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1 Merton’s Consumption Problem
• The Bellman equation for the problem is given by:

ρV (x)dt = max
c,θ
{u(c)dt+ E(dV )},

where the equation of motion for x is dx = [(r+ θπ)x− c]dt+ θσxdz. Using Ito’s
lemma, the Bellman equation can be expressed as:

ρV (x) = max
c,θ
{u(c) + [(r + θπ)x− c]V ′ + 1

2
(θσx)2V ′′}.

Substituting for V (x) and u(c) yields:

ρ[φ+ ψ log(x)] = max
c,θ
{log(c) + [(r + θπ)x− c]ψx−1 − 1

2
(θσx)2ψx−2}

⇒ ρ[φ+ ψ log(x)] = ψr + max
c,θ
{log(c)− ψcx−1 + ψπθ − 1

2
ψσ2θ2}.

The first-order conditions for c and θ yield:

c−1 − ψx−1 = 0 ⇒ c =
1

ψ
x,

ψπ − ψθσ2 = 0 ⇒ θ =
π

σ2
.

• Substituting these results into the Bellman equation gives:

ρφ+ ρψ log(x) = ψr − log(ψ)− 1 +
ψπ2

2σ2
+ log(x).

The Bellman equation is satisfied ∀x iff:

ρφ = ψr − log(ψ)− 1 +
ψπ2

2σ2
and ρψ = 1,

whence we obtain:

ψ =
1

ρ
, φ =

1

ρ

(
r

ρ
+ log(ρ)− 1 +

π2

2ρσ2

)
.

Thus, the optimal policy is c = ρx and θ = π/σ2.
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2 True/False/Uncertain
1. False. The claim does not hold for an arbitrary Ito process x(t), although it is true

for a Wiener process z(t). For example, if x(t) follows the geometric Brownian
motion dx = αxdt+ σxdz, then the variance of x(t)− x(0) is given by:

V [x(t)− x(0)] = [x(0)]2e2αt(eσ
2t − 1),

which is not a linear function of t.

2. False. An example of a mean-reverting Ito process x(t) is the Ornstein-Uhlenbeck
process dx = η(µ− x)dt+ σdz, whose expected value is given by:

E[x(t)] = µ+ [x(0)− µ] exp−ηt,

which converges to µ as t becomes large.

3. False. A Wiener process, and thus an Ito process, is everywhere continuous but
nowhere differentiable, almost surely.

3 Optimal Stopping with Arithmetic Brownian Mo-
tion

• Note the typo: the γ’s in the threshold rule expression should be ρ’s. The expres-
sion for the optimal threshold can be rewritten as follows

x∗ = − b2

a+
√
a2 + 2b2ρ

− a

ρ
= −

b2
(√

a2 + 2b2ρ− a
)

(√
a2 + 2b2ρ+ a

)(√
a2 + 2b2ρ− a

) − a

ρ

= −1

ρ

(√
a2 + 2b2ρ− a

2
+ a

)
= −

√
a2 + 2b2ρ+ a

2ρ
< 0.

• Evaluating the expression for x∗ at a = 0 yields:

x∗(a=0) = − b√
2ρ

< 0.

In the absence of drift, the firm stays in business longer if market volatility is
higher or if the discount rate is lower. Intuitively, the option value of staying in
business increases with market volatility and decreases with the discount rate.

• It is clear that:
lim
a→∞

x∗ = −∞.

As the drift becomes infinitely positive, the expected profit from remaining in
business goes to positive infinity; so that, the firm never exits the market.
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• As the drift becomes infinitely negative, we have:

lim
a→−∞

x∗ = − lim
a→∞

−a+
√
a2 + 2b2ρ

2ρ
= 0;

so that, the firm exits the market as soon as current profits become negative.
An infinitely negative drift prevents the firm from earning positive profits once
current profits become negative.

• Evaluating the expression for x∗ at b = 0 yields:

lim
b→0

x∗ = −a+ |a|
2ρ

=

{
−a
ρ
, a > 0

0, a ≤ 0
.

In the absence of uncertainty, the firm stays in business iff the present discounted
value of future profits is positive.

• It is clear that:
lim
b→∞

x∗ = −∞.

As market volatility becomes infinitely large, the option value of staying in busi-
ness becomes infinitely positive; so that, the firm never exits the market.

