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1 Q-Theory with Depreciation and Taxes
(a) The variable q represents the present discounted value of future profits from a

marginal unit of installed capital. The definition here differs from that in class
because the effective discount rate used to discount future marginal earnings flows
is r + γ rather than r. This accounts for the depreciation of capital at rate γ.

The value function for the problem is defined as:

V (k,K) = max
I

∫ ∞
t

e−r(s−t){π(K(s))k(s)− I(s)− C(I(s))}ds.

Applying the envelope theorem, the derivative of V with respect to k is given by:

∂V (k,K)

∂k
=

∫ ∞
t

e−r(s−t)π[K(s)]
∂k(s)

∂k(t)
ds.

The differential equation dk/du = I−γk can be solved using an Euler integrating
factor:

I(u)eγ(u−t) =

[
dk

du
+ γk(u)

]
eγ(u−t) =

d

du
{k(u)eγ(u−t)};

so that, integrating both sides gives:∫ s

t

I(u)eγ(u−t)du =

∫ s

t

d

du
{k(u)eγ(u−t)}du = k(s)eγ(s−t) − k(t),

yielding the result:

k(s) = k(t)e−γ(s−t) +

∫ s

t

I(u)e−γ(s−u)du.

It follows from ∂k(s)/∂k(t) = e−γ(s−t) that:

∂V (k,K)

∂k
=

∫ ∞
t

e−(r+γ)(s−t)π[K(s)]ds = q(t).

1
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(b) The Bellman equation has the form:

rV (k,K)dt = max
I
{[π(K)k − I − C(I)]dt+ dV },

where dV is given by:

dV =
∂V

∂k
dk +

∂V

∂K
dK = q(I − γk)dt+

∂V

∂K
dK.

Substituting for dV yields:

rV (k,K)dt = max
I

{
[π(K)k − I − C(I)]dt+ q(I − γk)dt+

∂V

∂K
dK

}
.

Thus, the first-order condition is:

−1− C ′(I) + q = 0 ⇒ q = 1 + C ′(I).

(c) Applying the Leibniz integral rule, the time derivative of q can be expressed as:

q̇(t) = −π(K(t)) + (r + γ)

∫ ∞
t

e−(r+γ)(s−t)π(K(s))ds = (r + γ)q(t)− π(K(t)),

yielding the equation:
(r + γ)q = π(K) + q̇.

The first-order condition can be written as:

I = C ′−1(q − 1).

Substituting for I from the equation of motion and aggregating the result over N
firms yields:

K̇ = NC ′−1(q − 1)− γK.

(d) From part (c), the q̇ = 0 and K̇ = 0 loci are respectively given by:

q =
π(K)

r + γ
and q = 1 + C ′(

γK

N
).

The phase diagram in Figure 1 is different from that in lecture, because the
model here accounts for depreciation at rate γ > 0, leading the K̇ = 0 locus to
be upward-sloping rather than horizontal.

An increase in the depreciation rate γ affects both the marginal benefit and the
marginal cost of capital for a given steady-state level of aggregate capital. It
reduces the NPV of future profits from a marginal unit of installed capital since
one additional unit today depreciates more quickly, and it also implies higher
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Figure 1: Phase diagram for Q-theory model with depreciation (part 1.d).

marginal cost of capital in steady state, given the convexity of the cost function
and the fact that higher investment is now required in steady state to offset the
depreciation of existing capital. Clearly, the steady-state level of capital will fall
since, for given K, the marginal benefit of capital is now lower and its marginal
cost higher. These effects correspond to inward shifts of both loci in the phase
diagram of Figure 1. We can also derive this analytically by calculating the
comparative static:

π(K)

r + γ
− 1− C ′(γK

N
) = 0

⇒ ∂K

∂γ
= −
− π(K)

(r+γ)2
− K

N
C ′′(γK

N
)

π′(K)
r+γ
− γ

N
C ′′(γK

N
)

< 0

(e) The Bellman equation between times t0 and t1 is given by:

rV (k,K)dt = max
I

{
[π(K)k − (1− θ)I − C(I)]dt+ q(I − γk)dt+

∂V

∂K
dK

}
;

so that, the first-order condition yields:

