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1 Eat-the-Pie Problem
(a) The consumer selects consumption in each period, given her current wealth, which

equals savings in the previous period times the gross rate of return. The consumer
has already sold any claims to future labor income and cannot consume an amount
greater than her current wealth. The following are some implicit assumptions of
the model:

• The consumer knows the rate of return on savings with certainty, eliminating
a possible motive for precautionary savings.

• The consumer is assumed to be able to sell claims to all their future labor
income for their expected discounted value. Under this interpretation the
assumption that no borrowing is allowed is natural (it follows from a no-
Ponzi condition).

• The consumer is assumed to discount the future exponentially and so have
time-consistent preferences, even though there is some evidence indicating
that consumers find it difficult to adhere to their previous consumption plans.

• The utility function is additively separable across time periods; for example,
the model does not consider the possibility of habit formation.

• The flow payoff function does not change over time or across states. That
is, the consumer does not have time-varying or state-dependent preferences.

• The consumer is assumed to face an infinite-horizon decision problem. This
assumption might be justified if consumers were altruistic towards future
generations of their families.

(b) The Bellman equation is as claimed in the problem set, because the value of
current wealth v(W ) is equal to the flow payoff from current consumption u(c) plus
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1 EAT-THE-PIE PROBLEM 2

the discounted value of future wealth δv (R(W − c)), where current consumption c
is chosen to maximize the sum of the latter two terms. The expectation operator is
not needed because the consumer is not exposed to any uncertainty (the stochastic
income stream was already sold for a constant, known amount of assets and the
return rate on savings is known with certainty).

(c) First, note that we assume that the domain of B is the space of bounded functions.
We can restrict our attention to this space because the fact that u is bounded
implies that the value function for our sequence problem

vSP (W0) = max
{ct}∞t=0

∞∑
t=0

δtu(ct)

is also bounded. To see this, note that if K > 0 is an upper bound for u(x) then
K
1−δ is an upper bound for vSP (W0), so that the latter is also bounded. Since our
ultimate goal is to compute the solution to the sequence problem, we can restrict
our attention to solutions v(x) of the Bellman equation that are bounded. Also
note that, if u is bounded, the Bellman operator B will always map a bounded
function f to another bounded function Bf , since the latter is the sum of two
bounded functions, u(·) and δf(·). Therefore, B maps the space of bounded
functions into itself, B : C(X)→ C(X), as Blackwell’s Theorem requires.

Then, we can apply Blackwell’s theorem, which provides sufficient conditions for
a mapping from the space of bounded functions into itself to be a contraction. We
now show that our Bellman operator B satisfies Blackwell’s sufficient conditions.
The monotonicity condition holds, because the following is true for functions f
and g such that f ≤ g:

Bf(W ) = sup
c∈[0,W ]

{u(c)+δf (R(W − c))} ≤ sup
c∈[0,W ]

{u(c)+δg (R(W − c))} = Bg(W ),

where the inequality is a straightforward consequence of the fact that f(W ) ≤
g(W ) for each W . Provided that δ ∈ (0, 1), the discounting condition holds,
because the following is true for a function f and a constant α ≥ 0:

B(f + α)(W ) = sup
c∈[0,W ]

{u(c) + δ [f (R(W − c)) + α]}

= sup
c∈[0,W ]

{u(c) + δf (R(W − c))}+ δα = Bf(W ) + δα.

Because the Bellman operator B is a contraction mapping, the contraction map-
ping theorem implies that the repeated iteration of B on a starting function w
generates a sequence of functions that converges to the unique fixed point v of
the Bellman operator, thus providing the solution to the Bellman equation.

(d) The first-order condition and the envelope theorem yield the following:

u′(c) = δRv′ (R(W − c)) = v′(W ).
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Given the form of the utility function and the value function being assumed,
we have u′ (c) = c−γ and v′ (W ) = ψW−γ which is valid for any γ ∈ (0,∞).
Substituting for u′(c) and v′(W ) in the previous expression yields:

c−γ = δRψ[R(W − c)]−γ = ψW−γ ⇒ c = ψ−
1
γ δ−

1
γR1− 1

γ (W − c) = ψ−
1
γW,

confirming that the optimal policy rule is c = ψ−
1
γW . The constant ψ can be

obtained from the following:

ψ−
1
γ δ−

1
γR1− 1

γ

(
W − ψ−

1
γW
)

= ψ−
1
γW ⇒

(
1− ψ−

1
γ

)
δ−

1
γR1− 1

γW = W

⇒ 1− ψ−
1
γ = δ

1
γR

1
γ
−1 ⇒ ψ−

1
γ = 1−

(
δR1−γ) 1

γ .

