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Highlights
CNNs enable ecologists to identify bio-
physical components in high-resolu-
tion remotely sensed imagery by
leveraging spatial context, and are par-
ticularly effective when ecological
components have distinct shapes.

CNNs can be used for both object
detection, where key components
are identified throughout an image,
and semantic segmentation, where
each pixel is classified individually.

CNN accuracy is similar to human-
level classification accuracy, but is
consistent and fast, enabling rapid
application over very large areas
and/or through time.
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Using remotely sensed imagery to identify biophysical components across
landscapes is an important avenue of investigation for ecologists studying
ecosystem dynamics. With high-resolution remotely sensed imagery, algorith-
mic utilization of image context is crucial for accurate identification of biophysi-
cal components at large scales. In recent years, convolutional neural networks
(CNNs) have become ubiquitous in image processing, and are rapidly becoming
more common in ecology. Because the quantity of high-resolution remotely
sensed imagery continues to rise, CNNs are increasingly essential tools for
large-scale ecosystem analysis. We discuss here the conceptual advantages of
CNNs, demonstrate how they can be used by ecologists through distinct
examples of their application, and provide a walkthrough of how to use them
for ecological applications.

The Value of Spatial Context for Ecology
A key goal in ecology is to understand the spatial organization of organisms and ecosystems,
the processes these patterns reflect, and their underlying biotic and abiotic controls. However,
the ability to explore ecological pattern is underpinned by an accurate spatial representation of
organisms and other ecosystem components. From such observations, patterns can be
interpreted, advancing our understanding of system interactions [1]. Remotely sensed imagery
has enabled the identification of ecosystem components over vast scales, facilitating new
ecological discoveries in complex systems [2–5].

A principal challenge for ecologists seeking to use remotely sensed data for classification at
the landscape level is the large quantity of data to sort through. This often involves the
mundane and laborious task of identifying massive numbers of similar features across a
landscape. Not only is this time-consuming, but human subjectivity can generate incon-
sistencies in patterns and/or their interpretation. Recently, various machine learning
techniques have been used to expedite these tasks over large areas with promising
results [6,7].

Although most computational machine learning methods used by ecologists to analyze
remotely sensed data rely on pixel-level information, and in many cases high accuracy can
be achieved with these techniques [8–10], high spatial resolution images have driven the need
for more automated approaches to consider multiple pixels during decision making [11]. This is
because of the redundancy induced in images when spatial resolution is finer than the objects
of interest, with multiple pixels being measured from the same component [12]. For instance,
sub-meter spectral or light detection and ranging (LiDAR) data from large tree canopies
includes many nearly identical pixels from the same individual tree crown. This redundancy
of information imposes a barrier because pixel-level information is insufficient to identify
biophysical components for two reasons: (i) the same information could represent multiple
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Glossary
Activation function: also known as
a squashing function a nonlinear
function applied to the output of a
deep learning model layer.
Band: also known as a channel or
feature, an input variable into a
model. In data science these are
referred to as features, in much of
computer vision the term channel is
used, whereas in remote sensing the
term band is commonly favored.
Bounding box: used in object
detection, a bounding box surrounds
an object of interest (a response)
within an image. Each bounding box
is typically accompanied by a class
label as well as the probability that
an object is located within said box.
Channeling: a connection inside a
CNN where encoding and decoding
layers are concatenated after a
decoding layer, allowing better-
resolved semantic segmentation.
Convolution layer: the core
concept in a CNN, a convolution
layer is a step in the CNN that
aggregates information via a kernel
(or convolution) and passes that
information to the next layer. The
kernel has a user-specified size
(typically ranging from 3 to 11 pixels),
but the values of the kernel are
determined during model training.
Convolutional neural network
(CNN): a style of deep learning
model that uses a series of
convolution layers to incorporate
image context to learn to identify
images, find objects within images,
and/or fully segment the contents of
an image.
Decoding layer: a type of layer in a
CNN where higher-order information
is resolved toward the response of
interest. Typically, these are later
layers in a network, and resolution
successively increases through
encoding layers.
Encoding layer: a type of layer in a
CNN where information is extracted
at a higher level than the previous
layer. Typically, these are earlier
layers in a network, and resolution
successively decreases through
encoding layers.
Fully convolutional network
(FCN): a specific type of CNN that
does not include fully connected
layers to preserve spatial information
throughout the model; commonly
used for semantic segmentation.
different facets of the same component, and (ii) a single component could be composed of
multiple different pixel values. Additional bands (see Glossary) of information (e.g., spectral,
topographic, or even geologic data) can help to meet this challenge, but there are limits to the
degrees of freedom of current observational systems, and the problem therefore persists.
Spatial context breaks this barrier by supporting an algorithm to consider more information by
utilizing not only one pixel, but also the textures and patterns of the surrounding area.

