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Historically, drug repurposing – identifying new therapeutic uses for approved drugs – has1

been attributed to serendipity. While recent advances have leveraged knowledge graphs2

and deep learning to identify potential therapeutic candidates, their clinical utility remains3

limited due to their dependence on existing knowledge about diseases. Here, we introduce4

TXGNN, a geometric deep learning approach designed for “zero-shot” drug repurposing,5

enabling therapeutic predictions even for diseases with no existing medicines. Trained on6

a medical knowledge graph, TXGNN utilizes a graph neural network and metric-learning7

module to rank therapeutic candidates as potential indications and contraindications across8

17,080 diseases. When benchmarked against eight leading methods, TXGNN significantly9

improves prediction accuracy for indications by 49.2% and contraindications by 35.1% un-10

der stringent zero-shot evaluation. To facilitate interpretation and analysis of the model’s11

predictions, TXGNN’s Explainer module offers transparent insights into the multi-hop paths12

that form TXGNN’s predictive rationale. Clinicians and scientists found TXGNN’s expla-13

nations instrumental in contextualizing and validating its predicted therapeutic candidates14

during our user study. Many of TXGNN’s novel predictions have shown remarkable align-15

ment with off-label prescriptions made by clinicians within a large healthcare system, af-16

firming their real-world utility. TXGNN provides drug repurposing predictions that are17

more accurate than existing methods, consistent with off-label prescription decisions made18

by clinicians, and can be investigated through multi-hop interpretable explanations.19
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Introduction20

The healthcare demands of billions globally underscore the pressing need to develop therapies21

for many diseases that currently lack treatments. Of over 7,000 rare diseases worldwide, only 5-22

7% of rare diseases have FDA-approved drugs1. In nations with aging populations, an enormous23

need for therapeutics lies in the growing burden of neurological disorders such as Parkinson’s and24

Alzheimer’s diseases2. Further, few therapeutics exist for neglected tropical diseases that affect25

populations in tropical and subtropical regions3. Leveraging existing therapies and expanding26

their use by identifying new therapeutic indications via drug repurposing can alleviate the global27

disease burden and address unmet disease needs. Drug repurposing can lead to significantly faster28

translation to the clinic and lower development costs than designing a novel drug from scratch since29

there is ample data about safety and efficacy of existing drugs4 (Figure 1a). For instance, over 60%30

of therapies approved for a neglected tropical disease, leishmaniasis, have been repurposed5, 6.31

The fundamental premise behind repurposing is that drugs can have pleiotropic effects beyond32

the mechanism of action of their direct targets7. Approximately 30% of FDA-approved drugs are33

issued at least one post-approval new indication, and many drugs have accrued over 10 indications34

throughout years8. However, most repurposed drugs are the result of serendipity9, 10. Noticing35

off-label prescriptions of clinicians, as in the cases of gabapentin and bupropion, has led to many36

repurposed indications10. For other drugs, including sildenafil, indications that become the basis37

for repurposing are discovered fortuitously through patient experience8. The connection between38

drug candidates and their potential new applications is not identified systematically because the39

underlying mechanism ‘connecting’ them is either very intricate and unknown or dispersed and40

buried in a growing sea of information9.41

Owing to technological advances, the effects of drugs can now be prospectively matched to42

new indications by systematically analyzing medical knowledge graphs7, 11. The new strategies rely43

on identifying therapeutic candidates based on their effects on cell signalling, gene expression, and44

disease phenotypes7, 12–14. Machine learning has been used to analyze high-throughput molecular45

interactomes to unravel genetic architecture perturbed in disease14, 15 and help design therapies46

to target them16. To provide therapeutic predictions, geometric deep learning models optimized47

on large medical knowledge graphs17 can extract disease signatures and match them to therapeutic48

candidates based on the proximity of therapeutic mechanisms to networks perturbed in disease17–21.49

Although computational approaches have identified promising repurposing candidates for50

complex diseases18, 22, 23, there remain two key factors that, if addressed, could significantly en-51
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hance the clinical impact of repurposing predictions made by machine learning models. (1) First,52

existing methods assume that diseases for which we would like to make therapeutic predictions53

are well-understood and likely to have existing therapies. While this is certainly the case for54

some diseases (e.g., hypertensive disorder is indicated with 103 medications across diverse patient55

populations11), there is a long tail of diseases that do not satisfy this assumption. Of 17,080 dis-56

eases examined in our study, 92% have no indications, and only 5.4% have more than one indicated57

medication. Despite the passage of the Orphan Drug Act in the United States in 1983 represented58

a launching point for a rare disease drug development revolution for these patients, around 95%59

of rare diseases have no FDA-approved drugs and up to 85% of rare diseases do not have even60

one drug developed that would show promise in rare disease treatment, diagnosis or prevention24.61

This long tail of diseases with few or no therapies and limited molecular understanding presents62

the most fruitful challenge clinically. (2) Second, a repurposed indication for a therapeutic can-63

didate can be unrelated to the indication for which the drug was initially approved. Thalidomide64

was originally proposed to help with morning sickness during pregnancy and then retracted for65

causing congenital disabilities10. It was repurposed in 1964 for an autoimmune complication of66

leprosy and again in 2006 for multiple myeloma10. Another example of therapeutic reposition-67

ing, sildenafil was originally studied for angina and hypertension but later repurposed for erectile68

dysfunction10. Collectively, we refer to these challenges as the zero-shot drug repurposing problem69

(Figure 1b).70

To be clinically useful, machine learning models must make “zero-shot” predictions; that is,71

they need to extend therapeutic predictions to diseases whose understanding is incomplete and, fur-72

ther, to diseases with no approved drugs. Unfortunately, the ability of machine learning models to73

identify therapeutic candidates for diseases with incomplete, sparse data and zero known therapies74

drops drastically18, 25 (as we demonstrate across eight benchmarks in Figures 2c and 2d). Here, we75

introduce TXGNN, a geometric deep learning approach for zero-shot drug repurposing that can76

predict therapeutic use for diseases with limited or no therapies (Figure 1c). Foundation models77

like TxGNN are transforming deep learning: instead of training disease-specific models for every78

disease, TXGNN is a single pretrained model that is adapted to many diseases. TXGNN is trained79

on a medical knowledge graph that collates decades of biological research across 17,080 diseases,80

including complex and rare diseases (Figure 1d). TXGNN uses a graph neural network model to81

embed therapeutic candidates and diseases into a latent representation space and is optimized to82

reflect the geometry of TXGNN’s medical knowledge graph. To make therapeutic predictions un-83
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der zero-shot settings, TXGNN has a metric learning module to learn similarities between diseases84

with existing drugs and diseases without any drugs in order to transfer knowledge between these85

diseases and achieve zero-shot prediction. Once trained, TXGNN performs zero-shot inference on86

new diseases without additional parameters or fine-tuning.87

We demonstrate TXGNN by evaluating its therapeutic predictions across stringent hold-out88

sets against drugs from key disease areas and against recently approved drugs. We additionally89

compare TXGNN’s novel predictions to off-label prescriptions in a hospital system and conduct90

a user study with clinicians and scientists to evaluate the potential of novel predictions. First, we91

go beyond the classical approach of testing machine learning models on random subsets of indi-92

cations by creating hold-out datasets that prevent the model from taking shortcuts26 and ensuring93

that the model can transfer to challenging testing settings when the model encounters diseases94

with no known therapies. Across six such settings, TXGNN consistently outperforms eight state-95

of-the-art methods and gains up to 59.3% and 17.8% in accuracy in predicting indications and96

contraindications compared to the second-best approach. Next, we curate indications that received97

FDA approval only after TXGNN’s medical knowledge graph was built. We observe that TXGNN98

consistently ranks newly introduced drugs highly. On average, TXGNN ranks the approved drug99

in the first third (30%) of all predictions and as high as the top 2-4% for specific drugs.100

We develop an TXGNN Explainer module that allows introspecting TXGNN’s predictions101

and identifies the relationships most critical for making a prediction. We collect these critical rela-102

tionships to build explanatory reasoning paths for predicted indications. Clinicians and scientists103

can interact with explanations using our graphical user interface at http://txgnn.org. To evaluate104

explanatory reasoning paths and their utility for end users, we conducted a user study. In the user105

study, 91.6% clinicians and scientists agreed that TXGNN’s explanations were valuable in sorting106

through TXGNN’s predictions and helpful for planning the downstream evaluation of predicted in-107

dications. Finally, we examine whether TXGNN’s novel predictions align with clinical decisions108

on off-label prescriptions in the medical records of 1,272,085 patients from a large healthcare sys-109

tem. For each of the 480 diseases phenotyped in the medical records, we rank drug candidates in110

the order predicted by TXGNN. We find that the top-1 predictions have a 107% greater average111

likelihood of real-world prescription than the bottom-50% predictions. Our analyses suggest that112

TXGNN’s predictions are closely aligned with clinical practices and can offer valuable insights113

into potential novel uses of existing medicines.114
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Results115

Overview of zero-shot drug repurposing in TXGNN. Zero-shot drug repurposing involves pre-116

dicting therapeutic candidates for diseases that do not have any existing indications (Figure 1b).117