In the case where γ = 1, we have ψ = (1 − δ)−1 and c = (1 − δ)W ; so that, the
constant φ can be recovered as follows:

φ+ ψ lnW = sup
c∈[0,W ]

{ln c+ δ{φ+ ψ ln[R(W − c)]}}

⇒ φ+
1

1− δ
lnW = ln(1− δ) + lnW + δ

{
φ+

1

1− δ
[ln(δR) + lnW ]

}
⇒ φ =

1

1− δ

[
ln(1− δ) +

δ

1− δ
ln(δR)

]
,

which confirms that the solution indeed satisfies the Bellman equation for γ = 1.

In the case where γ ∈ (0,∞) and γ 6= 1, the Bellman equation is satisfied because:

ψ
W 1−γ

1− γ
= sup

c∈[0,W ]

{
c1−γ

1− γ
+ δψ

[R(W − c)]1−γ

1− γ

}

⇒ ψ
W 1−γ

1− γ
=

(
ψ−

1
γW
)1−γ

1− γ
+ δψ

[
R
(
W − ψ−

1
γW
)]1−γ

1− γ

⇒ 1 = ψ−
1
γ + δ

[
R
(

1− ψ−
1
γ

)]1−γ
⇒ ψ =

(
1− δ

1
γR

1
γ
−1
)−γ

.

(e) See previous part.

(f) First, it is important to understand that the consumption path is always respon-
sive to interest rate changes. This follows immediately from the loglinearized
Euler Equation

∆ ln ct+1 =
1

γ
(r − ρ)
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which states that a one-percent increase in the gross simple interest R (that is,
an one-unit level increase in r ≡ lnR) will increase consumption growth by 1

γ

percentage points. For example, for γ = 1, the growth rate of the consumption
path increases by one percentage point in response to a one-percent increase in
R. Another way to see this point is that Wt depends on R, for all t > 0, so that
ct = (1− δ)Wt, for t > 0, also changes with R.

When γ = 1, consumption does not depend directly on the gross rate of return
R (as explained in the previous paragraph, it depends indirectly on R through
Wt), because the income and substitution effects of an interest rate change on
consumption cancel each other out.

In general, the substitution effect of a price change on the demand for a good i is
the impact of the (marginal) price change on good i’s demand, holding purchasing
power fixed. This is formally defined to be the demand change of a consumer who
has received the Slutsky wealth compensation associated with the price increase
(see MWG, ch. 2.F). The income effect of the price change is the effect of the
price change on the consumer’s purchasing power. It is formally defined to be the
demand impact of an increase in the agent’s wealth by an amount equal to the
negative of the Slutsky wealth compensation, holding the price fixed at its initial
level.

I will present a formal treatment of substitution and income effects in Section 4.
Here, I give an informal discussion (which is all that is required for this question).

We can intuitively understand the substitution effect of an interest rate increase by
looking at the Euler equation, which gives us the impact of an interest rate increase
on the consumption growth of a CRRA agent. A marginal proportional increase
in R, dr, leads to a proportional increase in consumption growth equal to 1

γ
dr.

To informally capture the effect of the interest rate increase holding purchasing
power constant, let’s assume that ct+1 is fixed at its initial value. Then, the Euler
Equation tells us that consumption today should fall by 1

γ
dr percentage points.

Intuitively, the interest rate is the price (opportunity cost) of current consumption
relative to future consumption. Therefore, current consumption, ct, has become
more expensive, which gives the agent an incentive to reduce his demand for ct.

