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1 Growth Model
(a) Defining the constant κ as:

κ = ln(1− αβ) +
αβ

1− αβ
ln(αβ),

the problem asks us to show that the following holds for each n ≥ 1:

(T nv̂)(k) =
1− βn

1− β
κ+ v̂(k). (1)

We can show this is true by induction where we first show that the statement
holds for n = 1. Then, we will show that as long as the statement holds for some
arbitrary n− 1, it also holds for n.

For n = 1, the first application of the Bellman operator T to the starting function
v̂ yields:

(T v̂)(k) = sup
y∈[0,kα]

{ln(kα − y) + βv̂ (y)} = sup
y∈[0,kα]

{
ln(kα − y) +

αβ

1− αβ
ln(y)

}
.

(2)
Noting that the maximand is strictly concave on [0, kα], there is a unique maxi-
mizer y∗ that satisfies the first-order condition:

− 1

kα − y∗
+

αβ

1− αβ
1

y∗
= 0 ⇒ y∗ = αβkα,

Then, plugging this expression in for the optimal y in the maximand of (2) gives
us:

(T v̂)(k) = ln(kα − αβkα) +
αβ

1− αβ
ln(αβkα)

= ln (1− αβ) +
αβ

1− αβ
ln (αβ) +

[
1 +

αβ

1− αβ

]
α ln (k) = κ+ v̂(k).

1



1 GROWTH MODEL 2

Thus, equation (1) is satisfied for n = 1. Assuming that (T n−1v̂)(k) is given by
equation (1), (T nv̂)(k) can be calculated as follows:

(T nv̂)(k) = sup
y∈[0,kα]

{ln(kα − y) + β(T n−1v̂)(y)}

= sup
y∈[0,kα]

{
ln(kα − y) + β

[
1− βn−1

1− β
κ+

α ln (y)

1− αβ

]}
.

Note that this is actually the same maximand as in (2) with an additional constant
that doesn’t depend on y and so the optimal y∗ will remain the same as above,
y∗ = αβkα. Plugging this in gives us

(T nv̂) (k) = ln (kα − αβkα) + β

[
1− βn−1

1− β
κ+

α

1− αβ
ln (αβkα)

]
=

(
β

1− βn−1

1− β
+ 1

)
κ+

[
1 +

αβ

1− αβ

]
α ln (k) =

1− βn

1− β
κ+ v̂ (k) .

Hence, equation (1) holds for all n ≥ 1 (in fact, you can clearly see that it also
holds for n = 0). It follows that:

v(k) = lim
n→∞

(T nv̂)(k) =
1

1− β
κ+ v̂(k).

Substituting this limit value function v into the right-hand side of the Bellman
equation yields:

sup
y∈[0,kα]

{ln(kα − y) + βv(y)} =
β

1− β
κ+ sup

y∈[0,kα]

{ln(kα − y) + βv̂(y)} =
β

1− β
κ+ (T v̂)(k)

=
β

1− β
κ+ [κ+ v̂(k)] = v(k),

confirming that v is indeed the solution to the Bellman equation.

(b) Substituting v(k) = ψ + φ ln(k) into the Bellman equation and collecting the
terms involving ψ on the LHS yields the following:

(1− β)ψ + φ ln(k) = sup
y∈[0,kα]

{ln(kα − y) + βφ ln(y)}.

Noting that the maximand is strictly concave on [0, kα], there is a unique maxi-
mizer y∗ that satisfies the first-order condition:

− 1

kα − y∗
+
βφ

y∗
= 0 ⇒ y∗ =

βφ

1 + βφ
kα.