Zero-shot drug repurposing is a new problem in deep learning research that has not been con-118

sidered previously. Mathematically, the model takes a drug-disease pair as input and provides119

the likelihood of the drug acting on the disease as output. We previously curated and validated120

a large-scale medical knowledge graph11 (Figure 1d) consisting of 9,388 indications and 30,675121

contraindications that form the gold-standard labels for evaluation27. The knowledge graph covers122

a vast range of 17,080 diseases where 92% have no FDA-approved drugs, including rare dis-123

eases and less-understood complex diseases. The knowledge graph also comprises 7,957 potential124

candidates for drug repurposing, ranging from FDA-approved drugs to experimental drugs inves-125

tigated in ongoing clinical trials. TXGNN operates on the principle that effective drugs can target126

disease-perturbed and disease-associated networks of biomolecules, and it has two modules: (1)127

the TXGNN Predictor module enables the accurate prediction of indications and contraindications128

in the zero-shot setting and (2) the TXGNN Explainer module provides interpretable multi-hop ex-129

planations that connect the drug to the disease (Figure 1c).130

TXGNN Predictor The Predictor module consists of a graph neural network (GNN) optimized on131

the relationships within the biomedical knowledge graph (Methods 2.2). Through large-scale pre-132

training, the GNN produces biologically meaningful representations for any entity in this knowl-133

edge graph. Then, using self-supervised learning, this GNN is finetuned to predict relationships be-134

tween therapeutic candidates and diseases. TXGNN leverages a metric learning procedure to make135

zero-shot predictions. TXGNN capitalizes on the insight that diseases are intrinsically related12, 16
136

by leveraging molecular mechanisms of well-annotated diseases to enhance predictions on diseases137

with limited annotations (Figure 2a, Figure S2). This is achieved by creating a disease signature138

vector for each disease based on its neighbors in the knowledge graph. The similarity between a139

pair of diseases is measured by the normalized dot product of their signature vectors. Since most140

disease pairs do not share underlying pathologies, they have low similarity scores. In contrast,141

a relatively high similarity score (>0.2) between diseases suggests complementary mechanisms.142

Description of TXGNN model and its architecture can be found in Methods 2 and Figure S1.143

When querying a specific disease, TXGNN retrieves similar diseases, generates embeddings144

for them, and then adaptively aggregates them based on their similarity to the queried disease. The145

aggregated output embedding summarizes knowledge borrowed from similar diseases fused with146
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the query disease embedding. TXGNN processes different downstream therapeutic tasks, such147

as indication and contraindication prediction, in a unified manner using shared drug and disease148

embeddings (Methods 2.3). This step can also be interpreted as a graph rewiring technique in149

the graph machine learning literature (Figure S3). Given a query disease, TXGNN ranks drugs150

based on their predicted likelihood scores, offering a prioritized list of therapeutic candidates with151

potential for repurposing.152

TXGNN Explainer While TXGNN’s Predictor provides likelihood scores for therapeutic candi-153

dates, these scores alone are insufficient for trustworthy model deployment. Both clinicians and154

scientists seek to understand the reasoning behind these predictions to validate the model’s hy-155

potheses and better understand the disease pathology. To this end, TXGNN Explainer delves into156

the knowledge graph to pinpoint and succinctly present relevant biological concepts for the drug-157

disease pair of interest (Figure 4a). This conceptual subgraph mirrors the analytical process clinical158

researchers use to examine relationships between therapeutic candidates and disease and how the159

drug perturbs local biological networks to produce a therapeutic effect on disease.160

TXGNN employs a self-explaining approach called GraphMask28 (Methods 2.6). This method161

generates a sparse yet sufficient subgraph of biological entities considered critical to each thera-162

peutic use prediction. Then, it yields an importance score between 0 and 1 for every edge in163

this subgraph, with 1 indicating the edge is vital for prediction and 0 suggesting it is irrelevant.164

TXGNN Explainer combines the drug-disease subgraph and edge importance scores to produce165

multi-hop paths connecting the disease to predicted therapeutic candidates. Unlike widely recog-166

nized explainability techniques such as SHAP29 that generate feature attribution maps, TXGNN167

Explainer offers granular and easy-to-understand multi-hop explanations that are, as we show in168

the user study, aligned with the clinician/scientist’s intuition.169

We developed a clinician-centered user interface to present these subgraph explanations (Fig-170

ure 4b) that is openly accessible at http://txgnn.org. The interface visualizes the explanatory ratio-171

nales from TXGNN to assist clinicians and scientists in reasoning about therapeutic use predic-172

tions. Amongst a range of designs, as shown in Figures S4 and S5, we focused on visual path-based173

reasoning because our research demonstrated that this design choice enhanced clinician compre-174

hension and satisfaction30.175

Comparative assessment of TXGNN in zero-shot drug repurposing. We evaluated model per-176

formance in drug repurposing across various hold-out datasets. We generated a hold-out dataset by177

sampling diseases from the knowledge graph. These diseases were deliberately omitted during the178
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training phase and later served as test cases to gauge the model’s ability to generalize its insights179

to previously unseen diseases. These held-out diseases were either chosen randomly, following a180

standard evaluation strategy, or specifically selected to evaluate zero-shot prediction. In our study,181

we used both types of hold-out datasets to thoroughly evaluate methods. We compared TXGNN to182

eight established methods in predicting therapeutic use. They included network medicine statistical183

techniques, including KL and JS divergence18, graph-theoretic network proximity approach22, and184

diffusion state distance (DSD)31, state-of-the-art graph neural network methods, including rela-185

tional graph convolutional networks (RGCN)21, 32, heterogeneous graph transformer (HGT)33, and186

heterogeneous attention networks (HAN)34, and a natural language processing model, BioBERT35.187

More information regarding each baseline is in Methods 3.6.188

Initially, we followed the standard evaluation strategy where drug-disease pairs were ran-189

domly shuffled, and a subset of these pairs was set aside as a hold-out set (testing set; Figure 2c).190

Under this strategy, the diseases being evaluated as hold-outs may already have had indications191

and contraindication relationships with drugs in the training set. Therefore, the learning objective192

was to identify additional therapeutic candidates for well-studied diseases. This evaluation method193

aligns with the approach predominantly used in literature21. Our experimental results in this setting194

concur, with 3 of 8 existing methods achieving AUPRC greater than 0.8, and HAN as the best at195

0.873 AUPRC. TXGNN also had a comparable performance as established methods. In predict-196

ing indications, TXGNN achieved a 4.3% increase in AUPRC (0.913) over the strongest baseline,197

HAN.198

As shown by above experiments, machine learning methods can help identify repurposing199

opportunities for diseases that already have some FDA-approved drugs14–18, 22, 23. However, Du-200

ran et al.36 reason that many methods simply retrieve additional therapeutic candidates that are201

similar to existing ones across biological levels. This suggests the standard evaluation strategy is202

unsuitable for evaluating diseases that have no FDA-approved drugs (Figure 1b). Given this limi-203

tation, we evaluate models under zero-shot drug repurposing. We began by holding out a random204

set of diseases and then moved all their associated drugs to the hold-out set (Figure 2d). From a205

biological standpoint, the model was required to predict therapeutic candidates for diseases that206

lacked treatments, meaning it had to operate without any available data on drug similarities. In this207

scenario, TXGNN outperformed all existing methods by a large margin. TXGNN significantly208

improves over the next best baseline in predicting both indications (19.0% AUPRC gain) and con-209

traindications (23.9% AUPRC gain). While established methods achieved satisfactory results in210
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conventional drug repurposing evaluations, they often fell short on more challenging zero-shot211

drug repurposing scenarios. TXGNN was the only method that achieved consistent performance212

in both settings.213

Benchmarking TXGNN for zero-shot drug repurposing across disease areas. Diseases with214

biological similarities often share therapeutic candidates12. For instance, beta-blockers are effec-215

tive in treating a multitude of cardiovascular issues, including heart failure, cardiac arrest, and216

hypertension. Likewise, selective serotonin reuptake inhibitors (SSRIs) can address various psy-217

chiatric conditions such as major depressive disorder (MDD), anxiety disorder, and obsessive-218

compulsive disorder (OCD). If, during training, a model learns that an SSRI is indicated for219

MDD, it does not take a large leap to suggest that the same SSRI could be effective for OCD220

during testing25. This phenomenon is known as shortcut learning37, 38 and underlies many of deep221

learning’s failures39, 40. Shortcut decision rules tend to perform well on standard benchmarks but222

typically fail to transfer to challenging testing conditions41, such as the real-world scenario of223

predicting therapeutic candidates for rare or neglected diseases.224

To evaluate drug repurposing models in challenging conditions, we curated a stringent hold-225

out dataset that contained a group of biologically related diseases that we refer to as a disease226

area. Given the diseases in a specific disease area, all their indications and contraindications were227

removed from the training dataset. Further, a large fraction (95%) of the connections from medical228

entities to these diseases were excluded from the training dataset. For diseases in the chosen229

area, these conditions simulated limited molecular characterization and lack of existing treatments230

(Figure 3a). In this study, we considered five disease area hold-out datasets characterized in Table 1231

and listed here in order of increasing disease area size. First are ‘adrenal gland’ diseases like232

Addison and ectopic crushing syndrome. Second, ‘anemia’ with conditions such as thalassemia233

and hemoglobin C disease. Third, ‘mental health’ disorders like anorexia nervosa and depressive234

disorder. Fourth, ‘cardivascular’ diseases, including long QT syndrome and mitral valve stenosis.235

Finally, ‘cancer’ diseases such as neurofibroma and Leydig cell tumors.236

We benchmarked the performance of all methods above on these rigorous hold-out datasets237

in Figure 3b-f and found that TXGNN consistently improved predictive performance over exist-238

ing methods. For indications, TXGNN had 59.3%, 42.3%, 36.2%, 10.2%, 0.5% relative gain in239

AUPRC over the next best baseline across adrenal glands, anemia, mental health, cancer, and car-240

diovascular disease hold-outs respectively. For contraindications, TXGNN robustly improved over241

the next best baseline, with relative gains ranging from 11.8% to 17.8%. For indication prediction,242
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the natural language processing method, BioBERT, had the best performance (in 4/5 disease area243

hold-outs) amongst the group of established methods. For contraindication prediction, the graph-244

based method, RGCN, was the best baseline across 4 of 5 hold-out datasets, and BioBERT’s per-245

formance gain observed for indication prediction disappeared. TXGNN was consistently the best-246

performing method across all five disease area hold-outs for both indication and contraindication247

prediction tasks. These rigorous benchmarks demonstrate that TXGNN was broadly generalizable248

and produced accurate predictions in zero-shot drug repurposing settings.249

In 4 of 5 disease area hold-outs, TXGNN’s relative gains in performance over existing meth-250

ods grew as the number of diseases in the hold-out shrunk, suggesting that TXGNN could be251

particularly effective for small clusters of diseases. While TXGNN demonstrated significantly252

higher performance in 4 of 5 disease area hold-outs, its performance was on par with existing253

methods in the cardiovascular hold-out. This could be attributed to a lack of knowledge of related254

diseases in the training dataset when entire disease areas are held out. Upon visualizing the latent255

representations of the TXGNN Predictor, we discovered that it facilitates knowledge transfer from256

distant diseases to those with scarce information (Figure S6). Additional evaluation metrics are257

described in Figure S7. In ablation studies, we demonstrated that each component of TXGNN258