The income effect on ct of the interest rate increase is positive, corresponding
to the higher purchasing power of the agent’s wealth, since the amount of con-
sumption that the agent can attain for any given level of savings increases. Since
consumption at any time period is a normal good, its demand tends to increase
as a result of the increase in purchasing power. That is, the income effect corre-
sponds to an incentive to increase consumption at all points in time. To informally
capture its relative magnitude, we hold constant the level of time t savings, yt,
and note that, for the CRRA utility, consumption ct+1 is homogeneous in (pro-
portional to) that period’s wealth Wt+1 = Ryt, so that the income effect of a
proportional interest rate increase dr is associated with an increase in ct+1 by dr
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percentage points.

We see that, for a CRRA agent, the substitution and income effects lead to a
change in ct by − 1

γ
dr and dr percentage points, respectively. In the γ = 1 case,

the two effects cancel out.

2 Search and Optimal Stopping
1. In each period, the consumer decides whether to accept the current offer of x or

to continue searching for another offer. If the consumer accepts an offer of x,
then she receives a payoff of x. If the consumer rejects the offer, then she faces an
analogous problem next period, drawing an offer x+1 from the same distribution.
Noting that x+1 is unknown in the current period and ρ is the rate at which the
future is discounted, exp(−ρ)Ev(x+1) is the continuation value from rejecting an
offer. Thus, the value of drawing an offer of x is the greater of the payoff x from
accepting the offer and the value exp(−ρ)Ev(x+1) from continuing to search.

2. Note that B is a mapping from the space of bounded functions into itself, since,
for any w(x), the maximum value that (Bw)(x) can take is 1. Thus, we can apply
Blackwell’s Theorem and show that the Bellman operator B is a contraction
mapping, because it satisfies Blackwell’s sufficient conditions. The monotonicity
condition holds, because the following is true for functions f and g with f ≤ g:

Bf(x) = max {x, exp(−ρ)Ef(x+1)} ≤ max{x, exp(−ρ)Eg(x+1)} = Bg(x),

where the inequality results from Ef(x+1) ≤ Eg(x+1). Provided that ρ > 0, the
discounting condition holds, because the following is true for a function f and a
constant α ≥ 0:

B(f + α)(x) = max{x, exp(−ρ)E[f(x+1) + α]}
≤ max{x, exp(−ρ)E[f(x+1)]}+ exp(−ρ)α = Bf(x) + exp(−ρ)α

3. Because the Bellman operator B is a contraction mapping from a complete metric
space into itself, the contraction mapping theorem implies that limn→∞B

nw = v
for any arbitrary function w, where v is the unique fixed point of the Bellman
operator and thus the solution to the Bellman equation.

4. Let w(x) = 1 for all x ∈ [0, 1]. It can be shown by induction that each iteration
of the Bellman operator has the form:

Bnw(x) =

{
xn, x ≤ xn

x, x > xn
.



3 OPTIMAL INVESTMENT 6

The first application of the Bellman operator to the function w yields:

Bw(x) = max{x, e−ρ} =

{
e−ρ, x ≤ e−ρ

x, x > e−ρ
,

confirming the claim for n = 1 with x1 = e−ρ. If the claim is true for some n ≥ 1,
then we obtain the following for n+ 1:

Bn+1w(x) = max{x, e−ρE [(Bnw) (x)]} = max

{
x, e−ρ

(∫ xn

0

xndz +

∫ 1

xn

zdz

)}
= max

{
x, e−ρ

1 + x2n
2

}
=

{
xn+1, x ≤ xn+1

x, x > xn+1

, where xn+1 =
e−ρ(1 + x2n)

2
.

Thus, each iteration of the Bellman operator has the form claimed above. Because
xn is a sufficient statistic for Bnw, the convergence of Bnw to the fixed point:

lim
n→∞

Bnw(x) = v(x) =

{
x∗, x ≤ x∗

x, x > x∗

is equivalent to the convergence of xn to the cutoff:

x∗ = e−ρ
1 + (x∗)2

2
.

Solving for x∗ in the expression above yields:

(x∗)2 − 2eρx∗ + 1 = 0⇒ x∗ = eρ −
√
e2ρ − 1,

where the other root of the quadratic is greater than one and can be discarded.

3 Optimal Investment
(a) The Bellman equation for the problem is:

v(c) = max{−c+ p[Ev(c+1)− l], Ev(c+1)− l}.

