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Abstract
Introduction: Real-time electronic adherence monitoring (EAM) systems could inform on-going risk assessment for HIV virae-
mia and be used to personalize viral load testing schedules. We evaluated the potential of real-time EAM (transferred via cellu-
lar signal) and standard EAM (downloaded via USB cable) in rural Uganda to inform individually differentiated viral load
testing strategies by applying machine learning approaches.
Methods: We evaluated an observational cohort of persons living with HIV and treated with antiretroviral therapy (ART) who
were monitored longitudinally with standard EAM from 2005 to 2011 and real-time EAM from 2011 to 2015. Super learner,
an ensemble machine learning method, was used to develop a tool for targeting viral load testing to detect viraemia
(>1000 copies/ml) based on clinical (CD4 count, ART regimen), viral load and demographic data, together with EAM-based
adherence. Using sample-splitting (cross-validation), we evaluated area under the receiver operating characteristic curve
(cvAUC), potential for EAM data to selectively defer viral load tests while minimizing delays in viraemia detection, and perfor-
mance compared to WHO-recommended testing schedules.
Results: In total, 443 persons (1801 person-years) and 485 persons (930 person-years) contributed to standard and real-time
EAM analyses respectively. In the 2011 to 2015 dataset, addition of real-time EAM (cvAUC: 0.88; 95% CI: 0.83, 0.93) signifi-
cantly improved prediction compared to clinical/demographic data alone (cvAUC: 0.78; 95% CI: 0.72, 0.86; p = 0.03). In the
2005 to 2011 dataset, addition of standard EAM (cvAUC: 0.77; 95% CI: 0.72, 0.81) did not significantly improve prediction
compared to clinical/demographic data alone (cvAUC: 0.70; 95% CI: 0.64, 0.76; p = 0.08). A hypothetical testing strategy using
real-time EAM to guide deferral of viral load tests would have reduced the number of tests by 32% while detecting 87% of
viraemia cases without delay. By comparison, the WHO-recommended testing schedule would have reduced the number of
tests by 69%, but resulted in delayed detection of viraemia a mean of 74 days for 84% of individuals with viraemia. Similar
rules derived from standard EAM also resulted in potential testing frequency reductions.
Conclusions: Our machine learning approach demonstrates potential for combining EAM data with other clinical measures to
develop a selective testing rule that reduces number of viral load tests ordered, while still identifying those at highest risk for
viraemia.
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1 | INTRODUCTION

World Health Organization (WHO) guidelines now recom-
mend antiretroviral treatment (ART) for all persons living with

HIV, the majority of whom live in resource-limited settings
[1,2]. International consensus is increasing that effectively
implementing universal treatment will require a differentiated
care strategy, with the intensity of clinical follow-up and
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monitoring varying based on individual patient need [3]. In
particular, the WHO now recommends that stable patients
have plasma HIV RNA levels (viral loads) monitored less fre-
quently than the quarterly monitoring previously recom-
mended for all patients [2].
While decreasing monitoring frequency for stable patients

can reduce costs for treatment programmes and patients, it
remains unclear how to most effectively identify patients in
need of more frequent monitoring. Delayed detection of
adherence lapses and ongoing detectable viral replication (vi-
raemia) can harm patient health, contribute to viral resistance
and increase the risk of HIV transmission [4–7]. Strategies for
tailoring monitoring intensity based on evolving metrics of
patient risk for viraemia are needed to optimize both the
impact and the cost-effectiveness of differentiated ART deliv-
ery systems [8].
Electronic adherence monitoring (EAM) systems, which

record a time-date stamp whenever a medication storage
device is opened as a proxy for medication ingestion, provide
data to potentially inform such strategies. EAM systems could
be used in combination with clinical data to identify patients
at increased risk of viraemia, triggering both additional viral
load monitoring to detect viraemia and adherence interven-
tions to prevent it. EAM data can now be accessed in real-
time through cellular networks. The costs of this technology
are falling [9,10]; however, the extent to which EAM systems
can inform differentiated care decisions remains unclear.
EAM data can be summarized with many possible adherence