It follows from the envelope theorem that the derivative of the Bellman equation
with respect to k is:

φ

k
=

αkα−1

kα − y∗
⇒ y∗ =

φ− α
φ

kα.
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Combining the first-order condition and the envelope condition gives:

βφ

1 + βφ
=
φ− α
φ

⇒ φ =
α

1− αβ
.

so that, we obtain the optimal policy y∗ = αβkα after substituting for φ in the
first-order condition. Next, substituting for φ and y in the Bellman equation
yields:

(1− β)ψ +
α

1− αβ
ln(k) = ln(kα − αβkα) + β

α

1− αβ
ln(αβkα)

=
α

1− αβ
ln(k) + ln (1− αβ) +

αβ

1− αβ
ln (αβ)

⇒ ψ =
1

1− β

[
ln (1− αβ) +

αβ

1− αβ
ln (αβ)

]
(c) The capital stock k∗t evolves according to the recursive equation k∗t = αβ(k∗t−1)α

for each integer t ≥ 1. The equation can be expressed in logs as:

ln(k∗t ) = ln(αβ) + α ln(k∗t−1),

which is a first-order linear difference equation with some initial value ln k0. By
backward induction, its (backward) solution is found to be

ln(k∗t ) = ln(αβ) + α
[
ln(αβ) + α ln(k∗t−2)

]
= ln(αβ) + α ln(αβ) + α2

[
ln(αβ) + α ln(k∗t−3)

]
= ...

= ln(αβ)
t−1∑
s=0

αs + αt ln(k0)

=
1− αt

1− α
ln(αβ) + αt ln(k0).

Exponentiating both sides of the solution, we obtain:

k∗t = (αβ)
1−αt
1−α kα

t

0 .

Thus, the present discounted value of the flow payoffs from the sequence k∗t can
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be calculated as follows:
∞∑
t=0

βt ln[(k∗t )
α − k∗t+1] =

∞∑
t=0

βt ln[(k∗t )
α − αβ(k∗t )

α] =
∞∑
t=0

βt[ln(1− αβ) + α ln(k∗t )]

=
∞∑
t=0

βt
{

ln(1− αβ) + α

[
1− αt

1− α
ln(αβ) + αt ln(k0)

]}
=

1

1− β
ln(1− αβ) +

α

1− α
ln(αβ)

∞∑
t=0

[
βt − (αβ)t

]
+ α ln(k0)

∞∑
t=0

(αβ)t

=
1

1− β
ln(1− αβ) +

α

1− α

(
1

1− β
− 1

1− αβ

)
ln(αβ) +

α

1− αβ
ln(k0)

=
1

1− β
ln(1− αβ) +

αβ

(1− β)(1− αβ)
ln(αβ) +

α

1− αβ
ln(k0)

= ψ + φ ln(k0)

= v(k0)

This confirms that the policy function g (k) = αβkα is indeed optimal since fol-
lowing this policy attains the optimal value that we found above for any initial
k0.

(d) The steady-state capital stock k̃ is the fixed point of the difference equation kt =
αβkαt−1. Hence, k̃ satisfies k̃ = αβk̃α or, equivalently, αβk̃α−1 = 1. The first-order
Taylor expansion of the policy function kt+1 = αβkαt around kt = k̃ yields:

kt+1 ≈ k̃ + α2βk̃α−1
(
kt − k̃

)
⇒ kt+1 − k̃

kt − k̃
≈ α2βk̃α−1 = α = e−[− ln(α)].

To see why α is the capital share (of output) in this model, note that the gross
income/output derived from capital is kα and thus, the marginal product of capital
is αkα−1. In a competitive market, the return rate r on a unit of capital is equal
to this marginal product. Consequently, the share of output paid to capital is
given by:

rk

kα
=
αkα−1k

kα
= α.

A capital share α between 0.3 and 0.7 implies a convergence rate − ln(α) at least
as great as − ln (0.7) ≈ 0.35. One reason why the model fails to match the conver-
gence rate of 0.05 in the data is that we have assumed that the depreciation rate
of capital between periods is one. This assumption raises the convergence rate,
because past investments in capital have a smaller effect on the current capital
stock. Thus, an initial difference between the capital stocks of two economies
declines at a more rapid rate. This intuition relies on an interpretation of the
convergence rate as a measure of how quickly countries which started with differ-
ent initial capital stocks will converge to the same steady state capital stock. This
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interpretation is valid to the extent that the different economies can be modeled
with the same production technologies and preferences.