During visual observation, humans instinctivelymake use of spatial context tounderstand content,
without which we would be unable to disaggregate components within an image. Consider the
example in Figure I(i) in Box 1, where a termite mound is clearly visible in a snapshot of a digital
elevation model (DEM). Individual pixels that comprise the termite mound do not provide enough
information for classification, evidenced by the equivalent values of the DEM on the mound and on
the hillslope in the upper-left region of the image. Nevertheless, when considering the image as a
whole, the termite mound is obvious. Multiple context-based methods, often referred to as
geospatial object-based image analysis, exist and have seen success [13,14], but we focus here
on an emerging class of algorithms known as convolutional neural networks (CNNs) that have
shown breakthrough performance and interpretability in recent years [15]. We review and
demonstrate how CNNs can account for spatial context and thus facilitate the identification of
ecological features and patterns, yielding new insights.

How CNNs Use Spatial Context
CNNs provide an algorithmic means to bring spatial context to bear for both rapid and accurate
interpretation of image texture, with broad implications for feature and pattern identification in
ecological studies. CNNs are a subset of a class of machine learning algorithms, known as deep
learning models (or deep artificial neural networks), that are widely used throughout biology and
ecology [16]. Deep learning models work by passing data through a multitude of neurons, which
are organized into a series of layers. Each neuron uses a linear combination of data from neurons
in the previous layer that is then transformed through a nonlinear activation function (also known
asa squashing function). The architectureof thealgorithm(the numberofneuronsper layerand the
arrangement of layers) is human-determined, whereas the path of data transmission through the
algorithm, controlled by weights at each neuron, is determined by the deep learning model. As the
depth of the layer stack increases, many linear and nonlinear transformations occur, enabling the
representation of a wide variety of complex systems [17]. Early layers in the model tend to contain
low-level information, which is aggregated and transformed into successively higher-level infor-
mation until the desired inference can be made. Deep learning models are not specific to images,
and can be used to analyze many types of data. CNNs, however, are specifically designed for
spatial data, which are analyzed largely by leveraging convolution layers. Convolution layers use
convolution matrices (or kernels) determined by the algorithm to aggregate spatial information
from multiple pixels. With a sufficient number of layers, CNNs can then learn to interpret different
textures within an image. Early layers in CNNs tend to recognize simple features such as edges,
which progress to image subcomponents and to eventually high-level abstractions such as
human or animal faces [18], or, in an ecological example (as in Figure 1), early layers can recognize
general terrain characteristics which are ultimately aggregated to identify termite mounds. Since
their initial introduction, many individual network architectures have been proposed, and the
effectiveness of the methods has dramatically improved [19].