metrics, including the proportion of prescribed doses for which
an event is recorded, timing of device openings, and duration
and frequency of lapses in openings. How best to select among
these metrics and combine them with clinical data (such as
duration of viral suppression and pre-ART CD4+ T-cell count) to
assess the risk of viraemia is unknown. Modern machine learn-
ing approaches address this challenge by developing flexible and
complex syntheses of EAM and clinical data to predict viraemia
more accurately. Analysis of standard EAM data (stored on a
device, but not available in real-time) from HIV patients in the
United States demonstrated that machine learning can improve
the prediction and classification of viraemia [11]. However, this
approach has yet to be evaluated using either real-time EAM
data, which may differ in patient use and/or accuracy compared
to standard EAM, or in a resource-limited setting, where indi-
vidual, immunological and virologic factors may differ from
resource-rich settings [12–15].
We used machine learning methods to analyse standard

and real-time EAM data from an observational cohort of per-
sons living with HIV in rural Uganda, and evaluated the added
value of EAM technologies to predict viraemia, beyond the
information provided by standard clinical and demographic
data. We further assessed the potential for real-time EAM
data to effectively differentiate viral load testing frequency
while minimizing delays in viraemia detection.

2 | METHODS

2.1 | Study population

We analysed data from the Uganda AIDS Rural Treatment
Outcome (UARTO) study (NCT01596322), an observational
cohort of adults (>18 years) living with HIV who initiated ART

in Mbarara, Uganda between 2005 and 2015. Participants
lived within 60km of the Mbarara Regional Referral Hospital
Immune Suppression Syndrome Clinic, which provides free
ART in the region. To be eligible for real-time monitoring, par-
ticipants required a cellular signal at home [16].

2.2 | Measures

ART adherence was monitored between 2005 and 2011 using
standard electronic pill bottles (the Medication Event Monitor-
ing System [MEMS], West Rock, Switzerland), from which
time-date stamps recording each device opening were down-
loaded onto a laptop computer via a USB cable during
monthly home visits. From 2011 to 2015, adherence was
measured using a real-time electronic monitor that transmit-
ted device opening data to a web-based server using cellular
networks (Wisepill; Wisepill Technologies, Cape Town, South
Africa) [10]. Lapses in device openings >48 hours detected
using real-time monitoring triggered a home visit to determine
the cause of lapse. Participants were enrolled through 2012;
thus, some participants were monitored with both device
types.
Viral loads and CD4+ T-cell counts were measured approxi-

mately quarterly, according to research protocol; after 2011,
additional viral load measures were administered during home
visits following adherence interruptions detected during real-
time monitoring. Viraemia was defined as a single viral load
>1000 copies/mL, a threshold chosen to match WHO guideli-
nes and minimize “blips” (temporary, low-level increases in viral
load) [17].

2.3 | Statistical methods

2.3.1 | Risk score development

We used an ensemble machine learning method to build pre-
diction models for viraemia. Viral loads measured ≥90 days
after ART initiation were included as outcomes. Because
detection of viraemia could affect both subsequent viral non-
suppression and monitoring, viral loads occurring after first
detection of viraemia were censored. Risk scores were con-
structed separately for participants followed with standard
versus real-time EAM. Several candidate predictor sets were
considered (Data S1).

1 “Clinical” predictors included age, biological sex, CD4+ T-
cell counts before and after ART initiation, and ART regi-
men (drugs, regimen changes, prescribed dosing interval
and time since initiation).

2 “EAM + Clinical” predictors augmented the clinical predic-
tors with additional EAM data. Candidate EAM features
were evaluated over a range of periods preceding each
viral load measurement (from seven to three hundred and
sixty-five days). For each of these periods, we calculated
daily adherence (number of EAM events/total number of
prescribed doses), variance of daily adherence, minimum
adherence, number and duration of interruptions in events
and variability in timing between recorded events. To evalu-
ate the extent to which ongoing CD4+ monitoring improved
prediction in the context of EAM, we also considered a pre-
dictor set excluding post-ART initiation CD4+ counts.
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3 “Full EAM” predictors augmented clinical and EAM predic-
tors with viral load data, including either (a) viral load at
ART initiation only or (b) all time-varying viral load data.

