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A B S T R A C T

Stationary surveillance cameras deployed around lakes can provide continuous real-time observations of key
water areas for harmful algal bloom (HAB). They can be used to supplement remote sensing-based monitoring
in situations that satellites cannot handle. While some cameras were initially installed for other purposes, and
the poses are not fixed during operation, hence, detecting HABs remains a challenging task due to the diverse
surface features present in image frames. A novel three-step machine learning approach was proposed in this
paper to address this problem. The acquired images are initially classified using the first model, and images
with certain HABs undergo further examination. A second model is employed to generate a water mask, thereby
eliminating interferences from non-water features. Finally, the third model is applied to detect and identify
HABs specifically within water areas. The experiments showed that the three steps implemented in sequence
can effectively extract distinct HABs from RGB images captured under various shooting poses. The overall
pixel-level accuracy, intersection over union, and F1 score reached 0.83, 0.76, and 0.76, respectively, on 1969
images from August to September 2020. The novelty of our approach is attributed to that the combination
of the three steps can significantly abate the adverse influence of an external environment; thus, the final
detection can be performed with satisfactory accuracy. In practice, the approach was applied in Lake Chaohu
and consistently reports the real-time status of HABs along the bank. It exhibits substantial potential for the
application in eutrophic lakes to avoid HAB-induced secondary disasters.
1. Introduction

Recent years witnessed the process of eutrophication in lake waters,
caused by natural environmental changes and anthropogenic activ-
ities (Hou et al., 2022). Algal blooms are a direct consequence of
water eutrophication. Excessive algae growth is often harmful; they
are thus referred to as harmful algal blooms (HABs). HABs not only
release toxins and harmful substances, jeopardizing water safety, but
also cause the death of biomass in water, resulting in massive economic
losses (Janssen et al., 2019). The dangers of HABs are worse and even
fatal for urban lakes. One of the immediate impacts is from the constant
malodor emitted by the decaying algae. If a lake is the main source
of drinking water, it could even cause illnesses. Hence, HABs should
be detected and disposed of timely in important areas, such as water
sources and scenic locations. However, detecting HABs in a timely and
accurate manner still remains a challenge.

Multispectral remote sensing has been recognized as a cost-effective
and efficient monitoring tool for HAB detection (Oyama et al., 2015;
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Gholizadeh et al., 2016). HABs can be distinguished from normal
waters by their distinctive spectral characteristics that normal water
shows strong absorption at the red and near-infrared wavelengths,
while phytoplankton present in HABs exhibit a distinct reflection (Duan
et al., 2017). Various models have been developed based on this fact
to detect algal distributions in lakes (Page et al., 2018; Khan et al.,
2021), such as the maximum chlorophyll index (MCI) and floating algae
index (FAI) (Hu, 2009). However, because of the ever-changing wind,
water temperature, and radiation conditions, the algal distribution
may vary significantly even on a daily basis (Huang et al., 2013).
Commonly used satellite data for large or medium lakes, such as the
Moderate Resolution Imaging Spectroradiometer (MODIS), can enable
semidiurnal observations but with a low spatial resolution (Duan et al.,
2017). However, due to the tradeoff between the spatial and temporal
resolutions of remote sensing observations (Tan et al., 2022), satellite-
based monitoring cannot meet the demand for small lakes or key
regions of large lakes with fast-growing HABs. In this case, unmanned
vailable online 20 July 2023
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aerial vehicles (UAVs) are leveraged to capture images of lakes dur-
ing particular seasons or in specific regions when and where HABs
frequently occur (Kislik et al., 2018). Nevertheless, weather factors,
such as clouds and rain, can easily affect optical remote sensing and
UVAs. Moreover, UAV-based monitoring necessitates manual control,
resulting in substantial labor expenses, and the restricted operational
duration further restricts its widespread application.

Meanwhile, stationary cameras can be employed as an auxiliary in-
strument for real-time monitoring and alarming. First, RGB cameras are
comparatively inexpensive; they have already been deployed around
important lakes for various purposes, such as detecting illicit fishing
activities, enabling their utilization for continuous real-time monitoring
throughout the day. In addition, cameras are typically mounted at
a low height, rendering them less sensitive to weather conditions.
Ongoing efforts have been directed towards harnessing surveillance
cameras for environmental monitoring and ecological protection (Wang
et al., 2022; Pedrayes et al., 2022). However, unlike ordinary ob-
ject detection, HABs do not have certain sizes, shapes, and textures;
recognition of HABs necessitates contextual understanding within the
intricate surroundings of a water body, thus HAB detection through
RGB cameras poses a promising yet challenging endeavor.