Three principal categories of CNN applications exist today, and distinct model architectures are
used for each application, including image classification [20–22], object detection [23–26], and
semantic segmentation (also known as image segmentation) [27–29] (Box 1). There are several
variants and hybrids (e.g., [30,31]) of these categories, and more are being developed, but
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Layer: a principal unit within a deep
learning model. A convolution layer is
an assembly of kernels, whereas a
fully connected layer is an assembly
of nodes. Layers are stacked in
series (and sometimes in parallel) to
successively transform information
through the model.
Network architecture: also known
as model architecture, the manner in
which different components of a
deep learning model are stacked
together, including depth of each
layer (either number of filters or
number of neurons), the activation/
squashing function used, the number
of layers, and how each layer is
connected to each other layer.
Neuron: a connection point within
an artificial neural network. Neurons
are connected to one another
through linear weightings, and are
grouped together with nonlinear
functions in different ways depending
on the network architecture.
Pooling: also known as pooling
layers, the aggregation of pixels
between convolution layers, inducing
a reduction in the resolution of the
next layer. This occurs by grouping
neighboring pixels, commonly by
taking the maximum value.
Response: the desired output from
a model. In the case of image
identification the response is an
image label, for object detection the
response is a series of bounding
boxes, and for semantic
segmentation the response is an
image with each pixel labeled (or
equivalent tensor structure).
Stride: the number of pixels a kernel
moves when sliding through an
image in a convolution layer. Higher
strides step farther, and also reduce
the resolution of the subsequent
layer.

Box 1. Categories of CNN Applications

(i) Image Identification

In image classification, the original use of a CNN, the model output is designed to summarize the contents of an image
through one or more labels. In this case, the entire image would simply be labeled as ‘termite mound’, as opposed to an
image where no termite mound is present, which might be labeled ‘other’. Image identification is not well suited for
ecological applications in remote sensing because it requires arbitrary partitioning of the extent of interest.

(ii) Object Detection

Developed after image identification, object detection enables subcomponents within an image to be labeled. To date,
this is typically achieved with bounding boxes, which locate and label the object of interest, and provide the likelihood
that an object is within a generated box. Object detection is well suited for ecological applications in remote sensing
because it does not depend on a specific extent. However, the bounding box can be limiting because it prevents
consideration of shape.

(iii) Semantic Segmentation

Semantic segmentation is a more recent advance in CNN application whereby each pixel is labeled in a meaningful way.
Probability maps can be generated for each class, or those maps can be condensed to a classified image (as shown
here). Semantic segmentation is often the best choice for ecological applications in remote sensing because it allows
complete partitioning of the extent of interest and enables arbitrarily shaped objects to be identified.

Eleva�on [m]
490 495

Termite mou nd (i)

0 10 20 30m

Termite moun d

(ii)

0.91

(iii)

Termit e mo und
Other

Figure I. Image Identification, Object Detection, and Semantic Segmentation.
these three synthesize the range of CNNs used in ecology to date. Image classification, where
whole images are assigned identifying labels, was the first application to become popular in
2012 [20] and is the most widely used in biology and ecology today, with applications including
plant taxonomy [32–34] and animal identification in camera traps or aerial photographs [35–40].
Object detection began to see significant success in 2014 [23], and extends the idea of image
classification by examining subcomponents within an image. For object detection, the CNN
identifies regions (boxes) of interest within an image, each of which is labeled and given a
probability of containing a component of interest. Object detection uses a similar model
architecture to image classification, but includes a supplemental component at either the
beginning [23–25] or the end [26,41–43] of the algorithm to facilitate object identification. In
biology, object detection has been adopted to address problems such as cell counting [44–47]
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Figure 1. A Simple Example Convolutional Neural Network (CNN) Architecture for Semantic Segmentation. The convolution with the greatest variation is
depicted in the foreground; the additional convolutions are shown in the background (eight are depicted in this example network). Each image shows the result of
passing the input image from the far left through the network up to the given layer. Each layer uses a series of convolution matrices to connect adjacent layers. In
encoding layers (left half of the network), resolution is decreased through pooling, and higher-level information is extracted. In decoding layers (right half of the network),
this high-level information is then made spatially explicit into output classifications, aided through the process of channeling, depicted via arrows, where information is
passed forward between equivalently sized encoder and decoder layers.
and animal identification [48]. In the final application, semantic segmentation, the concept of
more locally refined classification is taken to its limit, and all pixels within an image are
simultaneously classified. Semantic segmentation first became popular in 2015 [27], and
has seen widespread adoption in biology, particularly in biomedical research [49–52], following
some early advances [28]. Examples of each of these different types of applications on a
sample termite mound image are shown in Box 1.