The following formulation of the Bellman equation is also valid (and equivalent):

v(c) = min{c+ p[Ev(c+1) + l], Ev(c+1) + l}

In the utility maximization problems that we have studied, discounting is usually
needed to ensure a finite value function and policies that are “interior”. In this
problem, we need l > 0 (with or without discounting) to ensure that c∗ > 0; and
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we need discounting and/or a large enough p (and small enough l) to ensure that
c∗ < 1.

Note that in this problem discounting would imply an additional incentive for the
agent to postpone paying the completion cost. But (for l small enough and p large
enough) the agent has an incentive to postpone paying the completion cost for
high enough cost draws even without discounting, since cost draws are iid so that
it is always possible to get a smaller cost draw in the future.

(b) Noting that the optimal policy is defined by a cutoff c∗ such that the project is
attempted iff c ≤ c∗, the value function for the problem is given by:

v(c) =

{
pv − c, c ≤ c∗

v, c > c∗
, (1)

where v ≡ Ev(c+1)−l is a constant w.r.t. c since c is i.i.d. Because the distribution
of c is continuous, it’s possible to get a draw of exactly c = c∗. At this cutoff, the
agent must be indifferent between the two choices and so:

v̄ = pv − c∗ ⇒ c∗ = −(1− p)v. (2)

Then, the solution (v̄, c∗) will solve the system given by (1), (2) and the definition
of v. First, let us solve for v̄ in terms of c∗ by evaluating the expectation of v(c+1)
given by (1):

Ev(c+1) =

∫ c∗

0

(−c+ pv)dc+

∫ 1

c∗
vdc = −(c∗)2

2
+ pv̄c∗ + (1− c∗) v.

Substituting Ev(c+1) = v + l from the definition of v yields:

l = −(1− p)vc∗ − (c∗)2/2,

and substituting v = −c∗/(1− p) from (2) results in:

c∗ =
√

2l.

The threshold c∗ does not depend on the probability p of failing to complete
the project for the following reason. Given any arbitrary threshold value c̃, the
expected value of the problem is the sum of the total discounted expected project
costs paid and the total discounted expected late fees paid. A higher threshold c̃
increases the total expected project costs while decreasing the total expected late
fees. At the optimal threshold, the marginal effect of changing the threshold on
each of these two components must cancel out. That is, if we’re at the optimal
threshold c∗ and we consider a small perturbation c∗ + ε, the marginal reduction
in the late fees component must equal the marginal increase in the project costs
component. Then, c∗ would only depend on 1 − p if at the optimal c∗, the
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probability 1 − p affected these two marginal effects differently. However, in the
no discounting case, a decrease in (1 − p) increases the effect of c∗ on both of
these terms by the same proportion, effectively leaving the optimization problem
unchanged.

Formally, one can show that, given a candidate threshold c̃, the present discounted
value of expected completion costs and of expected late fees (from the perspective
of an agent who hasn’t yet observed the current period’s draw of c)1 equals

ECC(c̃) = c̃
c̃

2
+ (1− c̃+ c̃p)δc̃

c̃

2
+ . . .

=
c̃2

2[1− δ(1− (1− p)c̃)]

and

ELF (c̃) = (1− c̃+ c̃p)δl + . . .

=
lδ(1− (1− p)c̃)

1− δ(1− (1− p)c̃)

respectively. The value attained from policy c̃ would then be the negative of the
sum of ECC and ELF .

The optimal threshold satisfies

dv(c∗)

dc∗
= 0

⇔ −∂ECC
∂c∗

− ∂ELF

∂c∗
= 0 (3)

We can calculate the partials as

∂ECC

∂c∗
=

2c∗(1− δ) + δ(1− p)c∗

2[1− δ(1− (1− p)c∗)]2

and

∂ELF

∂c∗
=

δl(1− p)
[1− δ(1− (1− p)c∗)]2

p in general affect these marginal effects differently, but in the special case of
δ = 1 we have

∂ECC

∂c∗
=

1

2(1− p)
1Note that the agent pays the late fee for the current period regardless of whether he attempts to

complete the project.
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and

∂ELF

∂c∗
= − l

c∗2(1− p)

so that p indeed affects the two marginal effects by the same proportion and thus
does not affect the choice c∗ determined by (3). (Note that equation (3) also
yields c∗ =

√
2l.).