2 Equity Model
(a) The term v(x) on the left-hand side of the Bellman equation represents the supre-

mum of the present discounted value of flow payoffs that can be generated from
a feasible consumption stream starting at a wealth level of x. On the right-hand
side, the term u(x − y) represents the current flow payoff from consuming the
amount x− y, and the term

E
[
exp(−ρ)v

(
exp(r + σu− σ2/2)y

)]
= exp(−ρ)E

[
v
(
exp(r + σu− σ2/2)y

)]
represents the present discounted value of the continuation payoff. The latter
expression consists of the discount factor exp(−ρ) representing impatience and
the expected value E [v (exp(r + σu− σ2/2)y)] of the optimization problem in
the following period. Note that exp(r + σu − σ2/2)y is the wealth level in the
following period given the realization of the return shock u. The current savings
level y is chosen to maximize the value of the current flow payoff plus the the
discounted expected future value of the problem, subject to the constraint that
savings cannot be negative or greater than the current wealth level x.

(b) Given that v(x) = φx
1−γ

1−γ , the envelope theorem implies that:

v′(x) = u′ (x− y)⇒ φx−γ = (x− y)−γ = c−γ;

so that the optimal consumption function is c = φ−
1
γ x and the corresponding

saving function is y = (1 − φ−
1
γ )x. Denoting R = exp(r + σu − σ2/2), the first

order condition is:

u′(x− y) = exp(−ρ)E [Rv′ (Ry)]⇒ (x− y)−γ = exp(−ρ)E
[
R1−γφy−γ

]
Substituting the consumption and saving functions into the last expression and
rearranging yields:

φx−γ = exp(−ρ)φ(1− φ−
1
γ )−γx−γE

[
R1−γ]⇒ (1− φ−

1
γ )γ = exp(−ρ)E

[
R1−γ] .

Noting that R is a lognormal random variable (ie., ln (R) is normally distributed),
the moment-generating function for the normal distribution implies that:

E
[
Rt
]

= E
[
et logR

]
= exp

(
tm+

t2

2
s2

)
,

where m and s2 are the mean and variance of ln(R). Since in our case, m =
r − σ2/2 and s2 = σ2, the preceding expression can be written as:

(1−φ−
1
γ )γ = exp

[
−ρ+ (1− γ)

(
r − σ2

2

)
+

(1− γ)2

2
σ2

]
= exp

[
−ρ+ (1− γ)r +

(γ − 1) γ

2
σ2

]
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so that, taking the log of both sides and dividing by γ yields:

ln(1− φ−
1
γ ) =

1

γ
[(1− γ)r − ρ] +

1

2
(γ − 1)σ2.

(c) Using the consumption and saving functions derived above, we obtain that optimal
consumption growth is given by:

ct+1

ct
=
φ−

1
γ xt+1

φ−
1
γ xt

= R(1− φ−
1
γ )

where the last equality follows from the feasibility constraint

x+1 = Ry = R(1− φ−
1
γ )x

Then, we have:

E ln

(
ct+1

ct

)
= E ln(R) + ln(1− φ−

1
γ )

=

(
r − σ2

2

)
+

{
1

γ
[(1− γ)r − ρ] +

1

2
(γ − 1)σ2

}
=

1

γ
(r − ρ) +

(γ
2
− 1
)
σ2.