Predictor variables missing a measurement were imputed
using last measured value, with time since last measurement
included as a predictor. Tests with missing predictor values
(after imputation) or occurring after a > 400-day lapse in test-
ing (threshold chosen based on the distribution of lapses in
monitoring) were excluded.
Super learner, an ensemble method which combines several

“candidate” machine learning algorithms using internal cross-
validation, was used to construct a prediction model for virae-
mia using each predictor set [18]. Leaving aside each fold in
turn as validation data, candidate prediction algorithms were
fit on the remaining 9/10ths of the data. Validation data were
then used to select the convex combination of algorithms that
maximized the rate of negative prediction under a constraint
to maintain sensitivity above 93% (constraint raised to 95% in
sensitivity analyses), together with a corresponding cutoff for
positive classification [19]. This threshold was chosen to
improve rate of negative prediction while maintaining a clini-
cally acceptable sensitivity. The following algorithms were
included as candidates: gradient boosting machine [20], ran-
dom forests [21], Bayes generalized linear models [22] and
elastic net [23], each with and without a dimension reduction
based on marginal correlation with the outcome.

2.3.2 | Performance

An additional layer of cross-validation was used to evaluate
the performance of the prediction models by calculating per-
formance metrics in each independent validation set and aver-
aging. Individual participants were stratified based on viral
suppression status before sample-splitting to ensure that each
fold had a similar class balance; all sample splitting respected
the individual as the unit of independence. While the
machine learning algorithm aimed to optimize differentiated
testing rather than to accurately predict the full range of risk,
as global measures of performance we plotted cross-validated
receiver operating characteristic (cvROC) curves and calcu-
lated area under the cvROC curve (cvAUC). Differences in
cvAUC for distinct predictor sets were tested using the influ-
ence function of the cvAUC to derive a z-test [24]. We also
calculated net reclassification improvement, and plotted cali-
bration and conducted the Hosmer-Lemeshow test (Data S2).
We then evaluated the potential of each of the candidate

predictor sets to reduce the viral load testing frequency and
increase the yield when combined with a selected cutoff cho-
sen in the corresponding training set (to accurately assess
performance of the learned testing rule versus the risk pre-
dictor alone on independent data). Specifically, we calculated
the cross-validated rate of negative prediction (cvRNP; pro-
portion of viral load tests that would have been avoided
because predicted risk of viraemia was below the cutoff),
“number needed to screen” (cvNNS; number of viral load tests
with predicted risk above the cutoff/ the number of viraemia
cases with predicted risk above the cutoff), empirical sensitiv-
ity (cvSens; proportion of viraemia cases with predicted
risk above the cutoff), false-positive rate (cvFPR; proportion
of non-viraemia cases with predicted risk above the cutoff)

and the precision (cvPPV; number of viraemia cases with
risk score above the cutoff/ number of risk scores above
the cutoff).
We further evaluated cross-validated performance of three

hypothetical strategies for viral load monitoring: (1) A “3-
month” schedule, in which viral load was measured every
three months (a reference for comparison that, while not real-
istic in many settings, was available for the study population);
(2) A “WHO” schedule: in which viral load was measured at six
and twelve months after ART initiation and annually there-
after, as recommended for stable patients [2] (a schedule now
routine care in Uganda); and, (3) An “EAM”-based differenti-
ated monitoring strategy, in which the WHO schedule was
augmented with additional viral load tests on dates that the
predicted risk of viraemia exceeded the cutoff (using all pre-
dictors except viral loads and restricting EAM-triggered tests
to dates without missing predictors). For each strategy, we cal-
culated the monitoring rate (tests ordered per person-year),
sensitivity, NNS, FPR and delay to viraemia detection relative
to observed date of first detection under research protocol
(corresponding to maximal but unrealistic testing frequency).
To do so, we assumed that omitting an observed test would
not change future adherence or viraemia and that if an
observed viraemic test were omitted, viraemia would still be
present and would not be detected until the next test.
Analyses were performed using R version 3.5.0 [25], and

packages SuperLearner [26], xgboost [27,28], bartMachine
[27,28], glmnet [29], arm [30], ROCR [31] and predictABEL
[32].

2.4 | Ethics

The Mbarara University of Science and Technology, the
Uganda National Council for Science and Technology, Partners
Healthcare, and the University of San Francisco, California
ethical review boards approved this study. All participants pro-
vided written informed consent.