Extension to Remote Sensing
Most of the examples described above rely on stand-alone, spatially agnostic imagery taken by
three-band red, green, and blue (RGB) cameras or laboratory equipment. Identifying ecological
patterns across large scales, however, often requires the utilization of remotely sensed data,
which differ from stand-alone images mostly due to their increased extent, but also because of
the fixed-depth perspective (remotely sensed imagery is typically obtained at a relatively
constant height above ground) and the addition of specific types of missing data from the
images (e.g., clouds and nonuniform observational boundaries). Through either object detec-
tion or semantic segmentation, remotely sensed data can be treated as a continuous image,
thereby alleviating concerns about boundary conditions from image subsets [53]. Several
studies have demonstrated strong performance, with most emphasis to date being placed on
land-cover classification [54–58]. Of these two application options, we emphasize that seman-
tic segmentation is the better choice for ecological applications because it enables the
delineation of nonrectangular objects in full detail, and object shape can have important
consequences for ecological interpretation.

Combining CNNs and remotely sensed imagery for ecological applications remains an emerg-
ing trend, but several studies have successfully leveraged this combination. King et al. dem-
onstrate the efficacy of several different CNNs for semantic segmentation to delineate multiple
coral species, a sea fan, and several substrate types across a reefscape [59]. Rezaee et al.
demonstrate the disaggregation of wetland categories (e.g., bog, fen, marsh) in a 700 km2

study area in Canada [60]. Li et al. used CNNs to count individual oil palm trees from WorldView
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satellite data [61], Csillik et al. segmented and counted citrus trees in multispectral drone
imagery [62], and Wagner et al. mapped eucalyptus plantations, forest disturbance, and a
specific tropical tree species [63]. Kellenberger et al. show how CNNs can be used with high-
resolution drone imagery to census large wildlife in a 13 km2 section of the Kuzikus Wildlife
Reserve in Namibia [64], and Torney et al. used an object detection approach to count blue
wildebeest in Serengeti National Park, Tanzania [65]. Ayrey et al. go so far as to demonstrate
how CNNs can be used to interpret forest inventory attributes such as biomass estimates, tree
counts, and needle-leaf tree fraction from LiDAR point clouds [66]. These studies are excellent
early steps that demonstrate the potential of CNNs for ecological applications.

CNN Network Architecture Details: How They Work
The architecture of a CNN (the size, shape, and interconnection of different layers) ultimately
determines the utility of the network, and we here provide an explanation of several crucial
aspects of a CNN. We focus on semantic segmentation, that we suggest to be the most
applicable for ecological studies, although object detection architecture is often also useful and
is discussed in the supplemental information online. We provide an example of this architecture
to highlight key components of the network, but emphasize that there are many adequate
variations. Using a CNN with remotely sensed data requires the assembly and preprocessing of
training/validation data, training the CNN, deploying the CNN to develop an output image, and
assessing model accuracy. Each of these steps can be a potential barrier for new users, and we
therefore provide both code and a walkthrough tutorial for managing these application steps in
the supplemental information online.