Predictor is indispensable to the model’s predictive performance (Figures S8 and S9).259

TXGNN’s multi-hop explanations reflect its predictive rationale. TXGNN’s Explainer ex-260

tracts concise multi-hop relationships between drugs and diseases from the medical knowledge261

graph to provide supporting evidence for TXGNN’s predictions. TXGNN’s Explainer identifies262

explanations as maximally predictive subgraphs of the medical knowledge graph that connect the263

query drug with the query disease through multiple hops following relationships in the knowledge264

graph, such that the predictive performance of these subgraphs is comparable to the performance265

of the entire knowledge graph. To gauge the quality of explanations, we compared the AUPRC of266

TXGNN’s predictions when leveraging the whole knowledge graph to the AUPRC derived from267

using only the explanatory subgraphs. A strong correlation would indicate that TXGNN’s Ex-268

plainer effectively identifies the most pivotal connections42 and that explanations faithfully capture269

TXGNN’s internal reasoning for making predictions43.270

Based on the most predictive relationships (i.e., edges with importance scores greater than271

0.5, representing an average of 14.9% of edges from the knowledge graph), the performance of272

TXGNN’s model exhibited a minor decline from AUPRC=0.890 (STD: 0.006) to AUPRC=0.886273

(STD: 0.005). On the other hand, when considering the remaining irrelevant relationships from274
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the knowledge graph (i.e., edges with importance scores less than 0.5, accounting for an average275

of 85.1% of edges) and excluding those deemed predictive by TXGNN, the model’s predictive276

performance drastically decreased from AUPRC=0.890 (STD: 0.006) to AUPRC=0.628 (STD:277

0.026). Together, these analyses indicated that TXGNN’s explanatory subgraphs faithfully capture278

elements of the knowledge graph that TXGNN uses to make predictions. The TXGNN Explainer279

effectively discerned the pivotal relationships between a drug and disease, ensuring explanations280

aligned with its predictive rationale.281

TXGNN Explainer supports human-centric evaluation of therapeutic candidates. We show-282

cased the importance of TXGNN’s multi-hop pathway explanations in facilitating human-AI col-283

laboration by conducting a user study with clinicians and scientists. In our experiments (Figure 4c),284

we engaged five clinicians, five clinical researchers, and two pharmacists. These participants were285

shown 16 drug-disease combinations with TXGNN’s predictions, where 12 predictions were ac-286

curate. For each pairing, participants indicated whether they agreed or disagreed with TXGNN’s287

predictions using the explanations provided (Figure S10). Our results suggest that giving visual288

explanations improved users’ performance in evaluating model predictions, such as determining if289

a proposed therapeutic candidate can treat a disease.290

When comparing TXGNN Explainer’s performance to a version without explanations, we291

evaluated user accuracy, exploration time, and user confidence (Figure 4d). The results revealed a292

significant improvement in both accuracy (+46%) and confidence (+49%) when users were given293

explanations. Users took more time to think, integrating their prior knowledge with TXGNN’s294

explanations, and therefore trusted the model predictions more (confidence +49%). With TxGNN295

Explainer, participants discerned between accurate and inaccurate predictions more effectively296

with TXGNN Explainer than using TXGNN predictions alone (accuracy +46%).297

Study participants reported greater satisfaction when using TXGNN Explainer compared to298

the baseline (Figure 4e), where 11/12 (91.6%) participants agreed or strongly agreed that the pre-299

dictions and explanations made by TXGNN were valuable. In contrast, when no explanations were300

provided, 8/12 (75.0%) participants disagreed or strongly disagreed with relying on TXGNN’s pre-301

dictions. Additionally, participants expressed significantly more confidence in correct predictions302

made by TXGNN (t(11) = 3.64, p < 0.01) with TXGNN Explainer than in the baseline without303

explanations. Some participants stated that path-based explanations were useful for guiding down-304

stream evaluations, such as examining biological mechanisms and possible adverse drug events of305

predicted therapeutic candidates. Our user study offers empirical evidence of optimized human-AI306
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collaboration in predicting therapeutic applications with TXGNN Explainer.307

Evaluation of TXGNN’s novel predictions in a large electronic health record system. TXGNN’s308

remarkable performance in previous evaluations suggests that its novel predictions—i.e., therapies309

not yet FDA-approved for a disease but ranked highly by TXGNN —might hold significant clin-310

ical value. As these therapies have not yet been approved for treatment, there is no established311

gold standard against which to validate them. Recognizing the clinical practice of off-label drug312

prescription, we used the enrichment of disease-drug pair co-occurrence in a health system’s elec-313

tronic health records as a proxy measure of being a potential indication. From the Mount Sinai314

Health System medical records, we curated a cohort of 1,272,085 adults with at least one drug pre-315

scription and one diagnosis each (Figure 5a). This cohort was 40.1 percent male, and the average316

age was 48.6 years (STD: 18.6 years). The racial and sex breakdown is in Figure 5b-c. Diseases317

were included if at least one patient was diagnosed with it, and drugs were included if prescribed318

to a minimum of ten patients (Table 2 and Methods 3.8), resulting in a broad spectrum of 480319

diseases and 1,290 drugs as illustrated in Figure 5d.320

Across these medical records, we measured disease-drug co-occurrence enrichment as the321

ratio of the odds of using a specific drug for a disease to the odds of using it for other diseases.322

We derived 619,200 log-odds ratios (log-ORs) for each drug-disease pair. We found that FDA-323

approved drug-disease pairs exhibited significantly higher log-ORs than other pairs (Figure 5e).324

Contraindications represented a confounding factor in this analysis because adverse drug events325

could increase the co-occurrence between drug-disease pairs. In our study of contraindications,326

we found no significant enrichment in co-occurrence of drug-disease pairs, which suggested that327

adverse drug effects were not a major confounding factor.328

For each disease in the medical records, TXGNN produced a ranked list of potential thera-329

peutic candidates. We omitted drugs already linked to the disease, categorized the remaining novel330

candidates into top-1, top-5, top-5%, and bottom-50%, and calculated their respective mean log-331

ORs (Figure 5f). We found that the top-1 novel TXGNN prediction had, on average, a 107% higher332

log-OR than the mean log-OR of the bottom-50% predictions. This suggested that TXGNN’s top333

candidate had much higher enrichment in the medical records and, thereby, a greater likelihood of334

being an appropriate indication. In addition, the log-OR increased as we broadened the fraction335

of retrieved candidates, suggesting that TXGNN’s prediction scores were meaningful in capturing336

the likelihood of indication. Although the average log-OR stands at 1.09, the top-1 therapeutic337

candidate proposed by TXGNN had a log-OR of 2.26, approaching the average log-OR of 2.92 for338
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FDA-approved indications. This analysis highlights the potential clinical utility of TXGNN’s top339

predictions.340

We present a case study of TXGNN’s predicted therapeutic candidates for Wilson’s disease,341

a genetic disorder causing excessive copper accumulation that frequently instigates liver cirrhosis342

in children (Figure 3g). We found that TXGNN predicted likelihoods close to zero for most ther-343

apeutic candidates, with only a select few drugs highly likely to be indications. TXGNN ranked344

Deferasirox as the most promising therapy for Wilson’s disease. Wilson’s disease and Deferasirox345

had a log-OR of 5.26 in the medical records, and literature indicates that Deferasirox may effec-346

tively eliminate hepatic iron44. In a separate analysis, we evaluated TXGNN on ten therapies that347

were recently approved by the FDA (Table S1). TXGNN consistently ranked newly introduced348

drugs favorably and placed the approved drug within the top 5% of therapeutic candidates in two349

instances. These case studies highlight that TXGNN’s novel predictions have the potential to align350

closely with clinical decision-making on drug prescription.351

Discussion352

Tapping into the dormant potential of existing drugs, drug repurposing has already had demonstra-353

ble success in addressing the global healthcare demands. Yet, existing deep learning models for354

drug repurposing are based on the assumption that diseases for repurposing predictions are well-355

understood and already possess existing therapies. This overlooks the vast array of disorders—92%356

of the 17,080 diseases we analyzed—lacking such pre-existing indications and in-depth molecular357

characterization. The clinical imperative thus leans heavily on addressing the needs of these lesser-358

known disorders, many of which fall into the category of complex, neglected, or rare diseases45–47.359

This has culminated in what we refer to as zero-shot drug repurposing.360

We introduce TXGNN, a geometric deep learning model that addresses this problem head-361

on, specifically targeting diseases with limited molecular understanding and no treatment av-362

enues. TXGNN achieves state-of-the-art performance in drug repurposing by leveraging a network363

medicine principle that focuses on disease-treatment mechanisms17. When asked to suggest ther-364

apeutic candidates for a disease, TXGNN identifies diseases with shared pathways, phenotypes,365

and pathologies, extracts relevant knowledge, and fuses it back into the disease of interest. By366

effectively capturing these latent relationships between diseases, TXGNN can generalize to dis-367

eases with few treatment options and perform zero-shot inference for unseen diseases. The design368

behind TXGNN that enables effective zero-shot drug repurposing can be adapted to a wide range369
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of problems, such as disease-target identification and phenotype modeling.370