• The threshold x∗ can be rewritten as:

x∗ = −

(√
a2 + 2b2ρ+ a

)(√
a2 + 2b2ρ− a

)
2ρ
(√

a2 + 2b2ρ− a
) = − b2√

a2 + 2b2ρ− a
;

hence, we obtain:

lim
ρ→0

x∗ = − b2

|a| − a
=

{
−∞, a ≥ 0
b2

2a
, a < 0

.

If the firm does not discount the future and there is a positive drift, then the
present value of future profits is infinitely positive; thus, the firm never exits the
market. In the case of a negative drift, the length of time that the firm stays
in business increases with the volatility of the market, because greater volatility
raises the option value of waiting.

• It is clear that:
lim
ρ→∞

x∗ = 0.

If the firm does not value future profits, then the firm exits the market iff current
profits are negative.
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4 Optimal Stopping with Geometric Brownian Mo-
tion

• In order to ensure that x∗ is finite and our problem well-defined, assume that
ρ > a. The Bellman equation for the continuation region where x ≥ x∗ is given
by:

ρV (x)dt = w(x)dt+ E(dV ).

The flow payoff function is w(x) = x − c, and Ito’s lemma provides E(dV ) =
(axV ′+ 1

2
b2x2V ′′)dt. Thus, the Bellman equation for x ≥ x∗ can be expressed as:

ρV (x) = x−c+axV ′(x)+1
2
b2x2V ′′(x)⇒ 1

2
b2x2V ′′(x)+axV ′(x)−ρV (x)+(x−c) = 0,

which provides a differential equation for V . The value-matching and smooth-
pasting conditions yield V (x∗) = Ω(x∗) = 0 and V ′ (x∗) = Ω′ (x∗) = 0.

• Next, consider the value Ṽ (x) of a policy of never exiting the industry. It is
possible to compute Ṽ as follows:

Ṽ [x(0)] = E

{∫ ∞
0

e−ρt[x(t)− c]dt
}

=

∫ ∞
0

e−ρtE[x(t)]dt− c
∫ ∞
0

e−ρtdt

= x(0)

∫ ∞
0

e−ρteatdt− c
∫ ∞
0

e−ρtdt =
x(0)

ρ− a
− c

ρ
,

where the third equality follows from the fact that E[x(t)] = x(0)eat for a geo-
metric Brownian motion x(t) with drift a. It is easily confirmed that:

ρṼ (x) = ρ

[
x

ρ− a
− c

ρ

]
= x− c+

ax

ρ− a
= x− c+ axṼ ′(x) + 1

2
b2x2Ṽ ′′(x);

so that, Ṽ is a particular solution to the differential equation for V . In order to
obtain a solution to the homogeneous equation, consider a solution of the form
g(x) = Cxγ. Substituting into the differential equation gives:

1
2
b2γ(γ − 1)Cxγ + aγCxγ − ρCxγ = 0⇒ 1

2
b2γ2 +

(
a− 1

2
b2
)
γ − ρ = 0

⇒ γ =
1

2
− a

b2
±
√( a

b2
− 1

2

)2
+ 2

ρ

b2

Letting γ+ and γ− respectively denote the positive and negative roots of the
quadratic equation, the general solution to the differential equation is given by:

V (x) = Ṽ (x) + C−xγ
−

+ C+xγ
+

.

As the state variable x becomes infinitely positive, the option value of never exiting
the industry approaches zero; so that, V (x) converges to Ṽ (x). In particular,
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limx→∞ V
′(x) = limx→∞ Ṽ

′(x) = 1
ρ−a . Because γ+ > 1 and γ− < 0, it must

be that C+ = 0; otherwise, V ′(x) would be unbounded as x goes to ∞. The
smooth-pasting condition yields:

V ′ (x∗) =
1

ρ− a
+ γ−C−(x∗)γ

−−1 = 0⇒ C− = − (x∗)1−γ
−

(ρ− a) γ−
.

Substituting this result into the value-matching condition gives:

V (x∗) =
x∗

ρ− a
− c
ρ

+C−(x∗)γ
−

=
x∗

ρ− a
− c
ρ
− x∗

(ρ− a) γ−
= 0 ⇒ x∗ =

ρ− a
ρ

γ−

γ− − 1
c.

Thus, the final solution for the constant C− is given by:

C− = − 1

(ρ− a)γ−

(
ρ− a
ρ

γ−

γ− − 1
c

)1−γ−

=
c1−γ

−
[(ρ− a) (−γ−)]

γ−

[ρ (1− γ−1)]1−γ−
.
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