Recent studies on HAB detection with RGB images mainly employed
UAVs because the camera pose can be set appropriately in advance,
and the acquired image can be further corrected and calibrated to
mitigate the impacts from the drone platform and external environmen-
tal factors (Wu et al., 2019). Among the diverse techniques explored
for HAB detection, spectral indices have emerged as the prevailing
methodology (Wu et al., 2019; Kislik et al., 2018). Moreover, com-
puter vision and deep learning methods have also been explored and
applied (Samantaray et al., 2018). These methods function quite well
in the case where the image is corrected and calibrated without much
environmental interferences. Of course, the methods proposed for UAVs
can also be borrowed and applied to stationary cameras. One study
established a specialized camera sensor network and integrated the
spectral index and machine learning for HAB detection (Wang et al.,
2015). However, the cameras in this study were deliberately deployed
for HAB detection, capturing imagery solely focused on the water body.
In the case of multipurpose monitoring scenarios where camera poses
undergo frequent alterations, the complexity of the task significantly
amplifies. Consequently, little research has been conducted on this
issue.

In this paper, we dedicated to develop a HAB detection method that
can function in a situation where cameras work for multiple purposes
with unfixed shooting poses in a complex environment. As far as we are
concerned, two main challenges need to be addressed: the absence of
key spectra regarding the RGB imagery and the interference caused by
the complex environment depicted in the image content. Specifically,
previous studies demonstrated that the wavelengths in the red and
near-infrared are much superior to the RGB-based method (Binding
et al., 2013). However, RGB cameras are widely deployed and lacks
HAB-sensitive bands. The second challenge stems from the complexity
of image content. Many cameras are not installed for HAB monitoring,
and the camera poses, controlled by the pan–tilt–zoom (PTZ) param-
eters, are adjusted dynamically. The pan and tilt parameters indicate
the horizontal and vertical angles of the imaging center, and the zoom
factor affect the field of view. Unfixed PTZ parameters introduce sig-
nificant variations in the image content, encompassing diverse surface
features at different scales. Moreover, environmental factors also exert
certain influences. For example, sunlight, water turbidity, and ripples
can make algal blooms vague and indistinct; green plants and object
shadows appear to share a similar greenish hue to cyanobacteria. All
these factors combined render it difficult to perform the detection.

By introducing advanced machine learning and deep learning tech-
nologies into HAB detection, we proposed a three-step approach, in-
cluding scene classification, water identification, and algal bloom de-
tection, progressively stripping interferences from complex environ-
ment, to obtain accurate HAB recognition. With this approach, first,
2

Fig. 1. Examples of RGB images captured by the surveillance cameras in Lake Chaohu
(the red dots indicate the camera locations; the associated numbers are the station IDs.
Subfigures exhibit some typical examples shot by the cameras; the circled numbers in
subfigures correspond to the station IDs). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

HABs can be located automatically in time without laborious artificial
patrol. Second, early warning of HABs can be alarmed through the
establishment of threshold criteria, and pollutants can be disposed of
as soon as possible. Third, analysis of variations among different time
periods offers insights into HAB dynamics, enabling the generation of
statistical models for enhanced understanding and prediction of HAB
occurrences.

2. Materials and methods

2.1. Study area and datasets

Lake Chaohu (31◦25′∼31◦43′N, 117◦17′∼117◦52′E) is the fifth-
largest freshwater lake in China with an area of 760 km2 (Zhang
et al., 2015). Over the past decades, the lake has been subject to
recurrent and significant levels of eutrophication. In response to this
issue, the government has undertaken various strategies aimed at mit-
igating cyanobacteria blooms, such as artificial patrol, remote sensing
monitoring, and model prediction. The cameras installed around the
lake provide an excellent opportunity to perform real-time inspection of
key regions and facilitate routine satellite monitoring, so Lake Chaohu
was chosen as our study area.

Fig. 1 illustrates the locations of stationary cameras and some exam-
ples of the collected images. The annotated numbers identify the in-situ
camera stations. Subfigures presented in Fig. 1 demonstrate the sub-
stantial influence of external environmental factors on the appearance
of algal blooms in an image. Specifically, first, with the influence of
sunlight and water turbidity, it is even difficult for humans to identify
whether there are HABs, as shown in Fig. 1(a) and (b). Second, there
may be different surface features present in images even acquired from
the same spot due to the unfixed shooting angles and focal lengths,
as shown in Fig. 1(d). HABs in an image with a wide angle of view
are difficult to discern because only a rough overview of the lake is
acquired. Consequently, many images with large zoom factors are not
qualified for HAB detection. Third, aquatic plants, shadows of trees
and buildings, and HABs exhibit similar hue in insufficient sunlight,
as shown in Fig. 1(c), which is also a substantial problem without key
feature bands. In addition, HABs with different colors and forms may
coexist due to the variation in algal species and density, as well as light
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intensity, as shown in Fig. 1(f). Some of the HABs may be clustered
together covering a large area, and some scatter over a particular region
mixing with normal waters, as shown in Fig. 1(e) and (f). Overall,
the integration and interaction of all these factors pose significant
challenges to identify HABs using plain RGB images.

