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The Galileo Project aims to shed light on the nature and characteristics of Unidenti¯ed Aerial Phenomena
(UAP). We are developing a multi-modal instrumentation suite that will monitor the sky in seven elec-
tromagnetic and three audio bands. Computing will play a critical role in this project, enabling the
automated collection and processing of data. In this paper, we provide a brief overview of data sources, and
describe our plan for computing infrastructure and architecture. We present a proposed real-time pipeline
for distinguishing between natural and human-made phenomena, and for detecting objects that fall outside
the phenomenological envelope of known phenomena. In addition, we outline the algorithms we will test
and evaluate for use in o®line data analysis. While preliminary, our work represents a signi¯cant step
towards a uni¯ed data capture and analysis platform for the systematic detection and rigorous scienti¯c
study of unusual aerial phenomena in a regional airspace.

Keywords: Aerial anomaly; anomaly detection; tracking; UAP; UFO; unidenti¯ed aerial phenomena;
unidenti¯ed aerospace phenomena; unidenti¯ed anomalous phenomena; object detection; object classi¯-
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1. Introduction

In recent years, there has been a marked increase in
attention given to the topic of Unidenti¯ed Aerial

Phenomena (UAP) — often referred to as Uniden-

ti¯ed Flying Objects (UFOs). In 2021, the U.S.

Department of National Intelligence recognized the
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presence of objects with unusual °ight capabilities
operating within restricted airspace, and has called
for better data collection to help understand UAP,
their prevalence, nature, and the risks they pose to
national security (ODNI, 2021). Shortly after, an
amendment to the National Defense Authorization
Act (NDAA) for the Fiscal Year 2022 mandated
that the Director of National Intelligence
submit (within 180 days of the enactment of
the NDAA) an unclassi¯ed report on UAPs (Gilli-
brand, 2021; Rubio et al., 2021). More recently, the
U.S. Congress voted to make it easier to report UAP
incidents by establishing a secure reporting system,
and promised to protect former o±cials from re-
prisal should they wish to come forward and share
classi¯ed UAP-related information with congres-
sional armed services and intelligence commit-
tees (Bender, 2022). Further motivations for the
study of UAP, the goals of the investigation, and
traditional arguments typically raised in opposition
to such work, are addressed in Watters (2023).

The Galileo Project (GP) was established in the
summer of 2021 to investigate anomalous aerospace
phenomena including ambiguous interstellar objects
(ISOs) such as Oumuamua (Siraj et al., 2022) and
UAP (Loeb, 2022). The project team is currently
designing a multi-sensor instrument suite to per-
form a broadly scoped census of aerial phenomena in
the U.S. Our initial instrument suite includes one
passive radar array, one eight-camera infrared (IR)
array, one optical pan–tilt–zoom camera, two all-
sky cameras (one optical and one optical/NIR), one
three-band (infrasonic, ultrasonic, audible) acoustic
array, a broadband radio frequency (RF) detection
system, as well as a terrestrial and space weather
sensor package with ultraviolet (UV), magnetic
¯eld, and particle detection (see Sec. 2). The
instruments are being tightly calibrated and syn-
chronized so as to ensure minimal interference from
background/environmental signals, and to ensure
that observations are made across multiple inde-
pendent sensors along a uni¯ed timeline. Together,
our instruments will continuously monitor the sky
and immediate environment across much of the
electromagnetic spectrum. A processing pipeline
that leverages arti¯cial intelligence (AI) will be used
to analyze these data streams, enabling real-time
detection, tracking, classi¯cation and ¯ltering of
airborne objects. In the process, these will distin-
guish known objects from statistical outliers. In this
way, we aim to separate — in real time — known

biological, atmospheric, and technological phenom-
ena (e.g. birds, sprites, aircraft, etc.) from those that
appear either to operate outside of the standard
performance envelope of known objects or phe-
nomena, or which exhibit novel characteristics or
properties. Note that the terms `object' and `phe-
nomena' will be used interchangeably, unless oth-
erwise speci¯ed, as this will allow us to discuss
`things' in the sky without without ascribing par-
ticular characteristics or properties. We will use
`outlier' to describe observations or measurements
that deviate signi¯cantly from the mean. Impor-
tantly, a statistical outlier is distinct from the idea
of a `scienti¯c anomaly' as de¯ned in Watters
(2023), which refers speci¯cally to a corroborated,
statistically distinctive phenomenon that resists
explanation in terms of prevailing scienti¯c beliefs.
For more information on our instruments, data
sources, and study methodology, see our investiga-
tion overview paper: Watters (2023).

Computing will play a central role in the pro-
cessing, aggregating, analysis (both in real-time and
in hindsight) and storing of data. The present paper
is meant to provide insight into our initial Phase 1
approach to computing; the system will evolve as
issues are encountered and as lessons are learned.
(See Watters (2023) for a description of project
phases.) The ¯rst part of this paper (Sec. 2) pro-
vides an overview of our instrumentation, providing
context to the sources and types of data that will be
processed. In Sec. 3, we discuss our computing in-
frastructure, including hardware employed, net-
working, storage and communications. Section 4
describes how we intend to detect and track potential
UAP. Section 5 presents some of theways inwhichwe
intend to analyze data o®-line— after potential UAP
events have been recorded. Ensuring that our data is
reliable and tamper-free will be important for draw-
ing robust conclusions and as such, Sec. 6 brie°y
describes our data security approach.

2. Instrumentation and Data Sources

The Galileo Project is building a multimodal and
multispectral suite of calibrated scienti¯c instru-
ments to monitor the sky across wide bands of the
electromagnetic and acoustic spectrum. In addition
to low-cost portable systems, the project is develop-
ing a stationary `observatory-class' system that will
monitor the airspace from one primary site and sev-
eral secondary sites. The Phase 1 observatory-class
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systemwill consist of six instruments thatwill be used
to make corroborative detections and measurements
of objects in the regional airspace. A detailed sum-
mary of the instruments can be found in Watters
(2023).