(d) In the case where σ = 0, the Euler equation relating consumption across two
periods can be expressed as E∆ ln(ct+1) = 1

γ
(r − ρ). A higher value of the interest

rate r raises the price of current consumption relative to future consumption. In
other words, current consumption becomes more costly because the opportunity
cost represented by the expected return from investing in equity is higher. A
higher value of the discount rate ρ means that a consumer is less patient. That
is, the contribution of future utility flows to the discounted sum of utility flows
becomes less important relative to current period utility. Hence, the growth rate
∆ ln(ct+1) of consumption is increasing in r and decreasing in ρ. The coefficient
of relative risk aversion γ also regulates the consumer’s willingness to substitute
consumption between periods here because it measures the concavity of the flow
utility function and thus the desire to smooth consumption across periods. Note
that the elasticity of intertemporal substitution for this utility function is:

− d ln (ct+1/ct)

d ln (u′ (ct+1) /u′(ct))
=

1

γ

A higher value of γ corresponds to a more concave utility function and a lower
willingness to substitute consumption across periods. Thus, the expected growth
rate of consumption E∆ ln(ct+1) is less sensitive to r − ρ.

(e) Because the amount of savings an agent wishes to allocate to the bond and the
equity must be chosen optimally, the Euler equation must hold for each asset.
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In other words, we are now choosing savings via both the equity and the bond.
Thus, we can rewrite the Bellman as:

ṽ (x) = sup
ye+yf∈[0,x]

u (x− ye − yf )+E
{

exp (−ρ) ṽ
[
exp

(
r + σu− σ2/2

)
ye + exp (rf ) yf

]}
Then, it can be verified that the above optimal solution of c = φ−

1
γ x still satisfies

the equity Euler equation we can get from combining the FOC w.r.t. ye and the
envelope condition. Now, the additional FOC w.r.t. yf gives:

u′ (ct) = exp(−ρ)E[exp(rf )ṽ
′(xt+1)]

where it is recognized that ct = xt−ye,t−yf,t and xt+1 = exp (r + σu− σ2/2) ye,t+
exp (rf ) yf,t. The envelope condition gives us ṽ′(xt+1) = u′ (xt+1 − ye,t+1 − yf,t+1).
Thus, additionally using the budget constraint then gives that the interest rate
rf on the risk-free bond satisfies the bond Euler equation:

u′(ct) = exp(−ρ)E[exp(rf )u
′(ct+1)] ⇒ c−γt = exp(rf − ρ)E(c−γt+1)

⇒ rf = ρ− lnE

[(
ct+1

ct

)−γ]
Since the bond pays only an infinitesimal amount, the agent’s optimal consump-
tion path ct will still be characterized by ct+1

ct
= R(1−φ−

1
γ ), allowing us to express

rf as follows:

rf = ρ− lnE{[R(1− φ−
1
γ )]−γ} = ρ− lnE(R−γ) + γ ln(1− φ−

1
γ )

= ρ−
[
−γ
(
r − σ2

2

)
+
γ2σ2

2

]
+ γ

{
1

γ
[(1− γ)r − ρ] +

1

2
(γ − 1)σ2

}
= r − γσ2.

Note that the effective expected rate of return from equity is re which solves the
equation

exp (re) = E [R] = exp (r)⇒ re = r.

Then we have that, in equilibrium, this return must exceed the bond return in
order to clear both the equity and bond markets:

re − rf = γσ2.

This equity premium is a measure of the additional return (in terms of a real rate
of return) that consumers are willing to forego in exchange for a sure payoff.

3 True/False/Uncertain
(a) True. Let Γ(x) be nonempty for all x ∈ X so that a feasible plan exists. In addi-

tion, assume that for every feasible plan {xt}∞t=0, the infinite sum
∑∞

t=0 δ
tF (xt, xt+1)
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exists (but can be plus or minus infinity) so that the value of every feasible plan
can be evaluated using the objective function and thus our maximization problem
is well-defined. Then, because every set of real numbers has a unique supremum
in the extended real number system, every sequence problem must have a unique
supremum value, holding fixed the initial state x0 ∈ X.

(b) True. There are two alternative approaches to prove this. The first one makes
use of Blackwell’s sufficiency conditions and the Contraction Mapping Theorem.
The second one makes use of the formulation equivalence results for sequential
and recursive problems.