2.2. Details of the three-step approach

To address these issues, we proposed a novel three-step machine
learning approach to decompose and simplify this complicated task,
as shown in Fig. 2. First, the RGB images are classified into three
categories based on the presence and status of HABs, namely, nonalgal,
indeterminate, and algal blooms, to reduce interferences from external
environmental factors as much as possible. The nonalgal group does
not need additional attention. The indeterminate status means there is
a possibility that algal blooms have occurred, but it cannot be verified
due to the aforementioned reasons. The retention of this category
allows for manual inspection in special cases. Then, attention is only
paid to the third category, namely, images exhibiting evident HABs.
Second, the water areas are extracted from the images falling into
the third category, and the corresponding water masks are generated
using the second model. The second step can eliminate interferences
caused by objects in the lake and on the shore, be they natural or man-
made. Overall, by applying the two initial steps, the environmental
surroundings are eliminated, leaving only normal waters and HABs
for further identification. This simplification reduces the difficulty of
distinguishing them with limited spectral bands. Third, HABs can be
identified with the third model in the water areas. In Fig. 2, the
three steps are highlighted in bold in the model selection panel. Users
must instantiate a concrete model for each step before putting them
into effect; hence, appropriate models should be selected and trained
in advance to ensure practical efficacy. Scene classification is techni-
cally an image classification problem, while water identification and
algal bloom detection are semantic segmentation problems. In light
of the current advancements in machine learning and deep learning
technologies nowadays, some of the state-of-the-art deep convolutional
neural networks (CNNs) in the literature and some classic machine
learning (CML) models were investigated and tested in the following
experiments to instantiate the processing flow.

Images are usually regarded as discrete pixels and rearranged to a
two-dimensional matrix mathematically (number of pixels × number
of bands) when using CML models. The internal processing of a CML
model is also performed on the pixel level according to a series of
elaborated rules. The positional relation of pixels is implicit in the ma-
trix, while the CNN model directly operates on the three-dimensional
tensor (height × width × bands), taking full advantage of neighborhood
information. A CNN generally refers to a class of deep networks that
utilize many convolution kernels to extract feature maps at different
levels. As the layer becomes deeper, the receptive field of a CNN
becomes larger, and the model can perceive wider regions of the input.
In other words, the modeling unit of a CNN is image patch, whereas
it is pixel for a CML model. The model for scene classification should
estimate HAB status based on the whole image content, rather than
focusing on individual pixels. Considering that the water body typically
occupies a substantial area, it is more natural to identify the water areas
in an object-oriented manner, as opposed to a pixel level. In addition,
deep learning models have transcended CML models in many appli-
cations and are favored in both academia and industry (Voulodimos
et al., 2018). Based on the above, the CNN models were chosen and
explored to realize scene classification and water identification. As for
the third step, since HABs may spread out in a continuous large area
or scatter over water surface forming distinct small groups interleaving
with normal waters, it is worth investigating both the pixel-based and
object-oriented models. Accordingly, the CML and CNN models were
explored for the last step. The candidate models are shown in the model
selection panel of Fig. 2. Among them, Inception V3 (Szegedy et al.,
3

Fig. 2. A three-step machine-learning approach for HAB detection using RGB images
(all listed models in each step were tested and the optimal models were employed in
practice. The multiplication symbol inside a circle denotes elementwise multiplication).

2016) and MobileNet V3 (Howard et al., 2019) are the commonly-used
CNN models for image classification. UNet (Ronneberger et al., 2015),
DeepLab V3 (Chen et al., 2018), and MobileNet V3 with an additional
segmentation head proposed by Howard et al. (2019) named LR-ASPP
were selected for semantic segmentation. Meanwhile, the commonly-
used CML models, including artificial neural network (ANN), random
forest (RF), and extreme gradient boosting (XGB), were also explored
for HAB detection in the third step.