3 | RESULTS

3.1 | Sample characteristics

A total of 443 participants were monitored with standard
EAM for a median of 4.6 years (IQR: 2.5 to 5.6) and con-
tributed 5922 viral load results as outcomes in the standard
EAM analysis dataset; 485 participants were monitored with
real-time EAM for a median of 2.2 years (IQR: 1.4 to 2.5) and
contributed 2834 viral load results as outcomes in the real-
time EAM analysis dataset (Table 1). Of real-time EAM users,
243 had been monitored with standard EAM before initiating
real-time monitoring. Between 2005 and 2011, 86 of the 443
participants (19%) monitored with standard EAM experienced
viraemia (86/5923 tests, 1.5%). Between 2011 and 2015, 45
of the 485 participants (9.3%) monitored in real-time experi-
enced viraemia (45/2834 tests, 1.6%).
Consecutive viral load tests were a median of 105 days

(IQR: 97 to 114) and 115 days (IQR: 97 to 178) apart for
standard and real-time EAM users respectively; 4% of tests
under standard EAM monitoring and 25% of tests under real-
time EAM monitoring were administered <60 days since
the prior test; under real-time monitoring 36% of these were
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preceded by a 48-hour interruption. EAM data were mea-
sured a median of 52 days (IQR: 32 to 78) and 84 days (IQR:
75 to 88) of the 90 days preceding a viral load test in the
standard and real-time EAM datasets respectively. During
standard monitoring, during the 90 days preceding a viral load
test median average adherence was 89% (IQR: 75% to 96%)
with a median of 2 treatment interruptions ≥24 hours (IQR: 1
to 4). During real-time monitoring, during the 90 days preced-
ing a viral load test median average adherence was 93% (IQR:
86% to 97%) with a median of 3 interruptions of ≥24 hours
(IQR: 1 to 8).

3.1.1 | Contribution of EAM to machine learning-
based prediction of viraemia

Super learning applied to standard EAM, clinical and demo-
graphic data (“Full EAM” predictors) yielded a cvAUC for vir-
aemia of 0.77 (95% CI: 0.72, 0.81), non-significantly
(p = 0.08) higher than the cvAUC of 0.70 (95% CI: 0.64,
0.76) achieved using clinical predictors alone (Figure 1,
Table 2). Addition of standard EAM data without viral loads
to the clinical predictor set resulted in a modest but non-sig-
nificant (p = 0.27) increase in the cvAUC (0.75; 95% CI:
0.69, 0.80). Additional inclusion of baseline viral load or
removal of CD4+ T-cell count from the predictor set had a
minimal impact on cvAUC.
Super learning applied to clinical predictors alone achieved

a cvAUC in the real-time EAM data set of 0.78 (95% CI:
0.72, 0.85). In contrast to the modest improvement in per-
formance achieved with standard EAM data, addition of
baseline viral load and real-time EAM predictors to the clini-
cal predictors resulted in a significant (p = 0.03) improve-
ment in the cvAUC (0.88 95% CI: 0.83, 0.93). Addition of
real-time EAM data alone to the clinical predictors resulted
in moderate improvement in the cvAUC (p = 0.06) (0.86
95% CI: 0.81, 0.91). Removal of time-varying CD4 count
from the “EAM + Clinical” set had no impact on the cvAUC,
suggesting little incremental gain in prediction of viraemia
from this measure (Table 2). Comparisons of alternative pre-
dictor sets based on net reclassification improvement were
qualitatively similar for both standard and real-time EAM; for
EAM + Clinical predictor set (used in the EAM-based testing
strategy) the Hosmer-Lemeshow test supported adequate
calibration (Data S2).

3.1.2 | Potential performance of a EAM-guided
differentiated monitoring strategy

We evaluated hypothetical rules for triggering viral load tests
based on combining the machine learning risk score with a
cutoff above which a viral load test would be ordered. The
cutoff was chosen to meet the sensitivity-constrained criteria
(Table 2). When trained on standard EAM data, the super
learner attained a cross-validated sensitivity of 93% to 96%
and rate of negative prediction of 25% to 31%. When trained
on real-time EAM data, super learner attained a cross-vali-
dated sensitivity of 88% to 91% and rate of negative predic-
tion of 37% to 47%.
Finally, we compared the performance of two non-differenti-

ated strategies to a modified version of the machine learning
classification procedure as described above (Table 3). When
based on standard EAM data, the “3-month” schedule would
have reduced the number of tests ordered by 3% and would
have delayed detection of 2% of observed viraemia cases, for
an average delay in detection among all viraemia cases of one
day. In contrast, the “WHO” schedule would have reduced the
number of tests ordered by 77%, but would have resulted in
the delayed detection of 67% of viraemia cases, with an aver-
age delay in detection of 61 days. Finally, the “EAM”

machine learning approach could have reduced the total num-
ber of viral load tests ordered by 24% while delaying detec-
tion of only 9% of viraemia cases, with an average delay in
detection of nine days. Under “3-month,” “WHO” and “EAM”

