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1 A Simple Consumption Problem
(a) Noting that vT (x) = ln x, the Bellman equation for period T − 1 is:

vT−1(x) = sup
c∈[0,x]

{ln c+ β ln[R(x− c)]},

whose first-order condition is:
1

c
=

β

x− c
,

yielding the policy rule:

cT−1(x) =
x

1 + β
= λT−1x.

Thus, the value function for period T − 1 is:

vT−1(x) = ln

(
x

1 + β

)
+ β ln

(
βRx

1 + β

)
= (1 + β) ln

(
x

1 + β

)
+ β ln(Rβ).

The Bellman equation for period T − 2 is:

vT−2(x) = sup
c∈[0,x]

{ln c+ βvT−1[R(x− c)]} = sup
c∈[0,x]

{
ln c+ β(1 + β) ln

[
R(x− c)

1 + β

]
+ β2 ln(Rβ)

}
,

whose first-order condition is:

1

c
=
β(1 + β)

x− c
,

yielding the policy rule:

cT−2(x) =
x

1 + β + β2
= λT−2x.

1
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Thus, the value function for period T − 2 is:

vT−2(x) = ln

(
x

1 + β + β2

)
+ β(1 + β) ln

(
Rβx

1 + β + β2

)
+ β2 ln(Rβ)

= (1 + β + β2) ln

(
x

1 + β + β2

)
+ (β + 2β2) ln(Rβ).

(b) It will be shown by induction that the policy rule is as claimed in the problem
set and that the value function is given by:

vT−t(x) =
ln(λT−tx)

λT−t
+ κT−t ln(Rβ),

where we define:

κT−t =
t∑

s=0

sβs =
β

(1− β)2
{

1− βt [1 + t (1− β)]
}
.

It is easily seen that the policy rule and the value function are as claimed above
for t = 0. If these claims are true for some t ≥ 0, then the Bellman equation for
t+ 1 is:

vT−t−1(x) = sup
c∈[0,x]

{ln c+βvT−t[R(x−c)]} = sup
c∈[0,x]

{
ln c+ β

[
ln[λT−tR(x− c)]

λT−t
+ κT−t ln(Rβ)

]}
,

whose first-order condition is:
1

c
=

β

λT−t(x− c)
,

yielding the policy rule for t+ 1:

cT−t−1(x) =
λT−t

β + λT−t
x =

(1− β)(1− βt+1)−1

β + (1− β)(1− βt+1)−1
x =

1− β
1− βt+2

x = λT−t−1x.

Thus, the value function for t+ 1 is:

vT−t−1(x) = ln(λT−t−1x) +
β

λT−t
ln[λT−tR(1− λT−t−1)x] + βκT−t ln(Rβ)

=

(
1 +

β

λT−t

)
ln(λT−t−1x) +

β

λT−t
ln

[
λT−t(1− λT−t−1)

βλT−t−1

]
+β

(
1

λT−t
+ κT−t

)
ln(Rβ)

=
ln(λT−t−1x)

λT−t−1
+

β

λT−t
ln

{
1− λT−t (β + λT−t)

−1

β (β + λT−t)
−1

}
+ β

(
t∑

s=0

βs +
t∑

s=0

sβs

)
ln(Rβ)

=
ln(λT−t−1x)

λT−t−1
+

β

λT−t
ln

{
[(β + λT−t)− λT−t]

β

}
+ κT−t−1 ln(Rβ)

=
ln(λT−t−1x)

λT−t−1
+ κT−t−1 ln(Rβ),
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which confirms the claim.

(c) The limiting policy rule is:

c(x) = lim
t→∞

cT−t(x) = lim
t→∞

λT−tx = (1− β)x,

and the limiting value function is:

v(x) = lim
t→∞

vT−t(x) = lim
t→∞

{
ln(λT−tx)

λT−t
+ κT−t ln(Rβ)

}
=

ln[(1− β)x]

1− β
+

β

(1− β)2
ln(Rβ).

(d) Letting λ = 1− β and κ = β/(1− β)2, we confirm that:

v(x) =
ln(λx)

λ
+ κ ln(Rβ)

is the solution to the Bellman equation:

v(x) = sup
c∈[0,x]

{ln c+ βv[R(x− c)]}.

Substituting for v(x) yields:

λ−1 ln(λx) + κ ln(Rβ) = sup
c∈[0,x]

{
ln c+ β

ln[λR(x− c)]
λ

+ βκ ln(Rβ)

}
.