2.3. Design of experiments

Inception, MobileNet, DeepLab, and UNet with an additional convo-
lutional block attention module (CBAM) from Woo et al. (2018) were
all implemented using the PyTorch library. The maximum features was
empirically set to 960 for all the deep models. The CML models were
implemented using the scikit-learn library. The ANN was instantiated
with five hidden layers and the maximum neurons was set to 256. The
key hyperparameter of RF and XGB is the number of trees, which was
set to 200 in the experiment. A total of 534 images were collected from
August to September 2020. Images were manually classified, resulting
in 98 samples labeled as nonalgal, 93 samples as indeterminate, and
343 samples as algal blooms. Images with significant algal blooms were
then manually labeled with water and nonwater using the Labelme
annotation tool, as shown in Fig. 2. Next, the water areas were further
labeled with HAB and nonalgal. Not all pixels were labeled because
some areas were too small for labeling or too difficult to determine
which label should be assigned to, as illustrated in Fig. 1(e). Image
enhancement techniques were performed to increase the sample vari-
ability considering the number of labeled images was limited. In the
training process of CNNs, images were dynamically cropped to the
size of 512 × 512, normalized to the range between 0 and 1, and
the brightness, contrast, saturation, and hue were altered randomly.
The initial learning rate was set to 0.001 and the batch size was
48. Because the water and nonalgal areas were much larger than the
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Table 1
Data sample count and acquisition time for model training, validation, and practical HAB detection.

Experimental phase Steps Sample counts Time

Training & Validation

Scene classification Nonalgal (98)
Indeterminate (93)
Algal blooms (343)

From August to September 2020Water identification 343

Algal bloom detection 343
Additional 1969 for validation

Practical HAB detection Including all the steps 69 180 From August to September 2021
nonwater and HAB areas regarding the samples, focal loss proposed
by Lin et al. (2017) was employed for deep model training to address
the imbalanced sample problem. The focal loss can be formulated as
Eq. (1):

𝑝𝑡 =

{

𝑝, if 𝑦 = 1
1 − 𝑝, otherwise

(𝑝𝑡) = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡)
(1)

where 𝑝 denotes the predicted possibility of negative samples and 𝛼𝑡
and 𝛾 are the hyperparameters to adjust the weights of imbalanced
samples. They were empirically set to 0.25 and 2. The labeled image
pixels were extracted as inputs to train the CML models and the un-
dersampling technique was used to reduce the amount of samples and
balance the sample classes. Overall, there were 16 030 training sample
points for CML models. The machine used in the experiments was
equipped with 125 G RAM, two Intel Xeon Gold CPUs, and two NVIDIA
RTX GPUs. The deep models were trained with GPU acceleration while
the CML models were trained on CPUs. Once the models were trained,
an additional set of 1969 images were generated with all the labeled
samples using the image enhancement technique for model validation.
Table 1 provides an overview of the sample count and acquisition time
utilized for model training, validation, and practical application of HAB
detection.

The model performance was compared via visual observations and
quantitative metrics. The evaluation metrics used in this paper include
accuracy, precision, recall, and F1 score for scene classification (Gran-
dini et al., 2020) and pixel accuracy, intersection over union (IoU), and
F1 score for semantic segmentation (Garcia-Garcia et al., 2018). The
calculation of the metrics is listed in the following equations:

Accuracy = TP + TN
TP + FP + FN + TN

(2)

Precision = TP
TP + FP

(3)

Recall = TP
TP + FN

(4)

F1 = 2 ∗ Recall ∗ Precision
Recall + Presision

(5)

IoU =
|A ∩ B|
|A ∪ B|

(6)

where TP and TN denote the number of true positives and negatives,
and they are all predicted correctly by a model; FP and FN denote the
number of false positives and negatives, and they are all predicted in-
correctly. In our study, the positive and negative classes were HABs and
nonalgal. The symbols A and B in Eq. (6) represent the positive areas
in the prediction and ground truth, respectively. The IoU quantifies the
amount of overlap between a predicted object extent and the ground
truth.

Three goals were expected to achieve in the following experiments:
(1) to select the optimal model for each step; (2) to verify the con-
tribution of each step; and (3) to demonstrate the applicability of
the three-step approach. Accordingly, first, the selected CNNs were
tested for the first two steps, and both the CML and CNN models were
evaluated for the third step. Seventy percent of the labeled samples
4

Fig. 3. Typical scene classification results using MobileNet V3.

were used for training, and the rest were used for validation in each
step. After the candidate models were determined, the necessity and
effectiveness of the three steps were verified by an ablation study.
Specifically, three test cases were designed, including the one-step
approach with the last HAB detection being performed directly without
preceding steps, the two-step approach consisting of water identifica-
tion and HAB detection, and the complete three-step approach. Finally,
the 69 180 images acquired from May to November 2021 were used
to demonstrate the applicability of the approach. The images were
randomly captured every hour from 5:00 AM to 7:00 PM in Lake
Chaohu. Finally, some simple analyses were conducted based on the
detection results.