TXGNN Predictor can propose indications and contraindications in a unified formulation371

across 17,080 diseases and significantly improves predictive performance compared to existing372

methods under the real-world constraints of zero-shot inference. Further, the therapies predicted373

by TXGNN correlate strongly with data from electronic health records. TXGNN’s therapeutic374

hypotheses can be further tested at scale and in parallel using medical records. This can be done375

by comparing patient cohorts with the disease who were prescribed the predicted drugs to matched376

patient cohorts who were not prescribed those drugs.377

TXGNN Explainer generates multi-hop pathways that reflect its internal reasoning for each378

proposed therapeutic candidate. This enables clinicians and scientists to sift through its predictions379

and investigate the underlying disease-treatment mechanisms. In our user study, the interactive380

TXGNN Explainer allowed participants to more easily engage with the model predictions and381

debug failure points. This highlights the importance of clinician-centered design and explainability382

in integrating machine learning into drug prescription and development decisions48.383

While TXGNN offers remarkable promise in addressing the zero-shot drug repurposing384

problem, it is not without limitations. Its efficacy is contingent on the quality of the knowledge385

graph, which could not only have incomplete knowledge of certain disease areas but also be faced386

with literature bias from varied data sources. A promising avenue for future research involves387

applying uncertainty quantification over graphs to determine the reliability of model predictions.388

Additionally, our user study engaged a small sample size (N=12) of clinicians and scientists. While389

the results were statistically significant, a larger study would incorporate a greater diversity of user390

perspectives. Despite our feasibility analysis of TXGNN’s predictions using medical records, un-391

foreseeable confounding factors might bias the enrichment scores measured. To mitigate those fac-392

tors, we use a multitude of comprehensive evaluation settings, including rigorous hold-out datasets,393

a user study, and a systematic medical record analysis. While our goal has been to introduce a com-394

putational method for predicting therapeutic candidates across diverse zero-shot scenarios, detailed395

analysis of specific repurposing candidates warrants future investigation.396

Our zero-shot drug repurposing model, TXGNN, predicts therapeutic candidates even for397

diseases with no FDA-approved drugs and with minimal molecular knowledge. The Explainer398

module enhances transparency of TXGNN’s predictions, fostering trust and aiding downstream399

evaluations. TXGNN streamlines the drug repurposing process, especially where the need for400

disease-specific datasets hinders drug development. This is pivotal for conditions with scarce data,401
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like rare diseases and emerging pathogens. In the quest for cost-effective therapeutic innovations,402

models like TXGNN highlight the computational potential in revealing novel therapeutic avenues.403
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Data availability. TXGNN’s website is at https://zitniklab.hms.harvard.edu/projects/TxGNN.404

The knowledge graph dataset is available at Harvard Dataverse under a persistent identifier https:405

//doi.org/10.7910/DVN/IXA7BM. All clinical and electronic medical record data were deidenti-406

fied, and the Institutional Review Board at Mount Sinai, New York City, U.S., approved the study.407

Code availability. Python implementation of the methodology developed and used in the study408

is available via the project website at https://zitniklab.hms.harvard.edu/projects/TxGNN. The code409

to reproduce results, documentation, and usage examples are at https://github.com/mims-harvard/410

TxGNN. To facilitate the usage of the algorithm, we developed a TXGNN Explainer, a web-based411

app available at http://txgnn.org to access TXGNN’s predictions.412
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Figure 1: TXGNN is a geometric deep learning approach for drug repurposing across challenging diseases with no known
treatments and limited molecular understanding. a. Drug repurposing involves exploring new therapeutic applications for exist-
ing drugs to treat different diseases. By capitalizing on abundant pre-existing safety and efficacy data, it can dramatically cut down
the cost and time to deliver life-saving therapeutics. b. Although AI-based drug repurposing has shown promise, its success has been
primarily evaluated on diseases with approved treatments and well-understood molecular mechanisms. However, many diseases of
critical pharmaceutical interest lack any available treatments (i.e., zero-shot) and exhibit unclear disease mechanisms. These inherent
constraints pose challenges to existing AI methods. In this work, we tackle this problem head-on by formulating it as a zero-shot
drug repurposing challenge. c. TXGNN presents a novel AI framework that generates actionable predictions for zero-shot drug re-
purposing. TXGNN geometric deep learning model incorporates a vast and comprehensive biological knowledge graph to accurately
predict the likelihood of indication or contraindication for any given disease-drug pair. Additionally, TXGNN generates explainable
multi-hop paths, facilitating a scientist-friendly understanding of how the prediction is grounded in biological mechanisms in the KG.
The combined power of rich predictions and path-based explanations empowers practitioners to prioritize the most promising drug
repurposing candidates. d. To support our drug repurposing efforts, we develop a large-scale therapeutics-driven knowledge graph
that integrates 17 primary data sources. This knowledge graph paints a comprehensive landscape of biological mechanisms across
17,080 diseases and 7,957 repurposable drugs, compiling scientific knowledge for zero-shot drug repurposing endeavors.
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Figure 2: TXGNN predicts indications and contraindications for diseases of no known treatments with high precision. a.
TXGNN is a deep learning model that learns to reason over large-scale knowledge graph on predicting the relationship between drug
and disease. In zero-shot repurposing, there is limited indication and mechanism information available for the query disease. Our
key insight revolves around the interconnectedness of biological systems. We recognize that diseases, despite their distinctiveness,
can exhibit partial similarities and share multiple underlying mechanisms. Based on this motivation, we have developed a specialized
module known as disease pooling, which harnesses the power of network medicine principles. This module identifies mechanistically
similar diseases and employs them to enhance the information available for the query disease. The disease pooling module has
demonstrated significant improvements in the prioritization of repurposing candidates within zero-shot settings. b. The TXGNN
disease similarity score provides a nuanced and meaningful measure of the relationship between diseases. For instance, disease
pairs with low similarity scores, such as T-substance anomaly and frontometaphyseal dysplasia (score: 0.084), indicate a lack of
shared mechanisms. Conversely, significant similarity is observed when two diseases receive relatively high scores (>0.2). For
instance, Wells syndrome and pemphigus erythematosus exhibit a similarity score of 0.433. Both diseases are skin disorders caused
by autoimmune dysregulation, although they differ in phenotypic manifestations, with Wells syndrome characterized by redness
and swelling and pemphigus erythematosus characterized by blisters. Moreover, certain disease pairs display exceptionally high
similarity scores, such as Pick’s disease and Alzheimer’s (similarity: 0.909), due to their shared neurological causes. This metric
empowers TXGNN to discover similar diseases that can inform and enrich the understanding of query diseases lacking treatment and
mechanistic information. c. The conventional AI-based repurposing evaluates indication predictions on diseases where the model
may have seen other approved drugs during training. In this scenario, we show that TXGNN achieves good performance along
with existing methods. d. To provide a more realistic evaluation, we introduce a novel setup for assessing zero-shot repurposing,
where the model is evaluated on diseases that have no approved drugs available during training. In this challenging setting, we
observe a significant degradation in performance for baseline methods. In contrast, TXGNN consistently exhibits robust performance,
surpassing the best baseline by up to 19% for indications and 23.9% for contraindications. These results highlight the advanced
reasoning capabilities of TXGNN when confronted with query diseases lacking treatment options. The evaluation utilizes the area
under the precision-recall curve (AUPRC) and is conducted with five random data splits. The mean performance is highlighted, while
the standard error is represented by error bars.
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Figure 3: TXGNN accurately predicts therapeutics indications and contraindications across challenging disease areas with
limited mechanism understanding. a. Zero-shot drug repurposing addresses diseases without any existing treatments and with
a dearth of prior biomedical knowledge. We construct a set of ‘disease area’ splits to simulate these conditions. The diseases in
the holdout set have (1) no approved drugs in training, (2) limited overlap with training disease set because we exclude similar
diseases, and (3) lack molecular data because we deliberately remove their biological neighbors from the training set. These data
splits constitute a challenging but realistic evaluation scenarios that mimic zero-shot drug repurposing settings. b-f. Holdout folds
evaluate diseases related to adrenal glands, anemia, mental health, cancer, and cardiovascular diseases. TXGNN shows up to 59.3%
improvement over the next best baseline in ranking therapeutic candidates, measured by area under the precision-recall curve.
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Figure 4: Development, visualization, and evaluation of explanations provided by TXGNN. a. Since prediction scores alone
are often insufficient for trustworthy deployment of machine learning models, we develop TXGNN Explainer to facilitate adoption
by clinicians and scientists. TXGNN Explainer uses state-of-the-art graph explainability techniques to identify a sparse interpretable
subgraph that underlies the model’s predictions. For each therapeutic candidate, TXGNN Explainer generates a multi-hop pathway
composed of various biomedical entities that connects the query disease to the proposed therapeutic candidate. We develop a visual-
ization module that transforms the identified subgraph into these multi-hop paths in a manner that aligns with the cognitive processes
of clinicians and scientists. b. We design a web-based graphical user interface to support clinicians and scientists in exploring and
analyzing the predictions and explanations generated by TXGNN. The ‘Control Panel‘ allows users to select the disease of interest
and view the top-ranked TXGNN predictions for the query disease. The ‘edge threshold‘ module enables users to modify the sparsity
of the explanation and thereby control the density of the multi-hop paths displayed. The ‘Drug Embedding‘ panel allows users to
compare the position of a selected drug relative to the entire repurposing candidate library. The ‘Path Explanation‘ panel displays the
biological relations that have been identified as crucial for TXGNN’s predictions regarding therapeutic use. c. To evaluate the use-
fulness of TXGNN explanations, we conducted a user study involving 5 clinicians, 5 clinical researchers, and 2 pharmacists. These
participants were shown 16 drug-disease combinations with TXGNN’s predictions, where 12 predictions were accurate. For each
pairing, participants indicated whether they agreed or disagreed with TXGNN’s predictions using the explanations provided. d. We
compared the performance of TXGNN Explainer with a no-explanation baseline in terms of user answer accuracy, exploration time,
and user confidence. The results revealed a significant improvement in accuracy (+46%) and confidence (+49%) when explanations
were provided, indicating that TXGNN Explainer contributed to the generation of trustworthy predictions. Error bars represent 95%
confidence intervals. e. At the conclusion of the user study, participants were asked qualitative usability questions. Clinicians and
scientists agreed that the explanations provided by TXGNN were helpful in assessing the predicted drug-disease relationships and
instilled greater trust in the TXGNN’s predictions.
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Figure 5: Evaluating TXGNN’s novel predictions in a large healthcare system. a. We illustrate the steps taken to evaluate
TXGNN’s novel indications predictions in a Mount Sinai’s electronic health record (EHR) system. First, we matched the drugs
and diseases in the TXGNN knowledge graph to the EHR database, resulting in a curated cohort of 1.27 million patients spanning
480 diseases and 1,290 drugs. Next, we calculated the log-odds ratio (log-OR) for each drug-disease pair, which served as an
indicator of the usage of a particular drug for a specific disease. We then validated the log-OR metric as a proxy for clinical
usage by comparing drug-disease pairs against FDA-approved indications. Finally, we evaluated TXGNN’s novel predictions to
determine if their Log-ORs exhibited enrichment within the medical records. b. The racial diversity within the patient cohort. c.
The sex distribution of the patient cohort. d. The medical records encompassed a diverse range of diseases spanning major disease
areas, ensuring comprehensive coverage and representation. e. In validating log-ORs as a proxy metric for clinical prescription, we
observed that while the majority of drug-disease pairs exhibited low log-OR values, there was a significant enrichment of log-OR
values for FDA-approved indications. Additionally, we noted that contraindications displayed similar log-OR values to the general
non-indicated drug-disease pairs, minimizing potential confounders such as adverse drug effects. f. We evaluated Log-ORs for the
novel indications proposed by TXGNN. The y-axis represents the Log-OR of the disease-drug pairs, serving as a proxy for clinical
usage. For each disease, we ranked TXGNN’s predictions and extracted the average Log-OR values for the top 1, top 5, top 5%, and
bottom 50% of novel drug candidates. The red horizontal line represents the average Log-OR for FDA-approved indications, while
the green horizontal line represents the average Log-OR for contraindications. We observed a remarkable enrichment in the clinical
usage of TXGNN’s novel predictions. g. We provide an case study of TXGNN’s predicted scores plotted against the Log-OR for
Wilson’s disease. Each point on the plot represents a therapeutic candidate. The top 1 most probable candidate suggested by TXGNN
is highlighted, indicating its associated TXGNN score and Log-OR.
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Online Methods442