−(1− θ)− C ′(I) + q = 0 ⇒ q = 1− θ + C ′(I).
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The equations governing the dynamics of K and q are the same as before, except
that the dynamics of K between times t0 and t1 are now given by:

K̇ = NC ′−1(q − 1 + θ)− γK.

q

1− θ

K̇ = 0 (New)

K̇ = 0 (Old)

Kss K

1 t0
t1

Figure 2: Transitional dynamics in state space following an unanticipated, temporary
investment tax credit policy (part 1.f.)

(f) The transitional dynamics following a temporary policy change, the end date of
which is fixed and commonly known, is in general determined from the following
two equilibrium considerations: first, prices cannot be expected to jump (as this
would imply an arbitrage opportunity); second, at the time of expiration of the
temporary policy the economy must be on the “old” saddle path (stable mani-
fold) of the economy. The latter holds by the standard argument that any path
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Figure 3: Time dynamics of investment and capital following an unanticipated, tempo-
rary investment tax credit policy (part 1.f.)

not on the saddle path is inconsistent with equilibrium, as it violates either the
transversality condition or optimality of investment choices.

Consider Figure 2. The two considerations above imply that the economy must
follow a path that is continuous (for t > t0) and leads it to a point on the old
saddle path at time t1 while following the temporary dynamics associated with
the investment tax credit policy. First, note that at time t0 the economy cannot
jump to a point above the old steady state1 because it would be impossible for
the economy to return to the old saddle path in the future, as can be seen from
the direction arrows at this region (which coincide for the original and temporary
laws of motion). For the same reason, the economy cannot jump to a point below
the “new” saddle path (the saddle path of an economy where the investment tax
credit is permanent). Thus, the economy will jump down to a point above the

1The jump at time t0 must be vertical, since capital is a stock variable and thus cannot jump.
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new saddle path, eventually crossing the q̇ = 0 locus and entering the region
where both capital and price are increasing, bringing the economy back to the
old saddle path. Note that capital increases between t0 and t1 and decreases from
t1 onwards while the economy converges asymptotically to the old steady state.
The price of capital follows a nonmonotonic path while the temporary regime is in
effect, first declining until a point in time strictly between t0 and t1 and increasing
thereafter. Noting from the firms’ first-order condition that investment follows
the same dynamics qualitatively as the price of capital,

q(t) = 1− θ + C ′(I(t)) ∀t
⇒ q̇(t) = C ′′(I(t))︸ ︷︷ ︸

(+)

İ(t)

we see that investment is nonmonotonic over the interval [t0, t1].

What is the intuition behind these dynamics? First, note that, since the policy
reduces the marginal cost of investment, the latter will be higher (compared to
its old steady-state level) and thus aggregate capital will be increasing while the
policy is in effect. The (rational) expectation of higher future aggregate capital is
reflected in the price of capital at t0: because the gain from an additional unit of
capital depends negatively on the level of aggregate capital (π′(K) < 0), q, which
is the NPV of the stream of current and future profits, must decline and its level
will always be lower than its steady-state level.2

The reason behind the nonmonotonic dynamics of q(t) and thus investment is
more subtle. There are two opposing forces affecting the time evolution of the
NPV of future marginal gains after time t0. On one hand, aggregate capital
is increasing, which implies declining current and (short-term) future marginal
profits. On the other hand, the time when capital starts declining gets closer
as time passes, which implies increasing future marginal profits. The first force
dominates initially, but the second one takes over when the economy crosses the
q̇ = 0 locus.