First Approach:

Consider the Bellman equation v(x) = maxy∈Γ(x){F (x, y) + δv(y)} where F is a
bounded function, and the discount factor satisfies δ ∈ (0, 1). Then as long as we
verify Blackwell’s sufficiency conditions, we know that the corresponding Bellman
operator is a contraction mapping. Furthermore, note that B (X) (the space of
bounded functions f : X → X with the sup-metric) is a complete metric space.
Thus, by the contraction mapping theorem, there is a unique fixed point to the
Bellman operator T : B(X) → B(X), that is, there exists a unique bounded
function that solves the Bellman equation.

We now check that Blackwell’s sufficient conditions are satisfied. For monotonic-
ity, take any f, g ∈ B(X) with f ≤ g. Then, the following holds for every x ∈ X :

(Tf)(x) = sup
y∈Γ(x)

{F (x, y) + δf(y)} = F (x, y∗f ) + δf(y∗f )

≤ F (x, y∗f ) + δg(y∗f ) ≤ sup
y∈Γ(x)

{F (x, y) + δg(y)} = (Tg)(x).

For discounting, take c ≥ 0 and f ∈ B(X).Then, the following holds for every
x ∈ X :

[T (f+c)](x) = sup
y∈Γ(x)

{F (x, y) + δ[f(y) + c]} = sup
y∈Γ(x)

{F (x, y) + δf(y)}+δc = (Tf)(x)+δc.

Second Approach:

Suppose that the flow payoff function, F (x, y), is bounded. Note that if B is
a bound for |F (x, y)|, then the supremum (value) function V SP of the sequence
problem satisfies |V SP (x)| ≤ B

1−β , for all x ∈ X, so that the latter is also bounded.

We can therefore prove the statement by making use of both parts of the main
result establishing the (partial) equivalence of the sequence and recursive formu-
lation, reproduced here:

Theorem 1 (Theorems 4.2 and 4.3 of Stokey and Lucas (1989)). Suppose that
the sequence problem satisfies the following two regularity conditions:



3 TRUE/FALSE/UNCERTAIN 9

• Γ(x) is nonempty for all x ∈ X
• For all feasible sequences, limn→∞

∑n
t=0 δ

tF (xt, xt+1) exists (but may be plus
or minus infinity).

Then,

(a) If V SP is a solution to the sequence problem, then it is also a solution to the
Bellman equation.

(b) If V BE is a solution to the Bellman equation and limt→∞ δ
tV BE (xt) = 0 for

all feasible xt, then it is also a solution to the sequence problem.

Armed with this theorem, we need to prove both existence and uniqueness of a
bounded solution to the Bellman equation.

Proof of Existence of a Bounded Solution:

Given the two weak regularity conditions of Theorem 1 (which we have to assume),
the solution V SP to the sequence problem is also a solution to the Bellman equa-
tion by part (a) of the theorem. Since we showed above that V SP is bounded, it
follows that there exists at least one bounded solution to the Bellman equation.

Proof of Uniqueness of the Bounded Solution:

Suppose, for the sake of contradiction, that there are two or more distinct bounded
solutions to the Bellman equation. Because every bounded solution to the Bellman
equation satisfies limt→∞ δ

tV BE(xt) = 0 for all feasible xt, by part 2 of Theorem
1 we know that all such bounded solutions to the Bellman equation must also
be solutions to the sequence problem. But this would contradict the uniqueness
of V SP , the supremum value of the sequence problem, discussed in question 3.a.
above. Therefore, the bounded solution to the Bellman equation must be unique.

(c) False. First counterexample: Consider the Bellman equation

v(x) = sup
x+∈Γ(x)

F (x, x+) + βEV (x+)

with F (x, x+) = x+ and Γ(x) = Bx where B ∈ (1, 1/β). Clearly, the opti-
mal policy is trivially x∗+ = Bx > x so that the flow payoff function grows un-
boundedly large under the optimal policy, limn→∞ F (x∗n, x

∗
n+1) = limn→∞ x

∗
n+1 =

limn→∞B
nx0 =∞.