Table 1. Baselinea characteristics of the study population

Standard EAM

(N = 443)

Real-time EAM

(N = 485)

Woman N = 307 (69.3%) N = 345 (71.1%)

Age (years) median 35 (IQR: 30

to 39)

median 33 (IQR: 27

to 40)

Follow-up time (years) Median 4.6 (IQR:

2.5 to 5.6)

Median 2.2 (IQR:

1.4 to 2.5)

CD4+ T-cell count (cells/

mm3) at ART Initiation

Median 135 (IQR:

78 to 202)

Median 200 (IQR:

111 to 317)

NNRTI at baseline N = 440 (99.3%) N = 447 (92.2%)

Efavirenz N = 57 (13%) N = 228 (51%)

Nevirapine N = 383 (87%) N = 219 (49%)

Plasma HIV RNA level

(viral load) (copies/ml) at

ART Initiation

Median 113,888

(IQR: 39,789 to

343,272)

Median 94,041

(IQR: 30,631 to

299,705)

Total days from ART

initiation to baselinea
Median 168 (IQR:

164 to 175)

Median 112 (IQR:

107 to 120)b

Initiated ART within

120 days prior to first

EAM monitoring

N = 72 (16%) N = 187 (39%)

Viral load tests included as

outcomes

5922 testsc 2834 testsd

Participants Continuing

Monitoring from

Standard EAM

NA N = 243

Among HIV-infected adults followed with electronic adherence moni-
toring using either standard or real-time devices following ART initia-
tion in Uganda. Missing for standard EAM Users: Baseline Viral Load
(n = 8; 1.8%), sex (n = 5; 1.1%), age (n = 5; 1.1%). Missing for real-
time Users: Baseline Viral Load (n = 12; 2.5%), Baseline CD4 (n = 5;
1%). IQR. interquartile range; NNRTI, non-nucleoside reverse tran-
scriptase inhibitor.
a

Baseline: first viral load test while using electronic adherence moni-
toring;;

b

estimate is among participants continuing after being moni-
tored by standard EAM;;

c

15 tests (0.2%) excluded due to a greater
than 400-day lapse in testing. An additional 300 tests (5%) excluded
from machine learning training set, but not from evaluation of perfor-
mance, due to no adherence data in at least 180 days or missing pre-
dictor data;;

d

389 tests (12%) excluded due to a greater than a 400-
day lapse in testing; 98% of these occurred during the final three
months of study follow-up. An additional 168 tests (6%) excluded from
machine learning training set, but not from evaluation of performance,
due to no adherence data in at least 180 days or missing predictor
data.
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schedules, 97%, 22% and 76% of non-viraemic cases would
have received a test respectively.
Using the real-time EAM data, the “3-month” schedule

would have avoided 19% of observed tests (a reduction rela-
tive to the observed schedule due to eliminating extra tests
triggered by detected interruptions) and delayed detection of
16% of viraemia cases by eight days on average, while the
“WHO” schedule would have reduced the number of tests by
69%, and delayed detection of 84% of viraemia cases by
74 days on average. In contrast, the “EAM” approach would
have avoided 32% of all viral load tests, while delaying detec-
tion of 13% of viraemia cases with an average delay of
11 days. Under “3-month,” “WHO” and “EAM” schedules, 81%,
32% and 68%, of non-viraemic cases would have received a
test respectively.

4 | DISCUSSION

Analysis of real-time electronic adherence data using ensem-
ble machine learning achieved excellent prediction of viraemia
among HIV-infected individuals treated with ART in rural
Uganda (cvAUC of 0.88). Addition of real-time EAM and viral
load data to basic demographic and clinical data significantly
improved prediction of viraemia, indicating potential value
added by this technology. However, further addition of post-
ART CD4+ T-cell counts to the predictor set did not signifi-
cantly improve global predictive performance (as assessed
with cvAUC), supporting prior findings of the limited value of
CD4 count for predicting viraemia [33–35].
Our results suggest that a testing strategy using real-time

EAM to decide when to order versus defer viral load testing

Figure 1. Cross-validated (10-Fold) ROC Curve for super learner prediction of viraemia using 5 predictor sets (Data S1).
Viraemia defined as HIV RNA level >1000 copies per mL. blVL, Baseline Viral load; EAM, Electronic Adherence Monitoring; VL, viral load.