This instrumentation requires a computing in-
frastructure to capture data, perform real-time
analysis and outlier detection, drive narrow-¯eld
sensors for observation of targets of interest, provide
communications between the various system com-
ponents, and to egress data to the cloud for hind-
sight review. This section brie°y describes our
instrumentation to provide context regarding the
sources of data our system will address, and then
describes the computing hardware that will facili-
tate system operation.

2.1. Wide-¯eld cameras

Wide-¯eld cameras will be used for targeting and
tracking of aerial objects across multiple wave-
lengths, forming the basis of our `detection' strate-
gy. We aim to cover as much of the sky as possible,
imaging in infrared, near-infrared and visible elec-
tromagnetic bands. Presently, we have two wide-
¯eld camera systems: the Dalek, and the Alcor.

The Dalek is a ¯berglass dome housing seven
50� Long Wave Infrared (LWIR) FLIR Boson 640
cameras arranged in a hemispherical con¯guration
with one 95� LWIR camera at the zenith, providing
all-sky coverage in thermal infrared. Each camera
operates at 30–60 frames per second (FPS) and
captures 16-bit images at a resolution of 640 � 512
pixels. In addition to the LWIR cameras, a wide-
angle (150�), ZWO ASI462 camera provides all-sky
coverage in the visible/Near Infrared (NIR) spec-
trum. This NIR camera operates at 136 FPS, each
with a resolution of 1936 � 1096.

The Alcor OMEA 9C is an all-sky optical
camera that captures imagery at 3 FPS, each with a
resolution of 9575 � 6380 pixels. This camera, like
the LWIR and NIR cameras mentioned, will be used
for object detection. In addition, all-sky camera
detections will be used to de¯ne the duration of
`events' and will be used for targeting narrow-¯eld
instruments. When additional all-sky cameras are
deployed at secondary sites (separated by several
km from the primary site (Szenher, 2023)), the an-
gular coordinates of these detections can be used to
determine triangulated position.

2.2. Narrow-¯eld cameras

These cameras will be directed towards targets of
interest in order to analyze their features, spectra,
polarimetry, and photometry. Our instrumentation
suite currently employs a single Beacon 8 narrow-
¯eld, Pan–Tilt–Zoom (PTZ) IP camera with Wide
Dynamic Range (WDR) and 40� optical zoom. It
has a frame rate of 30 FPS, a 3840 � 2160 pixel
resolution, and a bit-depth of 16. The Beacon 8 will
be the only narrow-¯eld camera in our Phase 1 ob-
servatory-class system, but we intend to add other
narrow-¯eld cameras based in future project phases
in order to achieve 1 arcsecond/pixel resolution.

2.3. Passive Radar

We are developing an omni-directional or (option-
ally) beam-formed multi-static passive radar system
consisting of an array of antennas and receivers,
called `Skywatch'. Passive radar has a signi¯cantly
larger detection range (� 150 km) than any of our
wide-¯eld cameras, and is not impacted by cloud
cover. It works by detecting the re°ection of ambi-
ent radio signals, such as television or radio broad-
casts, from moving targets, such as aircraft or ships.
The re°ected signal is then processed to extract
information about the target, including its position,
velocity, and size, providing more kinematic infor-
mation about aerial objects than is possible with
camera arrays. The system under development has
a 3-channel receiver, which will record 300 s of
narrow-band FM radio station data at a sample rate
of 1MHz; this procedure will be repeated every
1024 s (17min), or approximately 85 times per day.
In Phase 1 of the project, Skywatch will only be
used to measure the range and motion of objects
detected by our wide-¯eld cameras. In a future it-
eration of our system, we intend to use Skywatch for
both detection and tracking of aerial objects. More
information about the design of this instrument can
be found in Randall (2023).

2.4. Acoustics

The Acoustic Monitoring Omnidirectional System
(AMOS) is a passive, omnidirectional, multi-band
suite of microphones that capture ambient sounds in
the infrasonic, ultrasonic and audible spectrum. Data
sampling rates for the infrasonic, audible and ultra-
sonic are 50Hz, 44.1 kHz, and 512 kHz, respectively.

Integrated Computing Platform for Detection and Tracking of Unidenti¯ed Aerial Phenomena (UAP)

2340008-3

J.
 A

st
ro

n.
 I

ns
tr

um
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 7

4.
10

4.
15

1.
74

 o
n 

08
/3

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



All three instruments will run continuously. In Phase
1, data captured by AMOS will be used primarily to
correlate and verify detectionsmade by our wide-¯eld
and narrow-¯eld instruments. In a later phase of the
project, we intend to explore object detection, clas-
si¯cation, and triangulation using acoustic signals.
More information on AMOS can be found in Mead
(2023).

2.5. Radio spectrum analyzer

We will also measure and characterize radio and
microwave emissions via a radio spectrum analyzer
attached to a wide-band antenna; this system is
called `Spectre'. A spectrum analyzer works by
measuring the power of RF signals across a range of
frequencies. Measurements can reveal the presence of
signals that indicate the presence of speci¯c types of
objects, such as the radar signals emitted by aircraft,
or the telemetry signals transmitted by satellites. By
analyzing the frequency, power, and modulation of
these signals, we may be able to glean valuable in-
formation about the objects detected in the sky (Kay
&Marple, 1981). In addition to this, Spectre will help
us detect and locate sources of RF interference, thus
improving the robustness of our instrumentation
suite and the veracity of our data.

2.6. Environmental sensors

The New PArticle Counter k-Index Magnetic
ANomaly (NPACKMAN) platform was developed
speci¯cally for the Galileo Project. This instrument
will monitor local meteorological conditions such as
wind velocity, temperature, humidity, pressure, and
cloud cover, and will also measure magnetic ¯elds,
energetic particle counts and ultraviolet radiation.
The data will be used to perform o®line analysis to
identify signatures or patterns corresponding to
events of interest within the environmental data.
The analysis will help with further characterization
of the detected objects as well as for the calibration
of signals, such as sound or light attenuation. A
Raspberry Pi 4 drives the NPACKMAN's sensors
and manages data collection.