But note that (by part (a) of Theorem 1 above) a solution v(x) to this Bellman
equation is the solution to the corresponding sequence problem,

v(x0) = sup
{xt}∈Π(x0)

∞∑
t=0

βtF (xt, xt+1)

= x0 + βBx0 + β2B2x0 + . . .

=
x0

1− βB
<∞
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where the last equality follows from the fact that βB < 1. Thus, for any xn, we
have v(xn) = xn/(1− βB) finite and limn→∞ β

nv(xn) = 0.

Second counterexample: Consider the following optimal-stopping problem (exam-
ple 3 from Section 1). There is a tree with initial size x0 > 0 that grows by
µ > 0 units per period if left uncut. That is, we have xt = x0 + tµ for all t ≥ 0.
If a tree of size x is harvested, then the agent receives a payoff of x. The dis-
count factor is δ ∈ (0, 1). The flow payoff from cutting a tree of size x > 0 is
F (x, 0) = x, and the flow payoff in the periods before or after cutting the tree
is F (x, x + µ) = F (0, 0) = 0. Note that the flow payoff function F (x, 0) = x is
unbounded. The Bellman equation for this problem is:

v(x) = max{x, δv(x+ µ)}.

Noting that x∗ = δµ/(1 − δ) is the threshold solution, we know that at least
one solution v (·) of the Bellman equation is characterized by a policy rule where
the tree is harvested iff x ≥ x∗. Thus, we know that v (x) = x for x > x∗ and
v (x) ≤ x∗ for x ≤ x∗. We also see that for any x0, xt = x0 + tµ ≥ x∗ for some
finite t. Thus, for t sufficiently large, we have xt > x∗ and so v (xt) ≤ xt = x0 +tµ.
Noting also that the flow payoff is always nonnegative, the following holds for any
feasible sequence of actions:

0 ≤ lim
t→∞

δtv(xt) ≤ lim
t→∞

δt(x0 + tµ) = 0 ⇒ lim
t→∞

δtv(xt) = 0.

(d) True. The maximum feasible capital stock k̄t at time t satisfies k̄t = k̄αt−1 or
ln(k̄t) = at ln(k0). Since |a| < 1, we have limt→∞ ln(k̄t) = 0, so that limt→∞ kt ≤
limt→∞ k̄t = 1 < 1 + ε.

(e) True. From the form of the solution v (·) found in the first problem, we know that
v is monotonically increasing in its argument. We also know that kt ≤ k̄t = kα

t

0

from the preceding result regarding the maximum feasible capital stock. Thus,

lim
t→∞

βtv(kt) ≤ lim
t→∞

βtv(k̄t) = lim
t→∞

βt[φ+ ψαt ln(k0)] = 0, since |αβ| < 1.

Takeaways from Problem 1 and the True/False questions

The growth model of Problem 1 and the T/F questions above illustrate that some of
the most important economic applications of dynamic programming involve cases where
the boundedness condition

lim
t→∞

βtv(xt) = 0 for all feasible {xt} (3)

does not hold. This condition is a sufficient one for ensuring that the solution to the
Bellman equation is also the solution to the sequence problem. A variation of this
equivalence result that applies in more general circumstances is the following:
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Lemma 1 (Exercise 4.3 in Stokey and Lucas (1989)). If v(x) is a solution to the
Bellman equations that satisfies

lim sup
t→∞

βtv(xt) ≤ 0 (4)

for all feasible sequences {xt}∞t=0 and, in addition, an optimal feasible sequence {x∗t}∞t=0

for the sequence problem exists and satisfies

lim
t→∞

βtv(x∗t ) = 0 (5)

then v(x) is also the solution to the corresponding sequence problem.