At time t1 the economy reverts to its old dynamics, so that investment must
now be below its steady-state value despite the continued rise of q. Figure 3
depicts the time dynamics of capital and investment. Note that, without specific
assumptions on the functional forms for π(·) and C(·), we can only pin down
the level of investment relative to its steady-state level and the sign of the first
derivative of investment (whether it is sloping upwards or downwards), but not
whether investment is convex or concave from t0 to t1 (or whether its left limit at
t1 is higher than its right limit at t0). We can, however, pin down the concavity
of capital: capital has kinks at t0 and t1 (since its first derivative, net investment,
jumps), and it is concave from t0 until the time the economy crosses the q̇ = 0
locus and convex thereafter. Finally, since we know that the economy will reach

2Note that the economy reaches the steady state again only asymptotically.
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its old steady state only asymptotically, we know that investment will be concave
and capital convex after t1.
If the policy change was permanent the economy would jump down to the new
saddle path at t0, which is below the point depicted in Figure 2 for the temporary
policy case. Since q(t0) is now lower, investment will rise by less than in the
temporary policy case (for given θ). Intuitively, the convexity of adjustment costs
implies that agents want to smooth their investment over time. But when the
policy change is temporary they must make their investment during a short (and
finite) period of time in order to take advantage of the investment credit. There-
fore, they will optimally choose a higher short-term investment rate following the
announcement.

q̇ = 0
q

1− θ

K̇ = 0 (New)

K̇ = 0 (Old)

Kss K

1
t0 t1

t−1

Figure 4: Transitional dynamics in state space following an anticipated, temporary
investment tax credit policy (part 1.g.)
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Figure 5: Time dynamics of investment and capital following an anticipated, temporary
investment tax credit policy (part 1.g.)

(g) When the temporary policy change is anticipated, the two equilibrium consider-
ations mentioned in the previous part still hold: the price of capital cannot be
expected to jump, so it will jump only at time t−1; and the economy must lie at
a point on the old saddle path at time t1. The dynamics are depicted in figure
4. The difference is that now the economy will obey the old dynamics from t−1
to t0 (depicted by the black direction arrows) and the new dynamics from t0 to
t1 (depicted by the green direction arrows). Therefore, capital and its price will
both be decreasing following the announcement. At time t0 capital will start to
increase while q will keep decreasing. The dynamics after t0 are qualitatively the
same as in the case of an unanticipated policy change.

Intuitively, agents at time 0 expect that they will be able to invest more cheaply
in the future and are therefore willing to postpone part of the investment they
would undertake today absent the announcement. Because a level of investment
below γK(t) implies that investment net of depreciation is negative, capital will
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be declining initially.

The time dynamics of investment and capital are depicted in Figure 5. Note
that, even though the capital price will jump only once (always at the time of the
announcement), investment will jump three times, at t−1, t0 and t1. The fact that
investment is declining from t−1 to t0 implies that capital declines in a concave
manner over this time interval.

2 True, False, or Uncertain
(a) False. Letting z(t) be a Wiener process, suppose that x(t) follows the Ito process

dx = a(x, t)dt + b(x, t)dz, and consider a function V (x, t) that is twice differen-
tiable in x and once in t. Then Ito’s lemma indicates that V (x, t) follows the
stochastic process:

dV =

[
∂V

∂t
+ a(x, t)

∂V

∂x
+ 1

2
b2(x, t)

∂2V

∂x2

]
dt+ b(x, t)dz.

This formula reflects the fact that the term (dz)2 can be treated as a term of
order dt when calculating the total derivative of V .

(b) False. See question 1.g. for the correct dynamics and intuition.

3 Bertola and Caballero (1990)
(a) For the investment case, X could represent the deviation of a firm’s capital stock

from its optimal level. The motivation for the cost structure here is that while
there are marginal costs of acquiring or selling capital, there are also often fixed
transaction/installation costs for new capital investments (e.g., machinery, build-
ings, etc.). In addition to costs of physically installing the capital or maybe
broker’s fees for investing in real estate, one could also consider fixed costs of
searching, for instance, for the best type of machine to purchase. Likewise, these
fixed transation/de-installation costs may exist for negative investment as well
when capital goods must be uninstalled and sold.