2.7. External data

In addition the above, we will utilize a range of ex-
ternal data sources for monitoring the regional air-
space for known signals. In particular, we intend to
collectAutomaticDependent Surveillance–Broadcast

(ADS-B) data. ADS-B data includes the position,
altitude, speed and other parameters pertaining to
aircraft °ight characteristics (airplanes, helicopters,
gliders, etc.) within a certain radius (Schfer et al.,
2014). In a later phase of the project, we will explore
the use of other external data such as information
concerning regional weather, geomagnetic ¯eld var-
iations, and seismicity, to assist with the interpreta-
tion of the data we directly collect.

Together, these instruments will produce a wide
range of data types at signi¯cant volume. In Secs. 4
and 5, we discuss plans for processing and analyzing
data from these instruments, but ¯rst we describe
the computing infrastructure that will drive our
instrumentation.

3. System Architecture

The instrumentation described in Sec. 2 requires a
system architecture that supports the capture and
processing of data, executes real-time analysis, drives
narrow-¯eld sensors towards observation of targets of
interest, mediates communications between system
components, and transfers raw and reduced data pro-
ducts to the cloud for hindsight review. This section
describes the system architecture that will support
Phase 1 of the project and how sub-systems will be
integrated to achieve the goals of the Phase 1 obser-
vatory. At the foundational level, the GP system ar-
chitecture that is currently in development can be
described as a high-performance, high-throughput data
processing system inspired by a hybrid event-driven
and distributed-system architecture. We aim to build a
system that is decentralized by nature, and, due to real-
time requirements, favors localized computing over
centralization — both in terms of data and computa-
tion. This approach will ensure the shortest and fastest
feedback loop between data-processing logic and sensor
control, thereby improving system adaptability and
reaction-time — features important for responding in
real time to potentially anomalous events.

From a functional point of view, all of the GP
system activities — including security, communi-
cation, automation, computation, data manage-
ment, and monitoring — can be categorized into
three core behavior groups: System Support Ser-
vices, Edge Computing, and Cloud Computing.
Together, these groups will ensure proper separa-
tion of concern while de¯ning clear responsibility
and functional boundaries (Beck et al., 2001).
Figure 1 illustrates our proposed system architec-
ture. Security is discussed in Sec. 6.

R. Cloete et al.
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3.1. System support services

System Support Services will provide common ser-
vices required within and across all systems and
functions. These services will include time synchro-
nization, task scheduling for automation, remote
management, network and telecommunications,
data synchronization and management, hardware
and systems monitoring, and security (see Sec. 6 for
more information) and auditing services to maintain
secured and predictable communications.

3.1.1. Time synchronization

To ensure reliable and consistent data management
within the GP systems, maintaining time synchro-
nization across all computer systems and devices
will be critical. Precise time synchronization is es-
sential for the proper functioning of critical real-
time applications, control and measurement sys-
tems, and video networks. It is also necessary to
establish frequency, phase, and time synchroniza-
tion between distributed nodes and to correlate
measurement and event data distributed across
systems. Fundamentally, precise time synchroniza-
tion is a requirement for optical, IR, and acoustic
source tracking, triangulation, and object localiza-
tion. To achieve this, we will implement a compre-
hensive time synchronization strategy that relies on

the network time protocol (NTP). This protocol is
widely used and requires only internet access or a
local NTP server that is synchronized with a global
NTP service. In addition to the internet-based NTP
service, the GP system will also have access to
Global Positioning System (GPS) time synchroni-
zation through its telecommunication equipment.
The proposed NTP time synchronization strategy
will provide millisecond precision, with provisions
for future expansion to PTP/IEEE 1588 (Precision
Time Protocol) with nanosecond precision. The
importance of time synchronization in a distributed
system like the GP systems cannot be over-
emphasized. It ensures consistency and accuracy of
data across all nodes, thereby improving system
reliability and performance.

3.1.2. Network and telecommunications

The Phase 1 system is projected to generate ap-
proximately 120–250 GB per day. A signi¯cant por-
tion of this data will need to be transmitted to the
Cloud and other remote storage systems for testing
and validation purposes, particularly in the initial
months following deployment. In addition, remote
access to instrumentation and computing infra-
structure will be needed to perform system status
checks, service restarts, and software updates.

(a) (b)

(c)

Fig. 1. (Color online) Proposed computing system architecture illustrating three sub-systems: Edge Computing, where real-time
data acquisition and processing takes place; Cloud Computing, where data archival and o®line analysis is performed; and System
Support Services, which coordinates system activities such as data synchronization, scheduling of tasks, performs data egress,
manages networking, and ensures data tractability via auditing.

Integrated Computing Platform for Detection and Tracking of Unidenti¯ed Aerial Phenomena (UAP)
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Combining data egress and remote access ac-
tivities on a single internet connection poses a
challenge, as there is a risk that the bandwidth
requirements of data egress may impact remote
access activities. To overcome this challenge and
ensure a constant, reliable, and cost-e®ective inter-
net connection, the GP system network will rely on
equipment enabled with Service-De¯ned Wide-
Area-Network (SD-WAN) technology (Yang et al.,
2019). Figure 2 shows a high-level overview of our
planned network design.

SD-WAN technology provides network scal-
ability and enables network-tra±c load-balancing
across multiple internet service providers with dif-
ferent network topologies, including cellular/5G
and satellite/StarLink. While commercially avail-
able 5G plans o®er fast, dependable internet
connectivity in and around suburban areas, their
monthly data upload allowance is limited, and their
upload rate is restricted. Therefore, 5G will pri-
marily be used for remote system checks, updates,
and other similar tasks. Starlink, although more
expensive than 5G plans, o®ers internet access in
remote areas, including at sea, and without data
limitations and as such will serve as the primary
means for transmitting data to the Cloud and
other remote storage systems. Our current
Starlink package provides upload rates of 8–
25Mbps. Considering a conservative 15Mbps, we

will be able to egress approximately 158.16 Giga-
bytes/day. To ensure su±cient bandwidth, we will
likely need to employ multiple Starlink nodes,
though for this initial phase, a single Starlink may
be su±cient.