3. Results and discussion

3.1. Results

After 500 epochs of training, the CNNs were considered to have
converged. The quantitative evaluation metrics for scene classification
on the validation dataset are listed in Table 2. Statistically, MobileNet
and Inception were quite comparable. All the scores were all greater
than 0.98, but the learnable parameters of Inception were nearly six
times greater than those of MobileNet, and the inference time of
MobileNet was two times faster than that of Inception, so MobileNet is
recommended for scene classification. Fig. 3 exhibits some examples of
the three categories. The first category usually includes two scenarios
where there is no HAB in water or the imaging extent is too broad
to capture useful information. There might be a possibility that HABs
exists in the second category, but it is unlikely to identify them correctly
because of water turbidity, lights, shadows, etc. After filtering the two
categories, HAB alarming can be triggers only from the third category.

The quantitative evaluation results for water identification on the
validation dataset are listed in Table 3. The performance of MobileNet
with LR-ASPP and DeepLab were also comparable, with all scores
surpassing 0.89, but MobileNet was slightly faster than DeepLab. UNet
performed the worst, albeit with all scores greater than 0.82. Moreover,
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Fig. 4. Comparison of water identification results with the three deep models (the
green and blue colors indicate water and nonwater). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

Table 2
Quantitative evaluation for scene classification on the validation dataset.

Model Parameters Time (s) Accuracy Precision Recall F1

MobileNet V3 4 205 875 0.13 0.98 0.99 0.98 0.99
Inception V3 24 351 718 0.27 0.98 0.98 0.99 0.98

Table 3
Quantitative evaluation for water identification on the validation dataset.

Model Parameters Time (s) Accuracy IoU F1

LR-ASPP+MobileNet 3 218 308 0.17 0.99 0.97 0.90
DeepLab V3 11 020 594 0.21 0.99 0.96 0.89
UNet+CBAM 19 191 374 0.51 0.95 0.83 0.82

UNet possessed the highest parameter count, resulting in an inference
time three times longer than that of MobileNet. Fig. 4 exhibits four
cases with the RGB images and the corresponding water segmentation
results. The green and blue colors indicate the water and nonwater ar-
eas, respectively. The first two rows show that all the models identified
the water areas correctly for a regular shoreline. There were distinct
water plants in the third row. The three models were all capable of
distinguishing water plants. The images in the fourth row exhibit a
complex scenario with mixed water, solid, deadwood, and algae. The
models also differentiated them approximately. Generally, the results
of MobileNet and Inception tended to be more natural with smooth
boundaries, while the result of UNet seemed more fragmented with
speckles which is often referred to as the ‘‘salt-and-pepper’’ effect.
Considering the inference time and detection accuracy, MobileNet with
LR-ASPP is recommended for water identification.

The algal bloom detection in the last step was performed only
on the water bodies by masking all nonwater areas. Three CMLs and
three CNNs were tested on both 30% of the original samples and the
enhanced validation dataset with more much images. Table 4 presents
the quantitative evaluation results. The two rows for each model cor-
respond to the statistical results on the original small and enhanced
large validation datasets. First, MobileNet with LR-ASPP showed slight
superiority over other deep models regarding evaluation scores and in-
ference time. Second, the three CML models were comparable regarding
evaluation scores, whereas the XGB consumed the least time. Third,
MobileNet with LR-ASPP was comparable with the CML models, with
all scores greater than 0.62 on the enhanced large dataset. Fourth, the
CML models produced slightly higher scores than the CNNs on the large
dataset overall. Considering training a CML model was much faster
than a CNN, even without hardware acceleration, the CML model is
recommended for the third step.
5

Table 4
Quantitative evaluation for algal bloom detection on the validation datasets.