The Methods are structured as follows: 1) curation of knowledge graph dataset (Section 1), 2)443

description of machine learning approach (Section 2), and 3) outline of the experimental setup,444

benchmarking and evaluation (Section 3).445

1 Overview of training dataset446

The knowledge graph is heterogeneous, with 10 types of nodes and 29 types of undirected edges.447

It contains 123,527 nodes and 8,063,026 edges. Tables S2 and S3 show a breakdown of nodes by448

node type and edges by edge type, respectively. The knowledge graph and all auxiliary data files449

are available via Harvard Dataverse at https://doi.org/10.7910/DVN/IXA7BM.450

1.1 Primary data resources451

The knowledge graph (KG) is compiled from many primary knowledge bases that cover 10 types452

of biomedical entities and provide broad coverage of human disease, already-available drugs, and453

novel drugs in development. We briefly overview biological information retrieved from the knowl-454

edge bases, with details provided in Chandak et al.11: Bgee49 contains gene expression patterns,455

and contributes to anatomy-protein associations where gene expression was present or absent to456

the KG. The Comparative Toxicogenomics Database50 contributes relationships between envi-457

ronmental exposures and proteins, diseases, other exposures, biological processes, molecular func-458

tions, and cellular components to the dataset. DisGeNET51 is an expert-curated resource about the459

relationships between genes and human disease and provides associations of genes with diseases460

and phenotypes in the KG. DrugBank52 is a resource that contains pharmaceutical knowledge and461

supplies drug-drug and drug-protein interactions to the dataset. Drug Central27 curates informa-462

tion about 26,698 indication edges, 8,642 contraindication edges, and 1,917 off-label use edges463

to the KG. Entrez Gene53 is a resource maintained by the NCBI that contains associations of464

genes with biological processes, molecular functions, and cellular components. The Gene Ontol-465

ogy54 network describes hierarchical associations between biological processes, molecular func-466

tions, and cellular components in the KG. The Human Phenotype Ontology55 provides informa-467

tion on disease-phenotype, protein-phenotype, and phenotype-phenotype edges in the KG. Since468

the Mondo Disease Ontology56 harmonizes diseases from a wide range of ontologies, including469

OMIM, SNOMED CT, ICD, and MedDRA, it was our preferred ontology for defining diseases470

and also provided hierarchical disease relations. Protein-protein interactions are composed of471

22

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.03.19.23287458doi: medRxiv preprint 

https://doi.org/10.7910/DVN/IXA7BM
https://doi.org/10.1101/2023.03.19.23287458
http://creativecommons.org/licenses/by/4.0/


experimentally-verified interactions between proteins gathered from various resources12, 57–63. Re-472

actome64 is an open-source, curated database for pathways that provides pathway-pathway and473

protein-pathway edges to the KG. The Side Effect Resource (SIDER)65 contains data about ad-474

verse drug reactions and contributes drug phenotype associations to the KG. UBERON66 helps475

include human anatomy information in the KG.476

1.2 Harmonizing knowledge graph from primary data resources477

To construct the knowledge graph, we harmonized ontologies for each node type, ensuring con-478

sistency by standardizing primary data sources and rectifying overlaps as described in Chandak et479

al.11 Primary data were mapped into standardized ontologies, with drugs and diseases respectively480

encoded using DrugBank and Mondo Disease Ontology. For enhanced visualization in TXGNN481

Explainer and clarity in user studies, we introduced a ‘display relation’ field as a more descriptive482

version of the ‘relation’ field, (e.g. ‘disease phenotype negative’ became ‘phenotype absent’).483

We merged the harmonized datasets into a heterogeneous knowledge graph and extracted its484

largest connected component using the approach outlined in Chandak et al.11. Since the knowledge485

graph is designed for therapeutic use prediction, we wanted to ensure that disease nodes in the486

graph were meaningful representations of diseases. To this end, we adopted an approach previously487

validated11 by collapsing disease nodes with nearly identical names into a single disease node.488

Intial disease groups were identified using automated string matching across disease names. These489

disease groupings were tightened using ClinicalBERT67 embedding similarities between disease490

names with an empirically chosen cutoff of similarity ≥ 0.98. Finally, we manually approved the491

suggested disease matches and assigned names to the new groups. After grouping, 22,205 diseases492

in the Mondo Disease Ontology were collapsed into 17,080 grouped diseases.493

2 Geometric deep learning approach494

Notation. We are given a heterogeneous knowledge graph (KG) G = (V , E , TR) with nodes in the495

vertex set vi ∈ V , edges ei,j = (vi, r, vj) in the edge set E , where r ∈ TR indicates the relation496

type, vi is called the head/source node and vj is called the tail/target node. Each node also belongs497

to a node type set TV . Each node also has an initial embedding, which we denote as h(0)
i .498

Problem definition. Given a disease i and drug j, we want to predict the likelihood of the drug499

being (1) indicated for the disease or (2) contraindicated for the disease. The goal is to inject500

factual knowledge from the KG into AI application to imitate important skills possessed by human501
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experts, i.e., reasoning and understanding when forming hypotheses and making predictions about502

disease treatments.503

2.1 Overview of TXGNN approach504

TXGNN is a deep learning approach for mechanistic predictions in drug discovery based on molec-505

ular networks perturbed in disease and targeted by therapeutics. TXGNN is composed of four506

modules: (1) a heterogeneous graph neural network-based encoder to obtain biologically mean-507

ingful network representation for each biomedical entity; (2) a disease similarity-based metric508

learning decoder to leverage auxiliary information to enrich the representation of diseases that lack509

molecular characterization; (3) an all-relation stochastic pre-training followed by a drug-disease510

centric full-graph fine-tuning strategy; (4) a graph explainability module to retain a sparse set of511

edges that are crucial for prediction as a post-training step. Next, we expand each module in detail.512

2.2 Heterogeneous graph neural network encoder513

Given a knowledge graph, we aim to learn a numerical vector (i.e., network embedding) for each514

node such that it captures biomedical knowledge encapsulated in the neighboring relational struc-515

tures. This is achieved by transforming initial node embeddings through several layers of local516

graph-based non-linear function transformations to generate embeddings32, 68. These functions are517

optimized iteratively, given a loss function to gradually minimize the error of making poor ther-518

apeutic use predictions. Upon convergence, optimized functions generate an optimal set of node519

embeddings.520

Step 1: Initialization. We denote the input node embedding Xi for each node i, which is initialized521

using Xavier uniform initialization69. For every layer l of message-passing, there are the following522

three stages:523

Step 2: Propagating relation-specific neural messages. For every relation type, first calculates524

a transformation of node embedding from the previous layer h(l−1), where the first layer h(0) =525

X. This is achieved via applying a relation-specific weight matrix W
(l)
r,M on the previous layer526

embedding:527

m
(l)
r,i = W

(l)
r,Mh

(l−1)
i (1)

Step 3: Aggregating local network neighborhoods. For each node vi, we aggregate on the528
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incoming messages {m(l)
r,j|j ∈ Nr(i)} from neighboring nodes of each relation r denoted asNr(i)529

by taking the average of these messages:530

m̃(l)
r,i =

1

|Nr(i)|
∑

j∈Nr(i)

m
(l)
r,j (2)