Table 2. Cross-validated AUROC, cross-validated rate of negative prediction, cross-validated sensitivity and cross-validated number

needed to screen

Full EAM Clinical + EAM + blVL Clinical + EAM Clinical + EAM, no CD4 Clinical

Std. EAM

cvAUC (95% CI) 0.77 (0.72, 0.81) 0.76 (0.71, 0.81) 0.75 (0.69, 0.80) 0.75 (0.70, 0.80) 0.70 (0.64, 0.76)

cvRNP 0.31 0.29 0.26 0.25 0.15

cvSens 0.93 0.95 0.96 0.96 0.94

cvNNS 51 52 54 55 62

cvFPR 0.69 0.71 0.74 0.75 0.85

cvPPV 0.02 0.02 0.02 0.02 0.02

Real-time EAM

cvAUC 0.87 (0.81, 0.92) 0.88 (0.83, 0.93) 0.86 (0.81, 0.91) 0.85 (0.80, 0.90) 0.78 (0.72, 0.85)

cvRNP 0.38 0.37 0.47 0.39 0.28

cvSens 0.91 0.9 0.88 0.9 0.93

cvNNS 48 47 41 46 56

cvFPR 0.62 0.63 0.53 0.60 0.72

cvPPV 0.02 0.02 0.02 0.02 0.02

AUROC, area under the ROC curve; cvAUC, cross-validated area under ROC curve; cvFPR; cross-validated false positive rate; cvNNS, cross-vali-
dated number needed to screen; cvPPV, cross-validated positive predictive value (precision); cvRNP, cross-validated rate of negative prediction
(proportion of tests avoided); cvSens, cross-validated sensitivity; EAM, Electronic Adherence Monitoring; VL, viral load; blVL, Baseline Viral load.
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could substantially reduce the number of viral load tests
ordered (32% to 47% of observed tests avoided, depending
on the strategy and availability of viral load), while still detect-
ing most viraemia cases without additional delay. While some
strategies incorporated baseline viral load, which may not be
routinely available, the benefits of an EAM-based differenti-
ated testing approach were also substantial when viral loads
were not used. By comparison, the testing schedule recom-
mended by the WHO for stable patients, if deployed uni-
formly for all participants in our sample, would have reduced
the number of tests ordered by 69%, but would have delayed
detection of viraemia 74 days on average among individuals
experiencing viraemia. Extended viraemia increases the risk of
developing drug-resistant virus, [36] and of onwards transmis-
sion of HIV infection [37].
Super learning applied to standard EAM data, in combina-

tion with clinical and demographic data, was able to predict
viraemia well (cvAUC of 0.77), and would have avoided 25%
to 31% of observed viral load tests while detecting most vir-
aemia cases without additional delay. In contrast, the improve-
ment in prediction seen with addition of standard EAM data
to clinical and demographic data was not statistically signifi-
cant (p = 0.08). Differences in the “value-added” of real-time
versus standard EAM may have been due to differences in
participant characteristics or temporal trends – participants in
the real-time EAM cohort were followed more recently and
had higher CD4+ T-cells at ART initiation. Implementation of
real-time monitoring may also have provided better informa-
tion to guide differentiated testing compared to standard
monitoring by allowing for real-time data quality improve-
ments (e.g. identifying periods of device non-use). Further-
more, interruptions in events could trigger additional tests
during real-time but not standard monitoring; thus, both the
reference “observed” testing regime differed and the extra
tests themselves may have changed adherence. Indeed, aver-
age adherence appeared to increase when participants were
switched from standard to real-time monitoring [10], and qual-
itative work supports a possible motivational effect of “being

watched” [38,39]. However, the number of >24 hour interrup-
tions was similar if not higher during real-time monitoring.
These sustained interruptions may be related to structural
barriers to adherence (e.g. lack of transportation to pick up
medication) that are not as amenable to changes in motivation
and instead reflect circumstantial differences in the two moni-
toring periods.
Our study has limitations. First, we assumed that excluding