The first-order condition is given by:
1

c
=

β

λ(x− c)
⇒ c =

λ

β + λ
x;

so that, we obtain the following:

λ−1 ln(λx) + κ ln(Rβ) =
β + λ

λ
ln

(
λx

β + λ

)
+ β(

1

λ
+ κ) ln(Rβ),

which is satisfied for λ and κ defined above.

(e) The policy rule falls with each iteration, indicating that the marginal propensity
to consume decreases as the agent inducts backwards from the end of the problem.
The reason for this change is that the agent has a lesser incentive to save for future
periods as she approaches the end of the problem.
The value function becomes steeper with each iteration:

V ′T−t(x) =

∑t
s=0 β

s

x

which is increasing in t. This is because at the earlier stages of the problem,
the agent has a greater ability to smooth consumption across periods, thereby
mitigating the effect of diminishing marginal utility from consumption.
Note that whether the level of vT−t(x) increases or falls with t depends on the
specific values of R and β, as well as x.
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2 True/False/Uncertain
1. Uncertain. On the one hand, as the simple consumption problem of problem 1

illustrates, a simple life-cycle model where agents are not liquidity constrained
might predict that 55-year-olds have a higher marginal propensity to consume
than 25-year-olds, because of the shorter remaining lifespan of 55-year-olds. This
argument would suggest that the statement is false. On the other hand, income
profiles tend to be increasing over a worker’s lifetime, and capital markets are
unlikely to be perfect; so that, many 25-year-olds could be liquidity constrained.
Hence, 25-year-olds might consume the entire tax cut, while 55-year-olds would
save much of it, in order to smooth consumption over the rest of their lives. This
argument would suggest that the statement is true.

2. Uncertain. In a simple model with perfect credit markets, the life-cycle hypothesis
would indicate that consumption should be constant over time, provided that
δR = 1, where R is constant and nonrandom.1 Even more generally, if the 15%
wage increase in 2014 was previously expected (prior to 2013), then consumption
in 2013 would not be further affected by the wage increase. That is, consumption
plans would be revised when the wage increase was initially announced. If the 15
percent wage increase in 2014 was not expected before 2013, then consumption
should rise in 2013, as long as borrowing is possible. In the presence of liquidity
constraints, however, the worker might not be able to finance higher consumption
in 2013.

3. True. If we interpret the term "binding" to mean that the consumer is spending
all of their cash on hand each period (ct = xt), then for small (marginal) changes
in their cash on hand, they will continue to spend everything, which implies a
marginal propensity to consume equal to one. For large enough tax rebates, the
liquidity constraint might cease to bind, and the MPC would be less than one.

3 Three-Period Hyperbolic Discounting Model
(a) The utility function at t = 2 is a linear transformation of the last two terms of

the utility function at t = 1 iff there exists κ ∈ R such that for all (c2, c3) ∈ R2
++:

ln(c2) + βδ ln(c3) = κ[βδ ln(c2) + βδ2 ln(c3)].

This condition is satisfied iff there exists κ ∈ R such that κβδ = 1 and κβδ2 = βδ
or, equivalently, κ = (βδ)−1 and κ = δ−1. If β = 1, then the condition is satisfied
for κ = δ−1. If β < 1, then no κ ∈ R satisfies the condition.

1Even if δR 6= 1 the entire consumption path would be predetermined and not affected at all by the
wage increase in the perfect capital markets case since a worker would have optimally sold all claims
to his future labor income stream at the beginning of his working life.



3 THREE-PERIOD HYPERBOLIC DISCOUNTING MODEL 5

In order to show that selves one and two do not have the same rankings over
points in (c2, c3)-space if β < 1, note that self one is indifferent between the
points (e, e) and (e1+δ, 1) and that self two is indifferent between the points (e, e)
and (e1+βδ, 1). Thus, for any ε ∈ (βδ, δ), self one prefers (e, e) to (e1+ε, 1) and self
two prefers (e1+ε, 1) to (e, e).

(b) If commitment is possible, then self one faces the optimization problem:

max
c1,c2,c3

{u(c1) + βu(c2) + βu(c3)},

subject to: c1 + c2 + c3 ≤ A1. Noting that u (·) = ln (·) is increasing and concave
with u′(0) = ∞, so the unique solution to this problem satisfies the first-order
condition:

u′(c1) = βu′(c2) = βu′(c3) ⇒ c−11 = βc−12 = βc−13 ⇒ βc1 = c2 = c3.

