessibility to Primary Care Physicians in Baton Rouge, Louisiana

KNIME-based CI for Geospatial Computation

KNIME-based CI for Spatiotemporal Computation

Center for Geographic Analysis Harvard University

Louisiana State University

Disparities in Telehealth AccessibilityPaCSS 2022to Primary Care Physicians in Baton Rouge, LouisianaCambridge, MA

PaSSS 2022 Cambridge, MA

OPEN OPPORTUNITIES FOR GLOBAL COLLABORATION

Workflow based case studies development Training on spatial data analysis

Tool development

http://spatialdatalab.org **Spatial Data Lab** Spatialdatalab@lists.fas.harvard.edu Contact

SPATIAL DATA LAB

Center for **Geographic Analysis** Harvard University

Spatial Data Lab

PaCSS 2022 Cambridge, MA