Step 4: Updating network embeddings. We then combine the node embedding from the last531

layer and the aggregated messages from all relations to obtain the new node embedding:532

h
(l)
i = h

(l−1)
i +

∑
r∈TR

m̃(l)
r,i (3)

After L layers of propagation, we arrive at our encoded node embeddings hi for each node i.533

2.3 Predicting drug-disease relationships534

Given the disease embedding and the drug embedding, we can predict the interaction between535

a disease-drug pair. As we have three relation types to predict for each disease-drug pair, we536

use a trainable weight vector wr for each relation type. We then use DistMult70 to calculate the537

interaction likelihood for that relation. Formally, for disease i, drug j, and relation r, we calculate538

the predicted likelihood p:539

pi,j,r =
1

1 + exp(−sum(hi ·wr · hj))
. (4)

2.4 Similarity Disease Search to Enrich Molecularly Uncharacterized Disease Embedding540

Diseases receive various degrees of research, given their prevalence, complexity, and so on. For541

example, we know very little about the molecular underpinnings of many rare diseases71, 72. Nev-542

ertheless, these diseases usually present the most promising therapeutic opportunities73. Due to543

the lack of understanding of these diseases, machine learning predictions have become more im-544

portant than ever. However, the limited research on these diseases is reflected by the scarcity of545

relevant nodes and edges around these diseases in our biological knowledge graph. Because of546

this sparsity, the graph embedding tends to be lower quality. For example, if a disease has zero547

connections in the KG (i.e., no existing knowledge), then the disease embedding will be the ran-548

dom initialization. Empirically, we see that prevailing GNN approaches have drastically lower549

predictive performance on our disease-centric splits to simulate this realistic property of diseases550
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compared to random splits (Figure 1g).551

We hypothesize that the obtained network embedding for these diseases is not meaningful552

due to this limited prior in the KG. Thus, a model must subsidize and augment the network em-553

bedding for these molecularly uncharacterized diseases. Our key insight is that human physiology554

is a connected system where diseases are similar across dimensions (e.g., lung cancer is similar to555

brain cancer in the dimension of cancer diseases, while lung cancer is similar to asthma in the di-556

mension of lung diseases). Therefore, if we could borrow useful information from a set of similar557

diseases that are relatively well-characterized in the KG through the model, we could augment the558

embedding of the candidate disease and improve the prediction.559

To do that, we propose a three-step procedure: (1) a disease signature vector that captures560

the intricate disease similarities; (2) an aggregation mechanism that integrates the different similar561

diseases into a robust auxiliary embedding that can subsidize original disease embedding; (3) a562

gating mechanism to control the effect between the original disease embedding and the auxiliary563

disease embedding since many well-characterized diseases have sufficient embeddings and do not564

need subsidies. We discuss each of the three steps in detail below.565

Network-based Disease Signature Profiling. The overall goal for this module is to obtain a566

signature vector pi for every disease i. There are numerous ways to calculate the similarity between567

two diseases. As disease representations generated by the graph neural network alone are not568

sufficient to characterize the candidate disease, they ideally should not be directly used to calculate569

similarity. Instead, we resort to graph theoretical techniques that are rooted in the field of network570

science16. We consider the following three types of signature functions:571

• Protein signatures (PS): The mechanism of actions for small molecule drugs is to act upon572

protein targets in the disease pathway74. Thus, the ideal disease signature should preserve sim-573

ilarity in the protein target space. If two diseases have similar proteins in their corresponding574

disease pathways, they are more likely to have a similar treatment mechanism12, 75. This key575

observation motivates the protein signature76. We have a bit vector for each disease where each576

bit corresponds to a specific protein. A bit is flipped to one if the bit corresponds to a protein in577

the disease pathway. Formally, for disease i, the protein signature is defined as:578

pPS
i = [ p1 · · · p|VP| ], (5)
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where579

pj =

1 if j ∈ N P
i

0 otherwise,
(6)

andN P
i is the set of proteins that lie in the 1-hop neighborhood of disease i and |VP| the number580

of total available proteins. To calculate similarity between two diseases i, j, we use dot product:581

582

simPS(i, j) = pPS
i · pPS

j = |N P
i ∩N P

j |. (7)

The similarity directly measures the number of intersecting proteins in the disease pathway of583

i, j. If the similarity is high, we know these two diseases have a larger number of intersecting584

diseases, which increases the probability of similar treatment mechanisms.585

• All-node-types signatures (AT): Human knowledge about disease pathways are vastly incom-586

plete. Thus, some diseases may not have complete protein pathways in the knowledge graph,587

which leads to biased protein signatures. Additional biological knowledge about diseases could588

potentially benefit. In the knowledge graph, other node types connect to diseases, including589

effect/phenotype, exposure, and disease. Since the local neighborhood can define some charac-590

teristics of diseases, we can extend the principle of protein signature, such that if two diseases591

share the same nodes in these additional node types, they have similar biological underpinnings.592

We call these all-node-types signatures. Formally, for disease i, the protein signature is defined593

as:594

pAT
i = [ p1 · · · p|VP ep1 · · · ep|VEP| ex1 · · · ex|VEX| ep1 · · · ep|VEP| d1 · · · d|VD| ], (8)

where595

pj =

1 if j ∈ N P
i

0 otherwise
, epj =

1 if j ∈ N EP
i

0 otherwise
, exj =

1 if j ∈ N EX
i

0 otherwise
dj =

1 if j ∈ ND
i

0 otherwise
(9)

and N EP
i ,N EX

i ,ND
i is the set of effect/phenotype, exposure, diseases nodes lie in the 1-hop596

neighborhood of disease i and |VEP|, |VEX|, |VD| the number of total available effect/phenotype,597

exposure, diseases respectively. We also adopt the dot product as the similarity measure, which598

27

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 28, 2023. ; https://doi.org/10.1101/2023.03.19.23287458doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.19.23287458
http://creativecommons.org/licenses/by/4.0/


means the similarity is the sum of all shared nodes across the four node types:599

simAT(i, j) = pAT
i · pAT

j = |N P
i ∩N P

j |+ |N EP
i ∩N EP

j |+ |N EX
i ∩N EX

j |+ |ND
i ∩ND

j |. (10)

• Diffusion signatures (DS): The above two signatures rely on the first-hop neighbor of the dis-600

eases, while higher-hop neighbors may contain useful molecular characterization. Diffusion601

signature simulates many random walks, where each random walk is a path of length h starting602

from the disease i: w = vi
ei,1−−→ v1 · · · vh−1

eh−1,h−−−→ vh
77. The set of visited nodes in the k-th ran-603

dom walk from disease node i is denoted asWk
i . ∩kWk

i represents the total set of visited nodes604

across all walks, and we can calculate the normalized visitation probability for visited node j as:605

606

fj =

∑
k

∑
1Wk

i =j∑
k |Wk

i |
(11)

These nodes correspond to a multi-hop snapshot of molecular interactions centering around the607

diseases, and the visitation probability corresponds to the influence level. Given this probability608

score, we can obtain the diffusion signature for disease node i:609

pDS
i = [ f1 · · · f|VP| ]. (12)

For diffusion signature, we still use the dot product:610

simDS(i, j) = pDS
i · pDS

j =

|VP|∑
u

(∑
k

∑
1Wk

i =u

)
·
(∑

k

∑
1Wk

j =u

)
(
∑

k |Wk
i |)2

∼
|VP|∑
u

(∑
k

∑
1Wk

i =u

)
·

(∑
k

∑
1Wk

j =u

)
.

(13)

Note the denominator (
∑

k |Wk
i |)2 = (|k| ∗ h)2 is a constant. Intuitively, the similarity between611

diseases i and j is higher when two diseases visit more shared nodes at a higher frequency.612

Given the selected signature for diseases and calculated similarities among the diseases, for613

a query disease, we can then obtain k most similar diseases for a query disease i:614

Dsim,i = argmaxkj∈VDsim(i, j) (14)
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Disease-disease metric learning. Given the set of similar diseases, we aim to obtain an embedding615

that fuses different similarity dimensions into a single embedding sufficient to enhance the query616

disease that might be sparsely annotated. We use a weighted scheme, where the similarity score617

weights each disease as follows:618

hsimi =
∑
j∈Dsim

sim(i, j)∑
k∈Dsim

sim(i, k)
∗ hj. (15)

Embedding gating. The final step is to update the original disease embedding hi with the disease-619

disease metric learning embedding hsimi through a gating mechanism. The gating mechanism620

consists of a scalar c ∈ [0, 1] that balances between these two types of embeddings. Note that this621

requires special treatment because for a disease well-characterized in the knowledge graph, we do622

not need the disease-disease metric learning embedding, and it potentially can even bias the final623

embedding. The disease-disease metric learning embedding is most useful for uncharacterized624

diseases since the original disease embedding is insufficient to characterize molecular mechanisms.625

Note that the learnable attention mechanism to select whether or not to attend original/augmented626

embedding does not work well because the training examples are usually the most characterized,627

which makes the attention weight assign high importance to the original embeddings and leaves the628

subsidy embedding unused. Instead, we propose a heuristic algorithm that assigns weight based629

on the node degree for the drug-disease relation type that is under calculation: |N r
i |. The higher630

the degree, the more well-characterized the disease is, and the less weight should be assigned to631

the disease-disease metric learning embedding and vice-versa. Also, this scalar should have a very632

high value when the node degree is minimal (0 or 1) and decreases quickly when the node degree633

increases. To approximate this effect, we use an inflated exponential distribution density function634

with λ = 0.7:635

ci = 0.7 ∗ exp(−0.7 ∗ |N r
i |) + 0.2 (16)

We observe the result is not sensitive to λ (Supplementary Figure 6). Finally, we use parameter636

search and find optimal λ = 0.7. Then, we can finally obtain an augmented disease embedding:637

ĥi = ci ∗ hsimi + (1− ci) ∗ hi (17)

We then use this augmented disease embedding to feed into the DistMult decoder70 described in638
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Section 2.3.639