Intuitively, even though the sum of expected completion costs “starts today” and
the sum of expected late fees “starts tomorrow”, there is no asymmetry in the
impact of p on the two infinite sums since all periods are weighted equally.

(c) With a discount factor δ ∈ (0, 1) and p = 0, the Bellman equation for the problem
is:

v(c) = max{−c, δ[Ev(c+1)− l]}.
A threshold rule would then give a value function of:

v(c) =

{
−c, c ≤ c∗

δv, c > c∗
,

where v ≡ Ev(c+1) − l is once again, a constant. As above, we can obtain an
indifference condition for the cutoff c∗:

−c∗ = δv̄ = δ[Ev(c+1)− l]

For this threshold solution, we get:

Ev(c+1) =

∫ c∗

0

−cdc+

∫ 1

c∗
δv̄dc = −(c∗)2

2
+ (1− c∗) δv̄

Then, using the fact that v̄ = Ev(c+1) − l and substituting in our indifference
condition of δv̄ = −c∗ turns this into a quadratic in c∗:

−c∗ = δ[Ev(c+1)− l] = δ

(
−(c∗)2

2
− (1− c∗) c∗ − l

)
= −δ

(
c∗ − (c∗)2

2
+ l

)
Solving for c∗ in the expression above yields:

δ(c∗)2 + 2(1− δ)c∗ − 2δl = 0⇒ c∗ =
δ − 1 +

√
(1− δ)2 + 2δ2l

δ
,

where the other root of the quadratic is negative and can be discarded.

(d) It is also possible to generalize the previous analysis to the case where p ∈ (0, 1).
The Bellman equation for this problem is given by:

v(c) = max{−c+ pδ[Ev(c+1)− l], δ[Ev(c+1)− l]};
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so that, the cutoff c∗ is defined by the equation:

−c∗ + pδv̄ = δv̄ = δ[Ev(c+1)− l]⇒
−c∗

1− p
= δv̄ = δ[Ev(c+1)− l]

This gives us:

Ev(c+1) =

∫ c∗

0

(−c+ pδv)dc+

∫ 1

c∗
δvdc = −(c∗)2

2
+ pδv̄c∗ + (1− c∗) δv

Then, noting again that v̄ = Ev(c+1) − l and using the fact that −c∗
1−p = δv̄ from

the indifference condition gives us:

−c∗

1− p
= δ

[
−(c∗)2

2
+ δv − (1− p) δv̄c∗ − l

]
= δ

[
−(c∗)2

2
− c∗

1− p
+ (c∗)2 − l

]
which is a quadratic equation with one sensible solution:

δ(c∗)2 + 2
1− δ
1− p

c∗ − 2δl = 0⇒ c∗ =
1

δ

√(1− δ
1− p

)2

+ 2δ2l − 1− δ
1− p

 .
Differentiating the quadratic equation totally with respect to p we get

∂c∗

∂p
= −

1−δ
(1−p)2 c

∗

δc∗ + 1−δ
1−p

< 0

so that c∗ is decreasing in p.

In the presence of discounting, an increase in p has a greater impact on the present
discounted value of expected completion costs than the present discounted value
of late fees. This is because the agent pays the late fee for the current period
whether or not he attempts to complete the project today, so that he trades off
expected completion costs starting today and expected late fees starting tomorrow.
See the formalization of this point in part (b).

Therefore, because the sum of expected completion costs depends positively on
the level of the threshold and the sum of expected late fees depends negatively on
the level of the threshold, an increase in the failure rate p lowers the threshold c∗
below which the project is attempted (this follows from (3)).

(e) Conditional on the project remaining uncompleted at the start of a period, the
probability of completing the project in that period is c∗(1−p). Thus, the time T
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for the project to be completed is a geometric random variable with probability
mass function:

Pr(T = t) = [1− c∗(1− p)]tc∗(1− p),

and expectation:

E(T ) = c∗(1− p)
∞∑
t=0

[1− c∗(1− p)]t · t

= c∗(1− p)1− c∗(1− p)
[c∗(1− p)]2

=
1− c∗(1− p)
c∗(1− p)

where the second line follows from the fact that, for β < 1,

∞∑
t=0

βt =
1

1− β

diff wrt β⇒
∞∑
t=0

βtt =
β

(1− β)2
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