Model Time (s) Accuracy IoU F1

LR-ASPP+MobileNet 0.17 0.99 0.97 0.90
0.77 0.62 0.64

DeepLab V3 0.21 0.99 0.96 0.89
0.71 0.52 0.59

UNet+CBAM 0.51 0.95 0.83 0.82
0.71 0.51 0.58

ANN 1.43 0.97 0.62 0.61
0.77 0.64 0.72

RF 2.66 0.97 0.61 0.61
0.76 0.62 0.70

XGB 0.32 0.97 0.62 0.61
0.76 0.63 0.71

Fig. 5 demonstrates some typical HAB detection results using the
six models. The first and second rows show the results in a simple
environment where there was a clear-cut distinction between HABs and
normal waters. All the models can identify HABs and the outcome was
highly consistent with the ground truth. The third row shows a situation
where water plants were mixed with algae, and all the models also
produced satisfactory results. The CNNs tended to treat the water plant
as a single object, resulting in its complete masking, while the results of
CML models manifested a more fine-grained representation, capturing
the precise shape of the plant with greater delicacy. The fourth row
exhibits a situation where there are some inconspicuous algal blooms
at a distance marked with a red circle. All the models detected distinct
HABs nearby, but the small area with HABs in the red circle was not
identified using the CNNs. In contrast, the three CML models extracted
the inconspicuous HABs. The fifth row exemplifies a complex situation
where small areas of normal waters were interspersed among extensive
areas affected by of HABs. MobileNet and DeepLab failed to identify
the elongated normal water area marked with a yellow circle, while
UNet and the other three CML models detected it accurately. The last
row shows a situation where the algae accumulated both on the surface
and under the water, with all models performing well in this context.
Generally, all six models detected large-scale HABs, but the results of
CML models showed more fineness in some complex environments.

Moreover, an ablation study was conducted to verify the necessity
and effectiveness of the proposed three steps. Taking MobileNet with
RL-ASPP and XGB as examples of CNN and CML models, Table 5 show-
cases the progressive impact on evaluation scores as individual steps are
systematically removed. The first row presents the outcomes obtained
from each model using the comprehensive three-step approach. The
second row illustrates the results after eliminating the first step, which
entails the absence of scene classification. The third row depicts the
outcomes achieved solely by employing the third step, specifically the
direct identification of HABs. As Table 5 shows, the scores decreased
significantly for both models by unloading one step each time, thus con-
firming that each step considerably contributed to the final accuracy.
Some typical examples are illustrated in Fig. 6. The column name with
a numbered suffix indicates the total steps employed in HAB detection.
The first row displays an image with a wide view angle, in which
misidentification can occur in the absence of the preceding two steps.
A scenario featuring solely turbid water is presented in the second row.
The CNN model correctly distinguished turbid waters and algal blooms,
but the CML model erroneously classified some turbid waters as HABs.
The third row illustrates a scenario characterized by turbid waters and
tree shadows. A similar conclusion can be drawn from this row. The
last three rows show a situation where green plants were both in water
or on land. The CNN model can differentiate between green plants and
HABs without the first two steps, while this cannot be realized with the
CML model unless water identification is performed in advance.

Based on the results of the above experiments, MobileNet was
chosen for scene classification and water identification, and XGB was
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Fig. 5. Comparison of algal bloom detection results with the three CNNs and three CMLs (the green and blue colors indicate algal blooms and nonalgal). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 6. Results of the ablation study by progressively removing steps from the three-step approach (the column name with a numbered suffix indicates the cumulative number of
employed steps). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
chosen for the last HAB detection. The concrete models were then
applied in practical HAB detection in Lake Chaohu. Taking 2021 as
an example, Fig. 7 shows the statistics of HAB cover ratio along Lake
Chaohu. Fig. 7(a) illustrates the mean cover ratio of all stations from
April to November. Because camera poses varied constantly, a great
6

many images with a wide field of view could not be used for detailed
HAB detection. Consequently, the statistical cover ratio was relatively
low, as shown in 7(a). The most serious outbreak of HABs occurred in
September, and the corresponding daily mean cover ratio is presented
in Fig. 7(b). For the same reason, many values were quite low in
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Table 5
Evaluation for the ablation study by progressively removing steps from the whole
process.

Model Time (s) Accuracy IoU F1

LR-ASPP+MobileNet
1.21 0.81 0.74 0.74
1.19 0.79 0.65 0.68
0.64 0.77 0.62 0.64

XGB
1.24 0.83 0.76 0.76
1.17 0.81 0.70 0.72
0.32 0.76 0.63 0.71

Fig. 7. Statistics of HAB cover ratio in 2021 along Lake Chaohu (a shows the cover
ratio for all stations from April to November 2021; b shows the daily mean cover ratio
in September; c shows the cover ratio regarding the top five stations).

Fig. 7(b). The hourly cover ratio of the top five stations is illustrated in
Fig. 7(c). The top three are all located in northwestern Lake Chaohu,
and the mean cover ratio of the top two is far beyond that of the other.