2.5 Training TXGNN deep graph models640

Objective function. The training objective is to accurately predict whether or not a relation holds641

given two entities in the knowledge graph. This can be formulated as a binary classification task642

for each relation. The positive samples consist of all pairs (i, j) with diverse relation types r ∈ TR.643

We denote this as D+ and the label yi,r,j = 1. Similarly, for each pair, we generate negative644

counterparts through sampling described in Section 3, denoted as D−. For each pair i, j and its645

relation type r, the model predicts the likelihood pi,j,r and the training loss is calculated via binary646

cross entropy loss:647

L =
∑

(i,r,j)∈D+∪D−

yi,r,j ∗ log (pi,r,j) + (1− yi,r,j) ∗ log (1− pi,r,j) (18)

Previous work has focused on knowledge graph completion, leading them to optimize over the648

entire set of relations in the knowledge graph78. However, since we are only interested in drug-649

disease relations, training on all relation types could move the model capacity toward capturing650

knowledge we are not interested in. Conversely, since complicated biological mechanisms drive651

drug-disease relations, the vast array of biomedical relations in the knowledge graph presents a652

unique information source that holistically describes biological systems. Thus, the challenge is to653

ultimately do well on a small set of relations while also transferring knowledge positively from the654

larger relation set.655

To solve this challenge, TXGNN uses a pre-training strategy. During pre-training, TXGNN656

is trained to predict relations across the entire set of relation types in the KG using stochastic mini-657

batching. This process allows TXGNN to distill biomedical knowledge into enriched node embed-658

dings. Next, during fine-tuning, TXGNN zooms in and trains only on the drug-disease relations659

to obtain more granular drug-disease-specific embeddings that optimize for the best therapeutic660

outcomes.661

Pre-training. TXGNN is first pre-trained on millions of biomedical entity pairs across the entire662

set of relations. As there are millions of edges, full-graph training is computationally infeasible.663

Thus, we use stochastic mini-batching to train only on a set of pairs in each training step. Each664

epoch goes through all pairs of data in the training knowledge graph. During pre-training, degree-665

adjusted disease augmentation is turned off since it is unavailable for other node types. All relations666
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are treated equally. The weights of the trained encoder model are then used to initialize the encoder667

model weights during fine-tuning. Note that the weight in the decoder DistMult wr is reinitialized668

before fine-tuning to discourage the effect of negative transfer.669

Fine-tuning. After pre-training, we have an initialization that captures general biological knowl-670

edge. Next, we focus on optimizing drug-disease relation prediction. To do that, we only use671

the samples of all drug-disease pairs (i, j) with relation types r ∈ {indication, contraindication,672

rev indication, rev contraindication}. The rest of the relations are discarded in the training objec-673

tive but are included in the knowledge graph for messaging the passing of drug and disease nodes.674

During fine-tuning, the degree-adjusted inter-disease embedding is turned on.675

The complete TXGNN model is pre-trained and fine-tuned in an end-to-end manner. The676

best-performing model on the validation set is then used for performance evaluation on the test set677

and downstream machine-learning analyses.678

2.6 Explaining model predictions679

Distilling model predictions into mechanisms of molecular networks perturbed in disease680

and targeted by therapeutics. A machine learning model can provide accurate disease treatment681

predictions. However, for domain scientists’ adoption, prediction alone is not sufficient. Thus, a682

model is expected to generate why it outputs this prediction in a form familiar to domain experts’683

decision-making. In the case of treatment prediction, an ideal form of explanation is to simulate684

how drug developers approach drug-disease relation — that is, to understand how a drug perturbs685

the local biological system such that it creates a therapeutic effect on the disease pathway. As686

TXGNN leverages the large-scale biological knowledge graph, we can probe into the local neigh-687

borhood around a query drug-disease node and pinpoint the exact mechanism contributing to the688

prediction. However, as a biological network is complex, making meaningful explanations requires689

a model to prune most uninformative edges and extract a sparse version of the local neighborhood.690

This can be formulated as a graph explainability problem where we try to identify a sparse set691

of edges where the model can make a faithful prediction using these edges42. To achieve it, we692

develop a post-training graph explainability module, adapted from GraphMask approach28, that693

can drop spurious edges from the dataset and retain a sparse set of edges that contribute most to-694

wards the prediction. Next, we describe the mathematical formulation of GraphMask as used by695

TXGNN.696
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Local explanation subgraphs through pruning superfluous biomedical relations. Given a697

trained disease treatment prediction model, for each target node j and one of the neighbor source698

node i with edge ei,j at layer l, we have intermediate messages m(l)
r,i, m

(l)
r,j given a relation r. Given699

these two embeddings, we concatenate them and feed them into a relation-wise single-layer neural700

network parameterized by W
(l)
g,r to predict the likelihood of masking the message from source node701

i when we compute the target node j embedding, followed by a gate consisting of a sigmoid layer702

to squeeze the likelihood into 0 to 1 and an indicator function to decide whether or not to drop the703

edge:704

z
(l)
i,j,r = 1[R>0.5]

(
sigmoid

(
W(l)

g,r

(
m

(l)
r,i‖m

(l)
r,i

)))
, (19)

such that z(l)i,j,r ∈ 0, 1. In practice, we add a location bias of 3 to the sigmoid function at initial-705

ization. This ensures that for initialized inputs, the biased sigmoid outputs are close to 1, meaning706

that the gates are open at initialization, and the model can adaptively close the gates to mask edges707

in the subgraph. This step is crucial as random initialization starts by dropping random edges. The708

gap between the original and updated predictions is big, so the model minimizes the gap instead of709

balancing the two objectives. Next, instead of simply removing the message when the gate outputs710

0, the message is replaced with a learnable baseline vector b(l)
r for each relation r and layer l. Thus,711

the updated message from source node i to target node j becomes:712

m̂
(l)
i,r = z

(l)
i,j,r ·m

(l)
i,r + (1− z(l)i,j,r) · b(l)

r (20)

Then, we can proceed with the standard message aggregation and update steps to compute713

the updated node embedding (Section 2.2), feed to inter-disease augmentation (Section 2.4), and714

generate the updated predictions p̂ between a drug and a disease (Section 2.3). The GraphMask715

gate weights are optimized with two objectives. The first objective is faithfulness, where the up-716

dated predictions after masking are encouraged to be the same as the original prediction outcome.717

The second objective is to promote the model to mask as much as possible. These two objectives718

present a trade-off since larger amounts of masking would lead to a more significant gap between719

updated/original predictions. This can be formulated as constrained optimization using Lagrange720

relaxation, where we strive to maximize the Lagrange multiplier λ for constraint while minimizing721
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the main objective. Formally, we use the loss function below:722

max
λ

min
Wg

L∑
k=1

∑
(i,j,r)∈D+∪D−

1[R 6=0]z
(k)
i,j,r + λ

(
‖p̂i,j,r − pi,j,r‖22 − β

)
, (21)

where β is the margin between the updated and original prediction. After training, we can remove723

edges (i, j, r) that have z(k)i,j,r = 0 and use the retained edges as the explanations. We can also724

use the value calculated before the indicator function to measure the level of contributions to the725

prediction and can be used as adjustments of more granular differences.726

Necessary adaptations of GraphMask approach for biomedical knowledge graphs. We mod-727

ify GraphMask28 in the following manner to generate meaningful local explanation subgraphs of728

the knowledge graph. (1) Instead of a complex gate that outputs scores close to 0/1, we adopt a729

smooth sigmoid gate where predictions are uniform across 0 to 1. This is important because we730

find hard concrete map edges to 1 as long as they affect the model prediction. However, this still731

keeps many edges that preclude us from making acceptable medical explanations. The sigmoid732

gate instead allows us to distinguish the intensity of contributions and provides a flexible frame-733

work. By setting a threshold, we remove large amounts of positive edges and only retain ones734

crucial for the model prediction. (2) Second, while GraphMask has a single learnable weight for735

every edge in the dataset, we adopt a separate weight for each relation. Since embeddings across736

relations are different, the model assigns uniformly high scores for all edges of a given relation type737

despite edges varying in relevance. Using relation-specific weights allows the model to capture the738

importance scores of individual edges.739

3 Experimental setup and implementation details740

Next, we outline the experimental setup, including information on performance evaluation and741

dataset splits. We also provide details on the practical implementation of TXGNN deep graph742

models.743

3.1 Creating dataset splits for rigorous performance evaluation744

Our dataset presents well-studied information and includes the vast majority of existing treatments.745

As a result, it is easy to predict treatments for diseases with various pre-existing treatments. How-746

ever, for zero-shot prediction of therapeutic use, we need to make good predictions on conditions747

with few or no current treatments available. The classical random split of edges of the knowledge748
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graph into training and testing sets would not simulate this application. In the random split, for749

diseases with many known indications, the model would view some of these drug-disease edges750

in training and thus easily predict therapeutic use based on drug similarity. However, this would751

prevent the model from assimilating meaningful biological knowledge. Therefore, we consider the752

following dataset splits into training and test sets:753

• Disease area splits: Many diseases of therapeutic interest have no existing treatments and lack754

significant biological knowledge. To evaluate whether TXGNN would be robust to predicting755

drug-disease relationships for such diseases, we develop data splits that simulate well-studied756

diseases as molecularly uncharacterized diseases. We cannot directly test on molecularly un-757

characterized diseases, such as rare diseases, because the treatments are too few to build a con-758

fident machine learning model. We select five disease groups: cell proliferation, mental health,759

cardiovascular diseases, anemia, and adrenal gland diseases, and then extract groups for these760

diseases from the Disease Ontology hierarchy such that group includes the disease and all its761

children. Since these well-studied diseases have many drug-disease relationships, we can easily762

evaluate the model’s performance during the simulation.763

For each disease, we create a separate data split as follows. First, all the drug-disease edges764

connected to the diseases in the group are moved to the test set. As a result, TXGNN has no765

information about existing indications and contraindications use edges for the chosen disease766

group during training. This simulates the lack of existing treatments encountered with molec-767

ularly uncharacterized diseases. Next, we remove a significant fraction (5% of the knowledge768

graph size) of the local 1-hop subgraph neighborhood for the disease group. Again, this simulates769

the limited biological understanding of molecularly uncharacterized diseases. Dataset statistics770

of each disease area split is provided in Table 1.771

• Systematic dataset splits: The deployed machine learning model should excel at predicting772

diseases without known treatments. Predicting new treatments for diseases that already have773

treatments is easier than predicting diseases without treatments. This is because information774

about existing treatments can directly illuminate the molecular mechanism, and drug similarity775

can help infer new treatments. Thus, to robustly test our model, we design this split to systemat-776

ically study prediction on novel unseen diseases. To do that, we first randomly split the entire set777

of diseases. Then, we take all drug-disease relations associated with the testing set of diseases to778
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the test set such that there are no known treatments during training and the testing set consists of779

novel diseases. The testing set has around 100 different diseases in each randomly seeded run.780