In the subsequent stages of this project, it is
anticipated that the daily data generation will ap-
proximate 9–10 Terabytes (TB). Out of this ag-
gregate data volume, nearly 8.5 TB will be
constituted by the input from both wide-¯eld and
narrow-¯eld cameras, as illustrated in Table 1. The
sheer magnitude of such data presents a formidable
challenge.

Given the current network conditions and the
assumption of continuous operation, it is estimated
that approximately 58–65 Starlink connections
would be necessary to manage this volume of data.
However, it is essential to note that achieving op-
timal network conditions consistently is improbable,
and that the cost (and required deployment space)
of operating so many nodes would be prohibitively
expensive. Therefore, it will be important for us
to explore alternative strategies. One potential
strategy is the selective egress of data centered
around events of interest. This strategy would in-
volve capturing data from e.g. 2min preceding an
event, the entire duration of the event itself, and
2min following the event. By adopting this ap-
proach, we can e®ectively ¯lter out `routine' or `non-

Fig. 2. (Color online) Overview of planned GP Networking.

Table 1. Data production.

Instrument/source TB/day

Dalek (7 Flir Bosons, 1 � ZWO ASI462, 1 � Alcore OMEA 9c) 8.79
Beacon 8.0 PTZ camera 0.19
Skywatch (1 tower) 0.15
AMOS 0.10
NPACKMAN 0.000049
Spectre (1 tower) 0.29
Total data 9.52

R. Cloete et al.
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critical' data, thereby managing the data load more
e±ciently. Additionally, the implementation of data
compression techniques will be crucial. However,
the degree of compression applied will be contingent
on the nature of the data and the requisite level
necessary to ensure that the subsequent analysis
remains scienti¯cally valid and robust.

3.1.3. Data synchronization and management

It is imperative to establish robust data synchroni-
zation mechanisms that ensure the integrity and
traceability of every ¯le from its creation to its ¯nal
destination in cloud storage, and throughout its
transfer. To accomplish this, a computer program
known as O®Edge is currently under development.
This program will be deployed on all computers
involved in either the production or transfer of data.
O®Edge will perform several critical functions, in-
cluding tracking every ¯le's creation, generating
checksums to verify data integrity, and managing
¯le synchronization between the Edge and remote
servers such as cloud or remote network-attached
storage. This will be accomplished through the im-
plementation of a consistent and timely data per-
sistence and backup policy, which will be enforced
by a ¯le-watcher trigger for rules-based processing.

3.2. Edge computing

The Edge Computing sub-system will consist of
data storage, sensors, data processing pipeline,
sensor control and optimization, and event man-
agement components (see Fig. 1(a)). In its entirety,
the Edge Computing sub-system will provide all the
real-time data acquisition and processing function-
ality required for a functioning observatory. The
Edge Computing hardware that will be employed
during Phase 1 currently consists of several `edge
computers'. Edge computers are small, decen-
tralized computing devices that are located at or
near the edge of a network, where they can collect
and process data from the physical world. This
edge-computing approach will be adopted so that
data processing and analytics can be performed lo-
cally at the site of the instrumentation, reducing the
need for data to be sent to a central data center or
the cloud. Thus, the approach will improve the
speed and e±ciency of data processing, reduce
latency, and enable real-time decision-making.
The Phase 1 edge computer `inventory' consists
of several NVIDIA Jetsons (each equipped with a

minimum of 6 CPU cores, 8–16GB of RAM, a 384-
core GPU and 1 TB SSD storage), Raspberry Pi 4
units, and Intel NUC's. Each of these edge compu-
ters is connected to at least one instrument, pro-
viding the processing power required to perform
tasks such as data capture, real-time analysis (in-
cluding computationally intensive AI tasks see
Sec. 4), controlling actuators (e.g. in order to shield
sensitive equipment from direct sunlight), commu-
nications between devices, data transfer to local and
remote storage systems, etc. The Sensors (Fig. 1)
represent the sensors connected to the observatory
system, which are described in Sec. 2. The remain-
der of this section describes the Sensing and Data
Ingress functionality that receives raw sensor data
and prepares the data for subsequent processing.

The edge computers are designed to perform
AI-related tasks at-the-edge (Mittal, 2019), making
them ideal for running object detection and classi-
¯cation models. Indeed, we will primarily use NVI-
DIA Jetsons to drive the capture of video data from
various LWIR, NIR, and visual cameras (both wide-
¯eld and near-¯eld), and to perform local computer
vision tasks (see Sec. 4). We will also employ an
NVIDIA Jetson for the processing of data acquired
by our Skywatch passive radar instrumentation.
This is because, like computer vision tasks, proces-
sing passive radar signals is computationally inten-
sive (more-so than those of traditional active radar
signals, as it requires advanced signal processing
techniques to isolate the target signal from the
background noise) (Szumski et al., 2009; Randall,
2023). Table 2 summarizes the speci¯cation of our
edge computers. To house the edge computers, we
have modi¯ed a 12U desk-side server rack-mount.
This `edge enclosure', which can be see in Fig. 3(a),
is designed to protect our computing hardware from
the elements, while two fans provide ventilation.
The ¯gure shows four USB hubs (2 on the front; top
shelf), three of our NVIDIA Jetsons (middle), and
power supply (including a dedicated UPS) equip-
ment (bottom). In addition to the edge computers,
we will also employ a dedicated ThinkMate server
which will be housed o®-site. This server will be
used to perform AI model development, and o®line
data review and analysis (see Sec. 5). Figure 3(b)
depicts our dedicated ThinkMate server, while its
speci¯cations are illustrated in Table 2.

The Real-Time Analytics for UAP Detection
component (Fig. 1(a)), also referred to as the Data
Processing Pipeline, encapsulates the core GP

Integrated Computing Platform for Detection and Tracking of Unidenti¯ed Aerial Phenomena (UAP)
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capability of real-time object detection and classi-
¯cation. To support real-time analytics, this com-
ponent design will be stream-based and will rely on
high-performance edge computing devices such as
NVIDIA Jetsons described in the prior section. The
Phase 1 Data Processing Pipeline is discussed in
length in Sec. 4. The output of this component will
produce object detection events with classi¯cation
data. This event information will be published to
the Sensor Control and Optimization component
via the Event Management component (Fig. 1(b)).