3.2. Discussion

In this paper, we proposed a novel three-step approach for HAB
detection using plain RGB images. Different CNN and CML models
were exploratively tested for each step. Generally, the CNN can make
decisions based on global information with deep layers (Luo et al.,
2016), while the CML model made decisions pixel-by-pixel, and the
results, of course, were completely pixel-based, revealing many more
details of ground features. So the CNN is recommended for the first two
steps and the CML model is recommended for the last step. An ablation
study was conducted and the results from Table 5 and Fig. 6 revealed
that each step served different purposes and truly contributed to the
7

Fig. 8. Relations between HAB cover ratio and meteorological factors at Station 23 in
September 2021 (the highlighted regions in purple-blue indicate that the HAB cover
ratio is more affected by the wind). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

final result. Scene classification eliminated interferences from various
camera poses and external environments, such as sunlight and turbid
water, to minimize false detection. Most images without significant
HABs were excluded in this step. Water identification was mainly used
to remove potential disruptions posed by surface objects both on land
and in water, especially green plants. It could ease the difficulties in
later HAB detection by preemptively masking water plants, as shown in
Figs. 4 and 6. This is rather important for CML models because the CML
model makes predictions completely on the RGB values of pixels. The
CNNs, in contrast, can make use of the high-level shape, texture, and
structure features to conduct inference, so it is capable of distinguishing
the water plants and HABs, as shown in Fig. 6. Hence, in the third step,
the CNN exhibited lower dependency on the second step than the CML
model did, but the fineness of the results was not as good as that of the
CML model.

The application in Lake Chaohu demonstrated the feasibility of the
proposed approach. However, because cameras were mainly installed
along the bank, camera-based monitoring cannot present the whole
picture of a lake. Moreover, the cameras initially served for illegal
fishing monitoring, and the HAB monitoring center could only receive
one image per hour from each station with randomly changed PTZ
parameters. Many acquired images were not available for use due to
the wide angle of views. If a more accurate HAB distribution and cover
rate are required, the camera can be set to capture images in a specific
pose at a specific time and cover the whole edge of the lake during
the daytime. The statistics showed that the most frequent outbreaks of
HABs occurred in August and September, and the northwest section
of the lake was the most severe. This conclusion is consistent with
previous studies (Zhang et al., 2015; Ma et al., 2021) using remote
sensing. In addition, the correlation between HABs and meteorological
factors was also explored. Fig. 8 depicts the variations in the mean
air temperature, wind speed, and HAB cover ratio at Station 23 in
September 2021. Generally, the temporal fluctuation of HAB cover
ratio exhibited a concordant pattern with variations in air temperature,
as evidenced by a Pearson correlation coefficient (r) of 0.46 and a
corresponding p-value of 0.03. The impact of wind on the HAB cover
ratio was also observed, although the overall correlation demonstrated
minimal strength (r = −0.01, p-value = 0.94). This is because the HAB
cover ratio displayed a heightened sensitivity only to wind in regions
delineated by shades of purple-blue where the wind speed was rela-
tively high, but the influence was notably diminished under conditions
of weak wind. This phenomenon also supports the conclusion derived
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from remote sensing-based monitoring in Lake Chaohu (Zhang et al.,
2015, 2021).

Currently, satellite-based monitoring has become a prevailing prac-
tice for obtaining comprehensive information regarding HAB conditions
in lakes. Advanced inverse models can be even developed to esti-
mate chlorophyll-a or microcystin, enabling quantitative detection of
HABs. In this context, the proposed camera-based monitoring approach
holds the potential to function as an effective early warning tool,
facilitating prompt intervention and control measures against HABs.
However, it is crucial to acknowledge that the camera-based approach
is limited to capturing visually conspicuous aggregations of HABs.
Despite concerted efforts to mitigate the influence of external envi-
ronmental factors and camera poses through the implementation of
the three-step approach, it remains important to recognize that these
factors continue to impact the detection process. Furthermore, UVA-
based monitoring can be employed in emergency scenarios to map
the distribution of HABs in specific areas, albeit necessitating manual
control and being constrained by limited cruising time. Each of these
approaches possesses its own inherent advantages and disadvantages,
and their integration can culminate in a complementary system capable
of achieving comprehensive coverage and automated monitoring of
HABs in lakes.

4. Conclusion

The application of surveillance cameras provides an economical way
to perform real-time monitoring of HABs in lakes. Nevertheless, the
limited spectral bands and complex environment pose two challenges
when using plain RGB images. In this paper, we proposed a three-step
machine-learning-based approach to decompose this complicated task
and offered a preliminary solution. First, the collected images were
classified into three categories, namely, nonalgal, indeterminate, and
algal blooms. Only images with certain algal blooms were considered
for HAB detection. Next, the second model for the water identification
model was built to distinguish water and nonwater. The second step
removed interferences from the objects in nonwater areas. Third, the
last model was employed for HAB detection in solely water areas.