Another possible application of this model is where X might represent the de-
viation of a firm’s labor force from the optimal level. Because firms often need
to screen and train new workers, it can be costly for a firm to make upward ad-
justments to its labor force. Employment contracts might also contain provisions
that penalize firms for terminating employees; thus, downward adjustments to the
labor force can also be costly. If even small changes in the labor force are costly,
then the firm might be unwilling to hire or fire workers if employment deviates
only slightly from its optimal level.
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(b) u ≤ d because the total adjustment cost is weakly increasing in the size of the
adjustment. Suppose, for the sake of contradiction, that the agent optimally sets
u > d. Then, it must be more profitable to be at u than to be at d; otherwise,
the firm would choose to adjust to d since doing so would be weakly less costly
given that d < u ⇒ d − U < u − U . But then d < u ⇒ D − u < D − d, so the
firm would prefer to adjust from D to u than from D to d since adjusting from
D to u would be less costly, a contradiction.

If there are no variable costs of adjustment, then the size of an adjustment does
not affect the cost of the adjustment; thus, conditional on making an adjustment,
the firm would always seek to adjust to the same optimal point. This follows from
the fact that, given the assumed flow payoff function, no two points in state space
are equally profitable. Thus, u = d if cu = cd = 0.

The points u and d must both lie in the interval [U,D], because it is unprofitable
for a firm to adjust X to a level outside the acceptable interval [U,D]. In particu-
lar, the firm would otherwise need to make an additional costly adjustment after
an initial adjustment, whereas the ultimate point of the adjustment process could
be reached at lower cost with a single adjustment. It follows that U ≤ u ≤ d ≤ D.

If there are no fixed costs of adjustment, then the firm makes an infinitesimal
adjustment when the marginal cost of an adjustment falls just below the expected
loss from a marginal change in X. Thus, u = U and d = D if CU = CD = 0.

(c) The discrete-time approximation of the Bellman equation is as follows:

V (X) = − b
2
X2∆t+ (1 + ρ∆t)−1E[V (X + ∆X)]

⇒ (1 + ρ∆t)V (X) = − b
2
X2(1 + ρ∆t)∆t+ E[V (X + ∆X)]

⇒ ρV (X)∆t = − b
2
X2(1 + ρ∆t)∆t+ E[∆V (X)].

Dividing both sides of the equation by ∆t and taking the limit as ∆t goes to zero
yields:

ρV (X)dt = − b
2
X2dt+ E[dV (X)].

By Ito’s lemma,
E(dV ) = (αV ′ + 1

2
σ2V ′′)dt,

Thus, the Bellman equation can be written as:

ρV = − b
2
X2 + αV ′ + 1

2
σ2V ′′.

The term ∂V
∂t

does not appear in the Bellman equation because the problem is
stationary, meaning that the value function does not depend directly on time,
given the current state X. The Bellman equation sets the required return ρV on
an asset equal to the sum of the instantaneous dividend −bX2/2 and the expected
capital gain E(dV ), which can be further decomposed into a drift term αV ′ and
a volatility term σ2V ′′/2.
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(d) The function V (X) given by:

V (X) = − b
2

(
X2

ρ
+
σ2 + 2αX

ρ2
+

2α2

ρ3

)
has the following first and second derivatives:

V ′(X) = −b
(
X

ρ
+
α

ρ2

)
, V ′′(X) = − b

ρ
.

Substituting into the Bellman equation yields:

−ρb
2

(
X2

ρ
+
σ2 + 2αX

ρ2
+

2α2

ρ3

)
= − b

2
X2 − αb

(
X

ρ
+
α

ρ2

)
− 1

2
σ2 b

ρ
,

which holds for all values of X, confirming that the function V defined above is
a solution to the Bellman equation.

If the adjustment cost is infinite the firm never makes an adjustment; hence,
the expected present value of the firm’s payoffs is given by:

V [X(0)] = E

[
− b

2

∫ ∞
0

e−ρt[X(t)]2dt

]
= E

[
− b

2

∫ ∞
0

e−ρt[X(0) + αt+ σz(t)]2dt

]
.