• Disease-centric dataset splits: We adopt a disease-centric evaluation to simulate realistic usage781

of drug candidate prioritization. First, for each disease in the test set, we pair it with all other782

drugs in the KG, except the drug-disease relations in the training set. Then, we make predictions783

for all pairs and rank based on the likelihood of interaction. We then retrieve the topK drugs and784

compute the recall (i.e., how much drug and disease in the testing set are in the top K). Finally,785

we build a baseline of random screening where we randomly sample top K drugs from the drug786

set and compute the recall.787

3.2 Modeling molecular and clinical relationships788

In graphs, each edge typically has a direction and points from the source to the target node. How-789

ever, in our biological knowledge graph, edges are bidirectional. For example, a drug A indicated790

for disease B is represented in TXGNN by a tuple (A, indication, B). Similarly, disease B can be791

treated by drug A, corresponding to a tuple (B, rev indication, A). For homogeneous relation type792

(e.g., protein-protein interactions) where the head and tail node belongs to the same node types,793

there is no additional reverse relation type as the reverse edges are collapsed into the original re-794

lation type. Thus, we add these reverse relation types to the knowledge graph, following standard795

practice. For the sake of notation, when the reverse relation has a different relation type from the796

original type r, we denote the reverse relation type as rc.797

3.3 Negative sampling for training TXGNN models798

As we only have positive data, negative data are constructed via sampling. The sampling from799

the unobserved simulates the realistic constraint where most possible drugs do not interact with800

the disease. For each relation type, we fix the source nodes and permute the target nodes through801

either random sampling from the set of nodes associated with this relation type’s target nodes802

or a weighted sampling based on the degree of the target nodes. As we conduct reverse rela-803

tion type construction, the source node type would also be shuffled and included in the negative804

samples when we do sampling for the reverse relation type. This concept of negative sampling805

based on shuffling target nodes is crucial. For example, suppose we want to study drugs A that806

can treat disease B, then we narrow down to the relation (B, rev indication, A) instead of the807

(A, indication, B).808
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3.4 Hyperparameter tuning809

We conduct hyperparameter tuning using Hyperband on validation set micro AUROC using com-810

plex disease split following two stages. The first is to optimize the parameters for pre-training811

and fix fine-tuning parameters, where we conduct a sweep of grid search with a learning rate of812

{1e − 4, 5e − 4, 1e − 3}, batch size of {1024, 2048}, and epoch size of {1, 2, 3}. Next, we fix813

the pre-training parameters and do a grid search for fine-tuning parameters with the hidden size of814

{64, 128, 256, 512}, input size of {64, 128, 256, 512}, output size of {64, 128, 256, 512}, number815

of inter-disease prototypes of {3, 5, 10, 20, 50} and learning rate of {1e − 4, 5e − 4, 1e − 3}. We816

obtain a final set of hyperparameters with a pre-training learning rate of 1e− 3, batch size of 1024,817

epoch size of 2, the fine-tuning learning rate of 5e−4, hidden size of 512, input size of 512, output818

size of 512, number of prototypes 3.819

3.5 Implementation details820

The TXGNN is implemented using DGL79 and PyTorch80 Python deep learning frameworks. We821

use Pandas81, Numpy82 for data processing and computing; scikit-learn83 for evaluation metrics;822

seaborn84, matplotlib85, UMAP86 for visualization; Weights and Bias (https://www.wandb.ai) for823

training monitoring and hyperparameter tuning. We train the model with one NVIDIA Tesla V100824

GPU in a server. TXGNN Explorer is implemented in JavaScript using React.js87, D3.js88, and Ant825

Design89. The graph data is managed using Neo4j database90. TXGNN Explorer communicates826

with TXGNN through a Python web server built with Flask91.827

3.6 Implementations about existing methods828

We follow the original author’s implementations for the baselines. Particularly, for network medicine829

statistics including KL, JS, proximity, and DSD, we used the codebase that recently benchmarked830

these scores for COVID-19 targets in https://github.com/Barabasi-Lab/COVID-19/tree/main. For831

HAN and HGT, we used the implementations in the Pytorch Geometric library, notably, the HAN-832

Conv, and HGTConv layers. For BioBERT, we used the huggingface repository https://huggingface.833

co/dmis-lab/biobert-v1.1 to download the raw model weights and then applied an MLP decoder834

to make predictions. For all baselines, we use the exact same data splits as in TXGNN for a fair835

comparison.836
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3.7 Usability study of TXGNN with medical experts837

We designed and developed TXGNN Explorer following a user-centric design study process30,838

which compared three visual presentations of GNN explanations from users’ perspectives and mo-839

tivated the implementation of path-based explanations based on user feedback. We evaluated the840

usability of TXGNN Explorer by comparing it with a non-explanation baseline that shows drug841

predictions and corresponding confidence scores. Twelve medical experts (7 males, 5 females,842

avg. age=34.25) were recruited for the usability study through personal contacts, Slack channels,843

and email lists in collaborating institutions. We have obtained informed consent from all partic-844

ipants. We conducted the evaluation on Zoom due to COVID-19-related restrictions. Each par-845

ticipant logged in to the user study system (Supplementary Figure S5) using their computers and846

shared their screens with the interviewer. The order of predictions and the order of two conditions847

(TXGNN Explorer or baseline) were randomized and counterbalanced across participants. For848

each drug assessment task, the participants were asked to 1) decide whether this drug prediction849

is correct (i.e., the drug can potentially be used to treat the disease) and 2) give a confidence score850

for their decision using a 5-point Likert scale (1=not confident at all, 5=completely confident).851

The study system automatically recorded the completion time for assessing each prediction. After852

assessing all predictions, participants provided subjective ratings for the two conditions in terms of853

Trust, Helpfulness, Understandability, and Willingness to use via a 5-point Likert scale (1=strongly854

disagree, 5=strongly agree).855

3.8 Evaluations within a large healthcare system856

We leveraged patient data from the Mount Sinai Health System’s electronic health records (EHR)857

in New York City, U.S., to assess patterns from predictions in clinical practice. All clinical data858

were deidentified, and the Mount Sinai Institutional Review Board approved the study. The cohort859

consisted of over 10 million patients and was filtered for patients over 18 years of age with at least860

one drug and at least one diagnosis on record, leaving 1,272,085 patients. This cohort was 40.1861

percent male, and the average age was 48.6 years (SD: 18.6 years). Table 2 shows the dataset’s862

racial breakdown.863

All disease and medication data were captured using the Observational Medical Outcomes864

Partnership (OMOP)92, 93 standard data model. We produce predictions for the 1,363 diseases with865

indications by training the full knowledge graph with only 5% of randomly selected drug-disease866

pairs as a validation set for early stopping. This experiment does not evaluate zero-shot perfor-867
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mance for all 17,080 diseases since the model has more confidence in conditions with known868

indications. Disease names in the TXGNN prediction dataset were matched to SNOMED or ICD-869

10 codes and finally mapped to OMOP concepts in the Mount Sinai data system. We included870

only diseases with at least one patient diagnosis in the dataset, leaving 480 conditions. Medica-871

tion names in the TXGNN prediction were matched to DrugBank ID, which was then mapped to872

RxNorm IDs and OMOP concepts. We included only medications with at least one patient order873

in the dataset, leaving 1,290 medications. Next, we included drug-disease pairs for which at least874

one patient was listed with both the drug and the disease, leaving 1,236 drugs and 470 diseases.875

For each drug-disease pair, we created a contingency table. Using the SciPy94 library’s Fisher876

exact function, we computed 2-sided odds ratios and p-values for each pair. Finally, we used the877

statsmodels95 Python library’s multi-test function to apply a two-sided Bonferonni correction on878

the previously generated p-values. Finally, we noted statistically significant drug-disease pairs as879

those with p < 0.005.880
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Disease area Number of diseases Number of indications Number of Contraindications

Adrenal gland 7 41 374
Anemia 19 88 752
Cardiovascular diseases 113 453 4,242
Diseases of cell proliferation 213 1022 1079
Mental health diseases 60 355 1,567

Table 1: Statistics on disease-area-based dataset splits used to evaluate the zero-shot prediction of therapeutic use. Given all
diseases in a given disease area, all indications and contraindications were removed from the dataset used to train machine learning
models. Additionally, a large fraction (95%) of the connections between biomedical entities to these diseases were removed from
the therapeutics-centered knowledge graph. Disease-area splits were curated to evaluate model performance on diseases with limited
molecular understanding and no existing treatments.

Racial group Count Percent (%)

Asian 60,041 4.7
Black 162,102 12.7
White 534,305 42.0
Unknown 241,998 19.0
Other 273,639 21.5

Total number of patients 1,272,085 100.0

Table 2: Demographics of the electronic health record dataset at Mount Sinai Health System in New York City used to validate
TXGNN’s hypotheses on therapeutic use prediction.
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