Semantic segmentation with CNNs is performed using some variation of a fully convolutional
network (FCN) [27], a subset of CNNs that has rapidly evolved since they were first introduced
[28,29,67,68]. Many FCNs today follow an architectural style introduced as U-Net [28]. In this
approach, a series of convolution layers successively coarsen the image spatial resolution while
increasing in convolution depth, allowing data texture from one side of the image to influence
the other side of the image. These layers are known as encoding layers because they
aggregate information from throughout the spatial domain. The encoding layers are then
followed by a series of decoding layers that successively increase in spatial resolution
and decrease in convolution depth. This allows the model to make per-pixel predictions in
the final layer at the same spatial resolution as the input image, while carrying forward
knowledge gained from throughout the spatial domain by the encoding layers. Encoding layers
reduce spatial resolution through a combination of pooling, which aggregates pixels within a
window from the previous layer, and stride length, which determines how many pixels the
kernel should slide during pooling. Decoding layers increase the spatial resolution through
convolution layers that extrapolate features. This encoder/decoder style of model is enhanced
by a concept known as channeling, whereby information from early encoding layers is carried
forward to later points in the model, helping to produce an accurate and fine-scale segmenta-
tion of the final image. Many additional architecture components can play important roles in the
network importance, which we do not discuss here for brevity [69–73].

A simple FCN model framework is illustrated in Figure 1. Encoding layers are added until the
initial input 128 � 128 pixel image becomes less than an 8 � 8 pixel image, and then decoding
layers are added until the spatial dimension matches the initial image resolution. Channeling
connects each decoding layer with the last layer of matching spatial resolution (depicted by
arrows in Figure 1). A useful property of channeling is that it decreases the risk of over-
coarsening the image because particularly coarse layers can be bypassed if they provide little
value. The network demonstrated in Figure 1 does not increase the depth of convolutions in the
738 Trends in Ecology & Evolution, August 2019, Vol. 34, No. 8



center of the network, contrary to many common implementations. This reduced convolution
depth sacrifices the possibility that large numbers of identifiable classes significantly reduce
computation time, an effective approach for many ecological problems. Many CNNs that are
used for semantic segmentation also use some form of post-processing to bring in additional
information or further consider spatial context so as to refine the results. This post-processing
often helps reduce isolated pixel misclassification. A common form of post-processing for
semantic segmentation is the conditional random field (CRF) [74] that has been shown to be
beneficial when used with CNNs [75–77].

Examples of Ecological Applications of CNNs
To demonstrate the potential of utilizing CNNs to identify ecological patterns, we constructed
three brief examples, and used the same CNN architecture to identify and map important
biophysical components in each. These examples include very distinct input data and types of
responses, but are nevertheless all mapped well with CNNs. These examples stop short of
investigating the processes that link system facets together, but demonstrate how, by facili-
tating large-scale mapping of ecosystem components, subject experts can use these data to
gain insights into landscape-level patterns.

Termite Mound Identification
Termites have long been known to perform important functional roles in savanna ecosystems
through their foraging and nesting behavior. By concentrating nutrients and moisture in central
nesting locations, termites create spatial heterogeneity in the form of nutrient-rich mounds [78].
However, before the landscape patterning and distribution of termite mounds was understood
through the use of remote sensing imagery, it was unclear how extensive the influence of
termites was across large landscapes. Both high-resolution satellite and LiDAR data have been
used to map termite mounds and reveal the importance of their spatial patterning across
landscapes [79–82], but identifying individual mounds has remained a laborious and manual
task, limiting the extent of possible analysis.

Using LiDAR data collected with the Carnegie Airborne Observatory (CAO) [83] in Kruger
National Park, South Africa, we demonstrate that CNNs can facilitate the rapid and
accurate identification of large numbers of termite mounds. LiDAR data were processed
to a digital elevation model (DEM) at 1 m ground-level spatial resolution, as in Davies et al.
[80], following which termite mounds were identified by hand using a hillshade model of the
DEM, as in Figure 2A. Although the general classification of a particular mound by hand
might be valid, the placement of mound centers can vary by several meters from the actual
mound center owing to human error, making the accuracy of manual mound identification
less than ideal. Because only individual points were identified during the preparation of the
training dataset, we assumed that all termite mounds were square and 5 � 5 m (which is
certainly not true). Nevertheless, the CNN produced a classification image at an accuracy
rate equivalent to the error rates of our human-generated training data, where termite
mounds reflected their true circular shape, and were aligned with the actual mound center
(Figure 2B). Although a large dataset (>10 000 identified mounds) was available for training,
in the supplemental information online we demonstrate how even a very small set of
mounds can be used effectively.