Due to the real-time nature of the Edge Com-
puting sub-system processing and the goal of object
detection (required for targeting narrow-¯eld instru-
ments), the Edge Computing sub-system will be

based on an event-driven architecture that will re-
quire messaging and event management. Once the
Data Processing Pipeline identi¯es an object of in-
terest and has computed and correlated position and
classi¯cation information, there potentially exists a
short window of time to direct the narrow-¯eld
instruments (e.g. the Beacon 8 PTZ camera) to focus
on to that target. Likewise, as the object moves, the
PTZ component will require event updates to indicate
the new position of the object of interest. The ability
to provide this near-real-time event sharing will be
provided by the Event Management component.

To facilitate communications between edge
computers, we will employ ZeroMQ–a mature,
widely-used, open source, high performance, asyn-
chronous messaging library (Rakhimov et al., 2020;
Kang et al., 2020; Happ et al., 2017). ZeroMQ is
brokerless (i.e. middleware designed to `manage'
messages passed between endpoints), and as such, it
is lightweight with little computational overhead
which makes ZeroMQ ¯t-for-purpose for our edge
computing goals. To meet scalability requirements,
we will employ a publisher-subscriber pattern (zmq,
2021). The processes that generate data or events
will `publish' messages on prede¯ned topics. The
various processes that require receipt of data or an
event will be con¯gured to `subscribe' to the pre-
de¯ned topics of interest at design time, to establish
the GP event communications model. Each com-
ponent process will utilize a shared library, which
will provide the underlying ability to send or receive
messages establishing GP event communications

Table 2. Speci¯cations for edge computers and our thinkmate server.

Metric Nvidia Jetson Raspberry Pi 4 Intel NUC ThinkMate Server

CPU 6-core NVIDIA Carmel

ARMr v8.2 64-bit CPU,
6MB L2 + 4MB L3

Broadcom BCM2711,
Quad core Cortex-
A72 (ARM v8) 64-bit
SoC @ 1.5GHz

Intel Core i5-1135G7
2.40GHz Processor (11th
Gen, upto 4.2GHz, 8MB
Cache, 4-Cores)

Sixteen-Core AMD Ryzen
Threadripper PRO
3955WX Processor -
3.90GHz 64MR L3
Cache (280W)

RAM 8 GB 128-bit LPDDR4x,
59.7GB/s

8GB LPDDR4-3200
SDRAM

32GB DDR4 SO-DIMM 128GB PC4-25600
3200MHz DDR4 ECC
RDIMM

Graphics 384-core NVIDIA VoltaTM

GPU with 48 Tensor
Cores

N/A Integrated Graphics
Integrated Graphics

NVIDIA RTX A6000
Graphics card - 48GB
GDDR6 - PCIe 4.0

Storage 16GB eMMC 5.1, with 1TB
external SSD

Micro-SD card 2TB PCIe SSD (Solid State
Drive)

1.0TB Samsung 980 PRO
M.2 PCIe 4.0 and 40TB
SATA 6.0Gb/s
7200RPM - 3.5″ -
Ultrastar DC HC330
(512e)

(a) (b)

Fig. 3. (Color online) A; Edge computer enclosure with 3 �
NVIDIA Jetson Xavier's, 2 � USB Hubs and an Uninterrupted
Power Supply (UPS); these will be used for real-time aerial
outlier detection at-the-edge. B; The ThinkMate server for
o®line data analysis.
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between processes and across hosts. Given that the
edge devices, operating systems, and code languages
may vary between instruments, it will be important
to ensure that messages share a standard, platform-
agnostic encoding and message structure so that
they can communicate e®ectively across heteroge-
neous technologies. To this end, we will use
JavaScript Object Notation (JSON) (Severance,
2012) as this data exchange format. JSON provides a
standardized technology agnostic, platform-neutral,
and an extensible means for serializing and deser-
ializing structured data.

The SensorControl andOptimization component
(a.k.a.DecisionEngine orDE)will determinewhich of
the objects detected by the Dalek and Alcor instru-
ments should be targeted and tracked by narrow-¯eld
instruments such as the Beacon 8.0 PTZ camera. This
component is discussed at length in Sec. 4.6.

3.3. Cloud computing

The Cloud Computing sub-system represents the
cloud-based processing environment that provides
the opportunity for batch processing without the
constraints associated with remote on-premise edge
environments. Due to the constraints with com-
munication between the Edge Computing and
Cloud Computing sub-systems, such as cost for
utilization of the 5G service, only data for an event-
of-interest will be transferred to the cloud. An
`event-of-interest' is a time sequence that includes
one or more contiguous object detections. A bu®er
of time before and after an event-of-interest (e.g.
1min before and 1min after) will be applied to en-
sure a comprehensive analysis surrounding an
event-of-interest data set. The egress of data into
the Cloud Computing sub-system o®ers the bene¯t
of applying various computation techniques, in-
cluding the evaluation of alternative and new
models, the enhancement of existing models, and
general system calibration. To optimize the use of
the cloud computing strategy we will investigate

cloud-hosted data analysis tools and processing
pipeline technologies, as well as techniques for on-
line data visualization and end-user artifact review.
Note that in Phase 1 of this investigation, all data
products will be stored o®-site (i.e. not in the Cloud)
in order to ensure that we complete the compre-
hensive aerial census described in Watters (2023).

4. Phase 1 Data Processing Pipeline
Overview

In order to detect and characterize UAP, the ob-
servatory system will be required to (i) operate
autonomously and (ii) collect and process data in
real-time. Autonomous operation is required be-
cause UAP events are, at present, unpredictable —
they can happen at any time, without warning and
at any location. As such, it is not practical to have a
system that depends on a human operator. Data
must be collected and processed in real time so that
potential UAP can be detected, tracked and tar-
geted by the narrow ¯eld instrumentation (e.g. the
Beacon 8 PTZ camera). This section describes how
we intend to perform real-time detection and
tracking of potential UAP.