observed tests would not have changed subsequent adher-
ence, viraemia, or their relationship; to improve the plausibility
of this assumption, we censored at first detected viraemia.
However, less frequent monitoring might affect adherence by
reducing positive feedback provided to participants. Second,
use of a real-time monitoring strategy to guide viral load test-
ing would make possible not only targeted reduction in testing
frequency, but also early adherence and testing interventions
(beyond those implemented in the real-time EAM study); the
current analysis is conservative in the sense that it does not
incorporate these additional potential benefits. Third, while
estimates of the proportion of viral load tests that could be
deferred under hypothetical testing strategies were based on
independent data (via cross-validation), accurate quantification
of their uncertainty is an area of current work.
Finally, cost is an obvious concern when considering tech-

nology for clinical care. Cost-effectiveness is beyond the scope
of this analysis; however, a cost-effectiveness analysis of
potential ART adherence monitoring interventions in sub-
Saharan Africa found that an adherence monitoring-based
intervention could cost up to $50 per person-year on ART
while remaining cost-effective, mainly driven by savings
through effective differentiation of care [8]. Current lower
cost versions of real-time adherence monitoring devices con-
sistent with that threshold [40] are now available and are
being tested for use in routine care (NCT03825952). Applica-
tion of a previously developed machine learning tool does not
require intensive computing resources [41], and the increasing
use of smart phones globally [42] could make even real-time
updates to a machine learning algorithm feasible in the

Table 3. Performance of “3-Month,” “WHO” and “EAM” testing rules

Standard (EAM, CD4, w/o VL) Real-time (EAM, CD4, w/o VL)

3-month WHO EAMa Obs 3-month WHO EAMa Obs

RNP 0.03 0.77 0.24 0 0.19 0.69 0.32 0

1-Sensitivity 0.02 0.67 0.09 0 0.16 0.84 0.13 0

No. Tests Total 5728 1333 4518 5922 2304 886 1928 2834

FPR 0.97 0.22 0.76 0 0.81 0.32 0.68 0

Mean, median delay

time among undetected

viraemia cases, days (IQR)

42, 43

(37 to 48)

91, 96

(88 to 101)

97, 96

(89 to 97)

NA 49, 48

(31 to 64)

88, 76

(68 to 107)

84, 74

(73 to 75)

NA

Mean, median delay

time among all viraemia

cases, days (IQR)

1, 0 (0 to 0) 61, 88 (0 to 97) 9, 0 (0 to 0) NA 8, 0 (0 to 0) 74, 73 (62 to 97) 11, 0 (0 to 0) NA

3-month, Test every 3 mos; EAM, WHO schedule with additional testing if algorithm predicts high risk of viraemia; FPR, False positive rate; Obs,
Observed testing schedule for performance reference; RNP, rate of negative prediction; WHO, Test 6 and 12 mos after ART initiation and yearly
thereafter.
a

“EAM” performance metrics differ slightly from Table 2 due to testing schedule augmented by “WHO” schedule (See Methods).
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foreseeable future. Further, a differentiated care approach
could be used to target use of these devices (e.g. in patients
with self-reported adherence challenges).

5 | CONCLUSIONS

Evidence is increasing that differentiated care for HIV patients
in resource-limited settings is a cost-effective intervention
[3,8]. Real-time EAM provides one possible tool to support a
differentiated care strategy by making it possible to offer viral
load testing and adherence interventions on an individualized
schedule in response to evolving patient needs. Similar low-
cost, real-time technology is being used in clinical care for
tuberculosis and is being assessed for ART in Uganda [40].
This technology allows providers to triage at-risk patients.
However, the informative real-time data that rapidly accumu-
late through these devices may be difficult to interpret. Flexi-
ble algorithms with the capacity to leverage these data, such
as those presented here, could be readily integrated into
accessible software to address this issue.
In conclusion, our analysis suggests that real-time electronic

adherence data analysed with machine learning methods have
the potential to achieve a more efficient targeted viral load
monitoring strategy while maintaining high sensitivity for detec-
tion of viraemia. Future work should prioritize external valida-
tion of differentiated strategies in new settings, and
implementation of these methods through software that aims
to guide differentiated patient care. Our results provide an illus-
tration of the utility of machine learning methods to better
leverage complex data for precision medicine and public health.
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