Coral Reef Classification
Coral reefs are some of the most threatened ecosystems on the planet, facing deleterious
impacts from increasing ocean temperatures, human use, and ocean acidification [84,85].
Furthermore, human activity on land influences coral distribution and health in the sea through
Trends in Ecology & Evolution, August 2019, Vol. 34, No. 8 739
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Figure 2. Segmentation of Individual Termite Mounds Across a Landscape. A hillshade map overlain with termite mound identification (A) makes the termite
mounds visible over areas with elevation changes. Hillshade is shown for an image subset with a greater zoom (B), together with the corresponding termite mound
classification obtained by the convolutional neural network (CNN) (C) and for the hillshade again overlain with termite mound classification (D).
runoff and groundwater discharge [86,87]. Better understanding of reefscapes and their
connections with the land surface will shape how we characterize coral resilience, and will
influence the prioritization of conservation efforts. However, understanding these interactions
requires accurate representations of the distribution of corals, and of how coral cover changes
through time.

Using three-band, 40 cm resolution RGB images from a high-resolution camera mounted on
the CAO [83] (Figure 3A), we manually outlined a �0.2 ha area (�1 million pixels) of ocean,
sand, and coral reef in an independent image subset. We then trained and applied a CNN to
accurately classify these ecological components at scale (Figure 3B). Segmenting this image
into these components would be largely ineffective if only pixel-level information is considered;
redundant colors would lead to misidentified pixels scattered throughout the image, challeng-
ing its utility for subsequent spatial analyses of coral distribution. By considering spatial context,
however, the separation becomes obvious, as demonstrated by the overlay in Figure 3C.
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Figure 3. Major Component Segmentation of a Reefscape. An RGB image of a small coral reef area containing open water, fore coral, and patch coral (A) was
segmented into coral, water, and sand. We found that the classification resolves well locally (C and D) as well as globally (A and B). Abbreviation: RGB, red, green,
and blue.
Oil Palm Classification
Close to 20% of all remaining forest worldwide lies within 100 m of a forest boundary [88,89]. This
incredible degree of forest fragmentation, frequently caused by human activities such as the
construction of oil palm plantations, can influence ecosystems up to several kilometers away from
the forest edge [90,91]. To better understand these edge effects, however, we need more
accurate mapping of the extent and edges of oil palm plantations, and at high resolutions this
can again be a laborious process, particularly given the massive spatial extents in question [92].

We again draw on LiDAR data collected by the CAO [83] over oil palm plantations on the island
of Borneo, in Sabah, Malaysia. We use here the top of canopy height (TCH), the height of
vegetation as measured by the difference between first and last LiDAR pulse returns, calculated
as in Asner et al. [93]. Without spatial context, TCH is a poor oil palm classifier given that intact
forests (shown on the right-hand side of Figure 4A) have many canopy gaps with equal tree
height to the oil palm plantations shown on the left-hand side of Figure 4A. Training data were
constructed by manually delineating oil palm over a �6 500 ha area (�16 million pixels) of TCH
Trends in Ecology & Evolution, August 2019, Vol. 34, No. 8 741



0 2 4 6 8 km
Oil palm Not oil palm

Top of canopy height

Oil palm classifica on

Top of canopy height Classifica on overlay

0 0.1 0.2 0.3 0.4 km

0 m 35 m

(A)

(B)

(C) (D)

Figure 4. Separating Intact Tropical Forest and Oil Palm from Tree Canopy Height. A map of tree canopy height (A) shows that landscape texture leads to
accurate classification of plantations, show in red in (B). The zoomed figures (C) and (D) demonstrate that, despite the large application area, the segmentation remains
highly locally resolved.
data. Although broadly accurate, boundaries were difficult to accurately designate by hand.
However, the CNN demonstrates clean disaggregation of oil palm, even in the presence of
multiple different types of land cover, including intact forest, impacted forest, and riparian zones
(Figure 4B).