As we have seen in 3.e, the first condition of Lemma 1 is satisfied, while in Problem
1.d we showed that the optimal sequence under our solution v to the Bellman equation
converges to the steady-state level of capital, k̃ = (αβ)

1
1−α , so that1

lim
t→∞

βtv(k∗t ) = lim
t→∞

βt [ψ + φ ln(k∗t )]

= lim
t→∞

βt
[
ψ + φ ln(k̃)

]
= 0

Therefore, we know that the solution v(k) to the Bellman equation of the growth
model is also the solution to the sequence formulation of the growth model. Moreover,
by part 3.a., we know that the solution to the latter is unique, so that we have computed
the unique solution to the growth model.

There is another useful equivalence result that, unlike Lemma 1, that does not
require that we have computed an optimal sequence for the sequence problem, {x∗t}.
This theorem only requires that the Bellman operator is monotonic (and not necessarily
a contraction). The idea is to start with a function v̂ that is an upper bound for vSP
and then apply the operator T to v̂, iterating down to a fixed point.

Theorem 2 (Theorem 4.14 in Stokey and Lucas (1989)). Define Bellman operator T
on the set of all functions f : X → R by

(Tf)(x) = sup
y∈Γ(x)

[F (x, y) + βf(y)]

Assume that T is monotone, that is, f ≤ g ⇒ Tf ≤ Tg.
Moreover, assume that there is a function v̂ : X → R such that

1. T v̂ ≤ v̂

2. limt→∞ β
tv̂(xt) ≤ 0 for all feasible xt

1Strictly speaking, we need to show that this is the optimal sequence of capital levels for the
sequence problem, and not just under the candidate solution v to the Bellman equation.
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3. V SP (x0) ≤ v̂(x0) for all x0 ∈ X

If the function v : X → R̄ defined by

v = lim
n→∞

(T nv̂)(x)

is a fixed point of T , then v = vSP .

In Problem 1.a. of Problem Set 1, we showed that the growth model with the upper
bound guess v̂(k) = a ln k

1−αβ satisfies the assumptions of Theorem 2. Therefore, we know
that v(k) = limn→∞(T nv̂)(k) is not only a solution to the Bellman equation (that is, a
fixed point of T, a fact that we showed by simply plugging the expression for v(k) back
into the Bellman equation) but also the solution to the sequence problem.

Relatedly, many economic problems feature payoff functions that are unbounded, so
that we cannot make use of Blackwell’s theorem to show that the Bellman operator is
a contraction and then apply the contraction mapping theorem to prove the existence
of a unique solution to the Bellman Equation, as we did in 3.b under the assumption
of a bounded function. However, note that if our payoff function is continuous and we
can, without loss of generality, restrict our attention to a compact subset of the state
space (equivalently, a closed and bounded subset of the state space when the latter
is a Euclidean space, Rn, for some finite n ∈ N), then our payoff function (restricted
to the compact subset of the spate space) will be bounded, so that we can apply the
contraction mapping theorem.

The growth model of Problem 1 is such a case. From part 3.d., we see that the
economy can never settle into a level of capital greater than the value defined by k̄ =
k̄α ⇒ k̄ = 1, since this is the amount of capital that would sustain itself when
consumption is set to 0. If the economy starts with k(0) < 1, it can never exceed 1. If it
starts with k(0) > 1, it can never exceed k(0). Then, we can take k̂ ≡ max{k(0), 1} and
equivalently formulate our problem as one where the agent’s choice for next period’s
capital is formally restricted to be in the compact set [0, k̂α − ε], for some ε > 0
sufficiently small.2

2In this particular example we need consumption to be strictly positive, because the flow payoff
function, log utility of consumption, tends to −∞ as consumption approaches zero, so that the flow
payoff remains unbounded even if the choice for next period’s capital is restricted to [0, k̂α]. The
restriction that next period’s capital cannot exceed k̂α−ε, for small enough ε > 0, can again be shown
to be without loss of generality.
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