4.1. Pipeline overview

Figure 4 presents a high-level view of the Phase 1
real-time image data processing pipeline. The yellow
boxes represent the data sources and instrumenta-
tion used (see Sec. 2), while the blue boxes depict
edge computers used to process the incoming data.
The white boxes with solid borders denote a pro-
cessing operation, while the white boxes with
dashed borders represent the communication of
data.

As illustrated in the ¯gure, images captured by
the Dalek and Alcor instruments are recorded to a
local edge computer. The data will be processed
using computer vision (CV) models to perform ob-
ject detection and classi¯cation (see Sec. 4.3). The

Fig. 4. (Color online) High-level view of the detection strategy.
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CV module will output detection messages that
contain information on the time of the detection,
the position of the detected object (represented by x
and y coordinates and the image width and height),
the assigned classi¯cation, and the con¯dence level
(expressed as a percentage) of the assigned class.
Each detection message will be sent to the Decision
Engine (DE), which will be hosted on a separate
edge computer.

The DE will work by querying ADS-B data and
analyzing the received detections to determine
which of the detected objects require further inves-
tigation. That is, ADS-B data will be used to ¯lter
out detections that are likely aircraft, while classi-
¯cations and their con¯dence scores will be used to
¯lter out known objects. Detections of the same
object captured across multiple frames will be
combined; this will reduce the number of candidate
UAP targets, while also providing 2D trajectory
information (see Sec. 4.4). If the DE fails to deter-
mine, with high con¯dence, that an object being
tracked is of known origin, or if he DE computes a
high outlier score, then control commands will be
sent to the Beacon PTZ, instructing it to orient it-
self towards and track the object of interest. The
Beacon PTZ captures images of the object in color
and at a much higher resolution than the Dalek and
Alcor instruments. In addition, the Beacon PTZ has
zoom and autofocus capabilities, which will allow us

to captured images centered and focused on objects
of interest (see Fig. 5 for a simulated example).

Images captured by the Beacon PTZ will be
sent to two separate CV models: one to perform
object detection and image classi¯cation, and an-
other to determine whether the object being ob-
served is novel (i.e. has not previously been observed
by the camera) or extremely rare. The resulting
detections will then sent be back to the DE, which
will re-evaluate the object being tracked to deter-
mine if it remains of interest. Data pertaining to
candidate UAP will be stored locally and then will
be transferred to the cloud for further, o®line anal-
ysis, which we discuss in Sec. 5.

4.2. Synthetic data

The ¯rst step towards being able to detect and
classify objects in images is to train a suitable
model. However, training models such as You Only
Look Once (YOLO) (Jiang et al., 2022) typically
requires a signi¯cant number of labelled images.
Crucially, the training data must be representative
of the problem domain. This means that our train-
ing data should contain many examples of di®erent
objects (birds, aircraft, drones, etc.) of di®erent
shapes, sizes, colors, and at di®erent angles, and
under varying light and atmospheric conditions. No
single such dataset exists and the few that may be

Fig. 5. (Color online) Sample narrow-¯eld images rendered using AeroSynth.
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relevant are often insu±cient (i.e. lack enough data
or fail to properly represent the problem at hand,
are imbalanced, etc.). Further, datasets developed
by third-parties often lack information regarding
their collection process, accuracy, and veracity
(Hittmeir et al., 2019). Although we could manually
collect and label our own data, this would be chal-
lenging as it would require that (i) we collect enough
of it, (ii) samples are representative of the problem
domain, and (iii) that classes (`categories' repre-
sented by a label) are balanced (i.e. they have the
same number of samples per class so as to minimize
classi¯cation bias).

Synthetic data has emerged as a promising and
e®ective solution for the scarcity of appropriate
machine-learning data, with numerous examples of
its application in the literature (see Luo et al.
(2019), Dewi et al. (2021) and Boikov et al. (2021)).
In light of the labor-intensive, costly, and error-
prone task of manual data collection, we developed
AeroSynth, a synthetic image data generation tool
built using Python and Blender (free and open-
source 3D computer graphics software).

AeroSynth functions by importing 3D models
and rendering them at arbitrary positions and
orientations within the virtual `sky' under realistic
atmospheric conditions, lighting, and distortion.
For realism, AeroSynth o®ers an option to include
clouds and contrails in the rendered images. Images
can be rendered in color or in monochrome infrared.
Additionally, AeroSynth enables the con¯guration
of virtual cameras to correspond with the speci¯c
parameters of physical cameras, allowing us to
produce synthetic images that match the cameras
used by Dalek, Alcor, or Beacon PTZ, ensuring that
the data utilized to train our models is consistent
with the conditions in which the models will operate
in the real world. Every synthetic image produced is
paired with a corresponding ¯le containing the ob-
ject class and bounding box coordinates for each
object in the image.

AeroSynth o®ers two distinct modes, each with
a unique purpose: `capture sky' and `capture target.'
In `capture target' mode, AeroSynth creates nar-
row-¯eld images (see Fig. 5) of the sky, where the
virtual camera is focused on a single target. This

Fig. 6. (Color online) Sample wide-¯eld images rendered using AeroSynth.
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mode will be helpful for training image classi¯cation
and outlier detection models. In `capture sky' mode,
AeroSynth creates wide-¯eld images (see Fig. 6) of
the sky containing one or more objects, with each
object representing a single training sample. In
other words, with a single image, we can produce
numerous training samples, reducing the number of
synthetic images required while also saving the time
required for rendering. Images generated with this
mode can be used to train models for both object
detection and classi¯cation.

4.3. Object detection and classi¯cation

Object detection and classi¯cation will be per-
formed on images obtained from the Dalek, Alcor,
and Beacon PTZ cameras (separately, the Beacon
PTZ will perform outlier detection; see Sec. 4.5).
The purpose will be to detect all aerial objects and
then attempt to classify them. If an object is clas-
si¯ed, with high con¯dence (e.g. � 65%), as being
something known, the system will be updated to
stop tracking that particular object. This will be
important so as to prevent the Beacon PTZ from
wasting valuable time by orientating towards and
tracking uninteresting targets — potentially miss-
ing objects that are truly anomalous.