From Classification to Ecology
The examples above stop short of the pursuit of ecological questions: simply identifying
where features of interest are in a landscape does not inherently lead to an understanding of
system interactions. However, the ability to rapidly identify biophysical components over large
areas is a significant first step towards enabling investigation of ecosystem processes and
changes through time. Environmental gradients and landscapes with varying land-use histo-
ries can provide natural laboratories, the monitoring of which can enable insights that are
otherwise difficult and costly to establish at large scales. Manipulation experiments, for
example, are a standard method for understanding mechanisms underlying ecological
patterns, but they can require years or decades of monitoring to be able to discern processes
[4], and are usually restricted to small scales. Augmenting actual experiments with observa-
tion-based ecology, however, requires extensive scale to control for nested multiscale
variation, and this is where automation becomes invaluable. Automated, large-scale moni-
toring of ecosystem properties also has the potential to enable new insights into ecosystem
patterns and processes that are typically not observable through more traditional manipula-
tive and/or small-scale observation work. To meet this goal, a trained CNN can also be used
to track fine-scale changes in ecological properties through both broad spatial scales as well
as through time.
742 Trends in Ecology & Evolution, August 2019, Vol. 34, No. 8



Outstanding Questions
Can CNNs be extended to directly
identify ecological patterns, rather than
only biophysical components that
ecologists can then link together as
patterns?

How can unsupervised CNNs, as they
develop, facilitate the identification of
ecologically relevant patterns and pro-
cesses without predefined classes?

How can CNN architectures be modi-
fied to incorporate temporal data to
encapsulate both spatial and pheno-
logical context?

How best can multiple scales and/or
resolutions of remotely sensed data be
integrated to match the scale of differ-
ent biophysical components?
Concluding Remarks and Future Perspectives
CNNs have provided enormous breakthroughs in image analysis in recent years. When
coupled with high-resolution remote sensing data, these methods provide a powerful tool
to classify objects and segment landscapes over large geographic areas. Crucially, CNNs
leverage spatial context, considering not only single pixels but also the surrounding landscape
to classify biological phenomena, even with relatively few training input data features. To date,
the use of CNNs in ecology is sparse, although it is rapidly increasing. The adoption of CNNs by
the ecological community has the potential to significantly increase the characterization of
spatial and temporal biological patterns through automated mapping over large extents and
through time. This in turn can lead to the discovery of the processes that govern these patterns
and thereby yield new insights into how ecosystems function at scales that were impossible to
consider before.

Specific CNN architectures will continue to evolve in the coming years, further increasing model
accuracy, decreasing training times, and expanding the types of data that can be incorporated.
Advances that combine semantic segmentation with object detection to simultaneously
generate per-pixel classes while also cleanly separating occurences of individual objects,
known as instance segmentation, will continue to develop [31,94,95], and may ultimately
provide an ideal choice for ecology. The generation of training data still requires significant
effort, but semisupervised [96] and unsupervised learning [97,98] with CNNs, where labeled
training data are either limited or even completely unnecessary for the algorithm to learn relevant
landscape features, is under development and could eventually facilitate the use of CNNs for
new ecological discovery (see Outstanding Questions). As CNNs evolve, ecologists will need to
continue experimenting with the latest methods, but the fundamental principle of context
consideration will remain the same. In the coming years, we not only encourage ecologists to
use CNNs as a tool to identify ecological properties at new spatial and temporal scales, but
even more importantly to innovate with the use of CNNs in the characterization of pattern and
process in ecosystems.
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