(c) In the case where β < 1, self two places a higher weight than self one on utility
received in period two relative to utility received in period three. Thus, self
two has an incentive to revise self one’s consumption program, so as to increase
consumption in period two and decrease consumption in period three. Self two
faces the optimization problem:

max
c2,c3
{u(c2) + βu(c3)},

subject to: c2 + c3 ≤ A2. The solution satisfies the first-order condition:

u′(c2) = βu′(c3) ⇒ βc2 = c3.

(d) Because u is strictly increasing, self three’s unique solution is to consume all
remaining assets and thus c3 = A3 = A2 − c2. Consequently, self two faces the
optimization problem in the previous part, whose first-order condition u′(c2) =
βu′(c3) yields βc2 = c3. Hence, the solution to self two’s problem is:

c2 =
c3
β

=
A2 − c2

β
⇒ c2 =

A2

1 + β
and c3 =

βA2

1 + β
.

Given the strategies of selves two and three, self one faces the optimization prob-
lem:

max
c1

{
ln(c1) + β ln

(
A2

1 + β

)
+ β ln

[
βA2

1 + β

]}
s.t. c1 + A2 ≤ A1,

which is equivalent to solving:

max
c1
{ln(c1) + 2β ln(A1 − c1)}.
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The first-order condition yields:

1

c1
=

2β

A1 − c1
;

so that, the consumption path is:

c1 =
A1

1 + 2β
, c2 =

A1 − c1
1 + β

=
2βA1

(1 + β)(1 + 2β)
, and c3 =

β (A1 − c1)
1 + β

=
2β2A1

(1 + β)(1 + 2β)
.

(e) For log utility and δ = R = 1, the generalized Euler equation simplifies to:

1

ct
=

[
1− (1− β)

∂ct+1

∂At+1

]
1

ct+1

.

The solution from the previous part yields ∂c2/∂A2 = (1+β)−1 and ∂c3/∂A3 = 1;
so that, the generalized Euler equation requires:

c2
c1

= 1− 1− β
1 + β

=
2β

1 + β
and

c3
c2

= 1− (1− β) = β,

both of which are satisfied by the solution from the previous part.

The hyperbolic Euler equation differs from the standard Euler equation for an
exponential discounter in that the discount factor δ is replaced by a weighted
average of the short-term discount factor βδ and the long-term discount factor δ.
The weight on βδ is next period’s marginal propensity to consume ∂ct+1/∂At+1,
and the weight on δ is equal to (1− ∂ct+1/∂At+1).

The standard perturbation argument is invalid for a (sophisticated) hyperbolic
discounter, because the current self does not actually choose future consumption.
In particular, self one would prefer to consume less in period one and more in
period three if self two could be prevented from revising the consumption path
selected by self one. The next part shows that a perturbation exists that increases
the utility of each of the three selves.

(f) Let (ĉ1, ĉ2, ĉ3) represent the equilibrium path of consumption, and consider the
perturbed consumption path (ĉ1 −∆, ĉ2, ĉ3 + ∆) for small ∆ > 0. Clearly, selves
two and three prefer the perturbed path to the equilibrium path since consumption
is weakly higher in periods 2 and 3. Self one prefers the perturbed path iff:

u(ĉ1 −∆) + βu(ĉ2) + βu(ĉ3 + ∆) > u(ĉ1) + βu(ĉ2) + βu(ĉ3)

⇔ β[u(ĉ3 + ∆)− u(ĉ3)] > u(ĉ1)− u(ĉ1 −∆).

For small ∆ > 0, a first-order Taylor approximation can be used to rewrite the
last condition as:

βu′(ĉ3)∆ > u′(ĉ1)∆⇔ u′(ĉ1)/u
′(ĉ3) < β ⇔ ĉ3/ĉ1 < β.
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The equilibrium path found above satisfies this condition since:

ĉ3
ĉ1

=
2β2

1 + β
< β,

where the inequality follows because β ∈ (0, 1). Thus, there does exist a ∆ >
0 such that the perturbed consumption path Pareto-dominates the equilibrium
path.

(g) In order to show that any consumption path (c1, c2, c3) ∈ R3
++ satisfying the bud-

get constraint c1 + c2 + c3 = A1 is a Nash equilibrium, consider the following
strategy profile: (1) self one consumes c1 regardless of the strategies of self two
and three; (2) self two consumes c2 if self one consumes c1, and 0 otherwise; (3)
self three consumes A1 − c1 − c2 if selves one and two consume c1 and c2, and 0
otherwise. On the equilibrium path, self three consumes all the remaining wealth
and so has no incentive to deviate. Selves one and two do not have an incentive
to deviate, because any deviation would result in a utility of −∞. Thus, the
preceding strategy profile is a Nash equilibrium of the game.