To achieve this, wewill utilize theYOLOv5,which
is an open-source and state-of-the-art deep learning
object detection and classi¯cation model (Thuan,
2021). Note that at the time of writing, YOLOv5 is the
latest version, though we are aware that YOLOv8 will
be available within a few months, which we will eval-
uate once available. YOLOv5 is capable of detecting
objects in real-time video and images with high accu-
racy and speed using a single-stage detection pipeline
that predicts bounding boxes and class probabilities for
each object within an image. It operates on a feature
pyramid network that can detect objects at di®erent
scales and resolutions. One of the key improvements of
YOLOv5 (c.f. previous versions) is its transformer-
based architecture, which enhances the model's ability
to recognize objects in complex scenes by capturing
contextual information (Zhu et al., 2021). Moreover,
YOLOv5 includes several other advanced features
such as multi-scale predictions, anchor-based and an-
chor-free training, and improved training strategies,
which contribute to its high accuracy and e±cien-
cy (Jocher, 2020).

Ultralytics (Ultralytics, 2023), the company
behind YOLOv5, provides several pre-trained

models. However, these pre-trained models were
trained using images of people, cellphones, cars, etc.,
making them ideal for typical use-cases such as
autonomous driving, pedestrian or tra±c counting,
but not well-suited to detecting and classifying
objects in the sky. Therefore, we will require cus-
tom-trained models. That is, we will need to retrain
the models using images of objects such as birds,
kites, airplanes, clouds, etc. Ultralytics recommends
training models on at least 1500 images per class,
with at �10,000 instances/samples per class, in-
cluding 10% of background images as a means to
reduce false positives. Additionally, Ultralytics
recommends that models be trained on images with
similar resolutions to the images on which they will
operate.

To generate the required training data, we will
collect 3D models of various categories of aerial
objects such as airplanes, light airplanes, heli-
copters, drones, military drones, birds, balloons,
hot-air balloons, and blimps. We will then use
AeroSynth (see Sec. 4.2) to produce four synthetic
datasets, one for each camera type (see Sec. 2).
After producing the synthetic data, we will retrain
and evaluate each pre-trained YOLOv5 model to
determine which models perform best in terms of
accuracy, precision, recall, speed, and resource
usage. Once appropriate models have been built,
they will be integrated into the pipeline described in
Sec. 4.

Given that the initial models will be trained
entirely on synthetic data, we will need to collect a
suitable dataset both for validating our models, as
well as to collect real-world data on which subse-
quent models can be trained. To do this, we will use
the initial models as a means to automatically label
real-world data (i.e. from our cameras). Speci¯cally,
code will be written to process real-world video data
using one of our custom models, and in doing so,
extract detections and corresponding images from
the video–the results of which will form the labeled
training set. To minimize data contamination (e.g.
false positives), we will set the minimum con¯dence
threshold of the models to at least 80%. The labeled
real-world dataset (in combination with synthetic
data) will then be used to retrain and validate our
models for improved accuracy and precision. This
process will repeat until we are satis¯ed with the
models performance. Once adequately trained, the
models will replace the ones trained on synthetic
data. Note that due to the ability for the YOLOv5
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model to generalize well to unseen data, the risk of
training bias propagating to subsequent datasets is
low.

4.4. Multi-object tracking

One of the signi¯cant limitations of YOLO and
similar object detection models is that they operate
on individual frames, treating detections made in
one frame as entirely distinct from those made in
the next. This means that for a single frame,
YOLOv5 may produce multiple detections. This
presents a problem, since the Beacon PTZ can only
track a single object at a time and for this reason the
potential targets must be prioritized. In addition to
¯ltering out known objects (i.e. via classi¯cation),
we can reduce the number of otherwise distinct
targets by tracking objects across frames. This is
essentially a data association problem, which
involves ¯nding correspondences between object
detections or features in the current frame and those
in the previous frame, despite occlusions, noise, and
other confounding factors. To address this chal-
lenge, we will employ Multi-Object Tracking
(MOT) algorithms, the goal of which is to accu-
rately track each object in the video sequence (Luo
et al., 2021). Fortunately, several MOT solutions
exist, which we now describe.

DeepSORT (Wojke et al., 2017) combines
deep learning and traditional computer vision
techniques to track objects in video streams. Deep-
SORT employs a deep neural network to extract
features from object detections, which are then used
to associate detections across frames and maintain
tracks for each object. It also includes a track re-
¯nement step that uses appearance information to
update the state of each track and correct for
tracking errors. While DeepSORT shows promise, it
has higher computational overheads than other
methods, which may be problematic for edge-based
computing where resources are constrained.

ByteTrack (Zhang et al., 2022) is a multi-ob-
ject tracking algorithm that uses a single-stage an-
chor-free detector to detect objects in each frame
and a lightweight tracker that operates on the
detected objects to link them across frames by using
a combination of a Siamese network and a tracker
network. ByteTrack achieves real-time performance
and state-of-the-art accuracy on several tracking
benchmarks.

Bot-SORT (Bounding Box Object Tracker
with Self-Organizing Regression Trees) (Aharon
et al., 2022) is a tracking algorithm that uses a self-
organizing regression tree to learn to predict the
motion of an object in each frame. Bot-SORT also
incorporates appearance information to re¯ne the
predicted motion and update the object's state.

StrongSORT (Strongly-Coupled Object
Tracking) (Du et al., 2022) is a tracking algorithm
that uses a combination of appearance and motion
cues to track objects across frames. StrongSORT
models the appearance of each object as a set of
deep features and uses a Kalman ¯lter to model the
object's motion. The appearance and motion models
are coupled together to provide robust tracking.

OC-SORT (Online and Cascaded
SORT) (Cao et al., 2022) is a real-time object
tracking algorithm that is designed to handle
occlusions and other challenges that arise in crow-
ded scenes. OC-SORT uses a cascaded architecture
to handle occlusions, where the tracker ¯rst
attempts to track each object individually and then
resolves occlusions by grouping objects based on
their appearance and motion information. OC-
SORT also incorporates a dynamic model to adapt
to changes in the scene over time.