Because z(t) ∼ N(0, t) is a Wiener process, V [X(0)] can be calculated as follows:

V [X(0)] = − b
2

∫ ∞
0

e−ρt{[X(0) + αt]2 + σ2t}dt

= − b
2

∫ ∞
0

e−ρt{[X(0)]2 + [σ2 + 2αX(0)]t+ α2t2}dt

= − b
2

{
[X(0)]2

∫ ∞
0

e−ρtdt+ [σ2 + 2αX(0)]

∫ ∞
0

te−ρtdt+ α2

∫ ∞
0

t2e−ρtdt

}
= − b

2

{
[X(0)]2

∫ ∞
0

e−ρtdt− [σ2 + 2αX(0)]
d

dρ

∫ ∞
0

e−ρtdt+ α2 d
2

dρ2

∫ ∞
0

e−ρtdt

}
= − b

2

{
[X(0)]2

(
1

ρ

)
− [σ2 + 2αX(0)]

d

dρ

(
1

ρ

)
+ α2 d

2

dρ2

(
1

ρ

)}
= − b

2

(
[X(0)]2

ρ
+
σ2 + 2αX(0)

ρ2
+

2α2

ρ3

)
.

(e) The Bellman equation provides a second-order linear differential equation for V .
Because the homogeneous equation is:

1
2
σ2V ′′(X) + αV ′(X)− ρV (X) = 0,
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we seek a solution of the form V (X) = AerX . Substituting into the homogeneous
equation yields:

1
2
σ2r2AerX+αrAerX−ρAerX = 0 ⇒ σ2r2+2αr−2ρ = 0 ⇒ r =

−α±
√
α2 + 2ρσ2

σ2
.

Denoting the roots of the quadratic equation by α1 > 0 and r2 < 0 as in the
problem statement, the general solution of the differential equation is:

V (X) = − b
2

(
X2

ρ
+
σ2 + 2αX

ρ2
+

2α2

ρ3

)
+ A1e

α1X + A2e
α2X .

(f) For X < U or X > D, the value function V must satisfy:

V (X) =

{
V (u)− [CU + cU(u−X)], X < U

V (d)− [CD + cD(X − d)], X > D
, (1)

because the value of being at state X < U or X > D must equal the difference
between the value of the problem once the desired adjustment has been made and
the cost of making such an adjustment. Differentiating with respect to X results
in:

V ′(X) =

{
cU , X < U

−cD, X > D
. (2)

Because a firm at U or D must be indifferent between remaining in the current
state and adjusting to u or d, the value-matching conditions are:

V (U) = V (u)− [CU + cU(u− U)] and V (D) = V (d)− [CD + cD(D − d)]. (3)

Since U and D are chosen optimally, we have the smooth-pasting conditions:

V ′(U) = cU and V ′(D) = −cD. (4)

In addition, the firm must choose the points u and d optimally, conditional on
making an adjustment. Thus, u and d must solve:

u = arg max{V (u)−[CU+cU(u−X)]} and d = arg max{V (d)−[CD+cD(X−d)]},

yielding the first-order conditions:

V ′(u) = cU and V ′(d) = −cD. (5)

In summary, (1) and (2) complete our characterization of V in the action regions
while (3), (4), and (5) give us the six conditions needed to solve for the six
unknowns: U , u, d, D, A1, and A2.
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(g) A increase in σ raises the option value of postponing an adjustment at a given
value of X; so that, U decreases and D increases. In particular, a higher value
of σ makes it more likely that a random change moves the process closer to its
target value, thereby increasing the firm’s willingness to refrain from making an
adjustment to the process. Even though it also becomes more likely that a random
change moves the process farther from its target, the firm always has the option
of adjust in the latter case.

(h) If it were the case that U > 0 or D < 0, then the optimal value of X would
lie outside the region of inaction. That is, as we approached the optimal value
of X = 0, we would always end up adjusting away from it. Because this is
contradictory, we must have U ≤ 0 ≤ D. If the drift term α is negative and large,
then it is possible that u > 0, so as to compensate for the expected decline in X
without the need to revise X upward again soon afterwards. For the same reason,
it is possible that d < 0 if α is positive and large. Of course, this requires that
fixed costs are nonzero; if CU = 0 then u = U ≤ 0 and similarly for d.
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