Nonetheless, this strategy profile does not constitute a subgame-perfect equi-
librium, because it relies on the non-credible threat of zero consumption off the
equilibrium path. The subgame-perfect equilibria of this finite game of perfect
information can be obtained through backward induction; so that, the unique
backward-induction consumption path is also the unique subgame-perfect con-
sumption path.

In an infinite-horizon version of the model, the folk theorem suggests that a large
set of feasible consumption paths might be supported as subgame-perfect equilib-
ria by appropriately defining finite punishment phases.

4 A Procrastination Problem
(a) Suppose that all selves follow the proposed strategy. Once the late fee for the

current period has been sunk, each self decides between the loss c from completing
the task and the loss β(1+c) from postponing the task. However, the assumption
c > β(1 + c) implies that each self has an incentive to deviate by postponing the
task. Thus, the proposed strategy cannot be an equilibrium.

(b) Suppose that all selves follow the proposed strategy. Once the late fee for the
current period has been sunk, each self decides between the loss c from completing
the task and the loss∞ from postponing the task. Thus, each self has an incentive
to deviate by completing the task; so that, the proposed strategy cannot be an
equilibrium.
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(c) Once the late fee for the current period has been sunk, the loss to the current self
from completing the task after s periods is c for s = 0 and β(s + c) for s > 0.
Noting that β(s+ c) is increasing in s and that we’ve assumed c > β(1 + c), this
implies that the loss is minimized for s = 1. Thus, self one would commit to finish
the task in period two.

(d) A naïve agent falsely believes that she can commit to finishing the task in the
following period. Thus, a naïve agent would never finish the task and would
receive a payoff of −∞.

(e) The continuation loss V for an agent facing an unfinished task is the sum of:
the late fee 1 for the current period; the cost c of completing the task times the
probability p of completing the task in the current period; and the continuation
loss V times the probability (1 − p) of postponing the task. The agent bases
her decision on the current loss function W , which is the minimum of the loss
(1 + c) from completing the task in the current period and the loss (1 +βV ) from
postponing the task. If p = 1, then it must be that c ≤ βV , in order for the agent
to be willing to always complete the task with probability 1. If 0 < p < 1, then it
must be that c = βV , so that the agent is exactly indifferent between completing
and postponing the task. (Note that that for p = 0 the relationship need only
hold as an inequality, c ≥ βV ; this is the mirror case of p = 1.)

(f) For p > 0, the expression for the continuation value function V can be rearranged
to yield:

V =
1 + pc

p
.

Note that we can’t have p = 1 since this gives us V = 1+c and by assumption, c >
β (1− c) = βV which means there would be a (strict) incentive for a sophisticated
agent to postpone the task, as we saw in part a. Moreover, it cannot be the case
that p = 0 if β > 0, because p = 0 implies that V =∞, providing the agent with
a strict incentive to always complete the task with probability 1. This final point
corresponds to the case we saw in part b. Thus, we know that the equilibrium
must be characterized by p ∈ (0, 1) and so it must be the case that c = βV :

c

β
= V =

1 + pc

p
⇒ p =

β

(1− β)c
.

Note that the resulting value of p is always strictly less than one as long as we
have the assumption that c > β(1 + c) and p will be strictly greater than 0 as
long as β > 0. Thus, we will always have min

{
β

(1−β)c , 1
}

= β
(1−β)c = p.

(g) As p approaches one, the task is completed in the current period with probability
arbitrarily close to one; thus, the loss tends to1 + c (which is the loss realized
when the task is completed in the current period with probability 1).



4 A PROCRASTINATION PROBLEM 9

(h) As β approaches one, the agent does not discount the cost of completing the task
in the future; so that, it is more preferable to complete the task earlier to avoid
the future late fees.

(i) In equilibrium, there is a probability p = β/[(1−β)c] of completing an unfinished
task in the current period (ie., in one period). Thus, the expected completion
time T follows a geometric distribution with probability mass function for n ≥ 1:

Pr(T = n) = p(1− p)n−1

and thus expectation:

E(T ) =
1

p
=

1− β
β

c,

which is greater than one, given the assumption that c > β(1 + c). The expected
completion time serves as a measure of procrastination because an agent with a
higher β, indicating preferences closer to dynamic consistency, will complete the
project with less delay. Note that in the dynamically consistent case (β = 1),
we’d have to drop the c > β(1 + c) assumption since there won’t exist a c which
satisfies this assumption for β = 1. In that case, since the agent doesn’t discount,
the unique equilibrium would be characterized by p = 1 and so the project is
completed in the first period with probability 1.
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