The experiments demonstrated that the three-step approach can
derive satisfactory HAB detection results. MobileNet and XGB were
chosen for the preceding two steps and the last step. The overall pixel
accuracy, IoU, and F1 score reached 0.83, 0.76, and 0.76, respectively,
on the enhanced dataset. Compared with the one-step model, the
three-step approach considerably improved the detection accuracy and
reduce the misdetection. The proposed approach functioned quite well
in a simple environment. There may be some commissions or omissions
in the complex environment occasionally, but most HABs can still be
correctly detected even they are affected by lights, shadows, camera
poses, etc. Hence, we believe that the approach presented in this paper
can supplement the remote sensing approach and it can satisfy the
demand for automatic early warning of HABs. In the future, multispec-
tral or multiview cameras could be introduced to further improve the
detection accuracy.
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Appendix A. Details on model training

The following provides a comprehensive elucidation on the method-
ologies employed for the preparation of training samples and the
training of models to instantiate the procedures for the HAB detection:

(1) To prepare the training samples:
At first, the acquired RGB images need to be classified man-

ually into three categories: nonalgal, indeterminate, and algal
blooms. Subsequently, the images categorized as algal blooms
should be labeled using the Labelme tool. This process involves
manually marking the pixel areas in the image as either water or
nonwater. Further, the pixels within the water areas should be
labeled as either algal blooms or normal waters. It is important
to note that not all pixels are labeled in this step, as some may
be difficult to determine. Attention should be given to pixels
exhibiting distinctive features. Typically, a split of 70% of the
data is allocated for model training, while the remaining is
reserved for model validation.

(2) To train the model for scene classification:
The MobileNet is recommended for scene classification. The

image samples consisting of the three classes should be fed
into the model, and undergo multiple iterations of training.
To enhance the diversity of samples, the brightness, contrast,
saturation, and hue of the images are randomly adjusted in
the training. The images should be dynamically cropped to a
uniform size and normalized within the range of 0 to 1 following
the image enhancement. Focal loss is recommended for this and
following steps due to the imbalanced classes. Stochastic Gradi-
ent Descent (SGD) or Adam optimizer can be used to optimize
the model parameters. The initial learning rate is set to 0.001.
The batch size can set according to the hardware capacity. Once
the model’s loss and accuracy have reached convergence, the
model weights can be frozen and utilized for actual prediction.

(3) To train the model for water identification:
Similarly, it is advisable to employ the MobileNet with LR-

ASPP segmentation head for water identification. The input
samples for training are the labeled images with water and non-
water. Image enhancement and normalization is also required.
The training process for this task bears resemblance to the initial
step, as the hyperparameters for training can be set in a similar
manner as those used in the preceding stage. However, it is im-
portant to note that this training process is entirely independent
and distinct from the aforementioned stage.

(4) To train the model for algal bloom detection:
The training process for algal bloom detection is distinctly

separate from the preceding two training processes, while shar-
ing similar training procedures. The samples comprised of algal
blooms or normal waters are entered into the third model with
the dynamic image enhancement. The hyperparameters govern-
ing this training process can be established in a manner akin to
the previous steps. Once the models are trained completely, the
three models can be utilized jointly to perform the practical HAB

detection.
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Fig. B.1. Typical examples of HAB detection for each camera station along Lake Chaohu (the number denotes the station ID). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
Appendix B. Examples of the application

Typical HAB detection results for each camera station are shown in
Fig. B.1. The number below each image denotes the station ID. A rich
variety of scenarios are included here. For example, HABs cannot be
observed in the images of stations 3, 22, and 23 with a large angle of
view. Images of stations 4 and 6 are all filled with wide open water,
but one is detected with HABs, while the other is not because of the
differences in color shades. Ground objects with similar colors to HABs
can be correctly identified, such as in stations 1, 9, and 11. HABs with
different color tones can also be identified correctly, such as in stations
11, 19, and 27.
9

Fig. B.2 presents some typical HAB detection results for station 23 at
different times. The annotation below each image denotes the shooting
time in the format of month/date: hour. Overall, serious HABs can
be observed at station 23, and Fig. B.2 exhibits satisfactory results.
However, HAB detection can be influenced by many factors, and there
are also limitations. For example, the detected areas of HABs for the
same spot are slightly different at 11:00 and 15:00 on August 4th due to
the variation in sunlight. The area where the fishing boats just pass by
is detected as an algal bloom at 16:00 on September 10th, while it can
be correctly identified as normal water at 16:00 on September 14th due
to the differences in image contrast. Generally, the three-step approach
functions quite well in most cases, but there is inevitable misdetection
in some situations caused by image tuning and contrast.
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Fig. B.2. Typical examples of HAB detection for station 23 along Lake Chaohu with the maximum HAB cover ratio at different times (the annotation below each image denotes
the shooting time).
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