Simple Online Real-time Tracking
(SORT) (Bewley et al., 2016) is a popular algorithm
used for object tracking in video streams. SORT
uses a combination of a Kalman ¯lter and the
Hungarian algorithm to associate object detections
across multiple frames and maintain tracks for each
object. The algorithm ¯rst initializes tracks for each
object detected in the ¯rst frame, and then predicts
the positions of those objects in subsequent frames
using the Kalman ¯lter. SORT then uses the Hun-
garian algorithm to associate the predicted positions
with the actual object detections in the current
frame. Once the associations are made, SORT
updates the track for each object with its current
position and other relevant information, such as
velocity and size. The algorithm also handles cases
where new objects appear or existing objects dis-
appear by creating or terminating tracks as neces-
sary. SORT is computationally e±cient and can
handle real-time tracking of multiple objects in
video streams. However, it may su®er from issues
such as ID switches, occlusion handling, and track-
ing errors in the presence of motion blur (Mallick,
2022).
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2340008-13

J.
 A

st
ro

n.
 I

ns
tr

um
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 7

4.
10

4.
15

1.
74

 o
n 

08
/3

1/
23

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



In summary, YOLO and other object detection
models operate on individual frames, and are
therefore unable to distinguish between individual
objects. MOT frameworks such as DeepSORT,
ByteTrack, Bot-SORT, StrongSORT, OC-SORT,
and SORT can be used to link objects across frames,
thereby reducing the number of detections that
need to be managed. Further, a byproduct of MOT
is that it generates 2D trajectories for each tracked
object. Such trajectories, supplemented by distance
measurements obtained from triangulation using
passive radar (Randall, 2023) or multiple cam-
eras (Szenher, 2023) at a later phase of the project
will provide a crucial metric with which to charac-
terize aerial objects.

4.5. Monitoring for outliers

In addition to attempting to classify objects ob-
served in images (see Sec. 4.3), the pipeline is re-
quired to estimate whether the imaged object
represents something either not previously seen or
very rarely seen. That is, unlike known objects such
as birds, aircraft, and balloons, the properties of
UAP such as shape, color, and behaviour, are poorly
characterized and for this reason it is di±cult to
train a classi¯cation model to recognize them. In-
stead, we will need a model that is able to contin-
uously adapt to the environment, learning to
understand when something anomalous, such as a
UAP, is detected, without being trained on what a
UAP should look like. This mode of operation is
required speci¯cally for the analysis of images
obtained by the Beacon PTZ — the high resolution
targeting camera. This challenge is fundamentally
an outlier detection problem, which is the process of
identifying data points, events or observations
which deviate signi¯cantly from those in the wider
patterns underlying a data set or series. Outlier
detection (sometimes called anomaly or novelty
detection) is a well-studied topic, with applications
in fraud and fault detection, video surveillance, in-
surance, safety-critical systems, and many oth-
ers (Singh & Upadhyaya, 2012; Wang et al., 2019;
Hodge & Austin, 2004).

For the problem of detecting unusual aerial
objects, we will employ an unsupervised online
learning approach that will operate on the Beacon
PTZ image stream. Unsupervised learning refers to
a type of machine learning where an algorithm
learns patterns and structures in data without the
need for labeled examples or prior knowledge. That

is, models are able to discover hidden relationships
within the data without needing to be `told' (i.e.
presented via labeled data) what to look for. One
promising approach involves the use of auto-
encoders.

Autoencoders (Finke et al., 2021) are a type of
neural network that consists of an encoder and a
decoder. The encoder learns the common, high-
dimensional features present in the training data(a)

and compresses them to a lower-dimensional latent
space, known as the bottleneck layer. In general,
features should be robust to variations in illumina-
tion, scale, and rotation, and should capture the
semantic content of the images. The decoder oper-
ates in reverse to the encoder. That is, the decoder
uses the low-dimensional encoded representation
embedded in the latent space in an attempt to re-
construct the original input image. This recon-
struction is evaluated by comparing the original and
reconstructed images (e.g. using Mean Squared
Error, or another metric). If the `reconstruction
error' is found to be high, then the image is likely an
outlier. Using this approach, our system will be able
to determine when the Beacon PTZ has captured
something unusual.

An important consideration is that the auto-
encoder model will need to adapt to the environ-
ment; it will need to learn what to consider as
`normal'. Importantly, the adaptation must be
performed automatically so that little (if any)
human intervention is required. For this, we can
periodically ¯t new data to the pre-trained auto-
encoder and we can also update the weights of the
network to improve its ability to reconstruct the
new images. Automation of this `¯ne tuning' of the
model can be achieved using existing Automated
Machine Learning (AutoML) frameworks such as
Auto-PyTorch or AutoKeras (He et al., 2021; Jin
et al., 2019).

In addition to autoencoders, we will also eval-
uate clustering techniques. That is, features will be
extracted from a pretrained model such as an
autoencoder (just described), SIFT (Lowe, 1999),
HOG (Dalal & Triggs, 2005), etc. Once the features
are extracted, the next step will be to identify
images that are signi¯cantly di®erent from the
majority of the other images. One common ap-
proach to outlier detection is clustering, which
involves grouping similar images together into

aWe will use AeroSynth in capture-target mode to generate a
set of training data.
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`clusters' based on their feature vectors. The most
common clustering algorithm is k-means, which it-
eratively assigns each image to the nearest cluster
center, and updates the cluster centers based on the
mean of the images in each cluster. Once the clus-
tering is complete, outlier images can be identi¯ed
as those that do not belong to any cluster or belong
to a cluster with a small number of images. Al-
though k-means requires the number of clusters to
be prede¯ned, `online' or `streaming' variants of the
k-means algorithm can be used instead (spa, 2023;
Ailon et al., 2009; Wang et al., 2020). This is im-
portant, since the exact number of object types (and
therefore clusters) will vary depending on where our
instrumentation are located.

Another approach is density estimation, which
involves estimating the probability density function
of the feature vectors. One common density esti-
mation algorithm is Gaussian mixture models
(GMMs) (Zong et al., 2018; Acito et al., 2005),
which model the feature vectors as a mixture of
Gaussian distributions. Outlier images can be
identi¯ed as those that have low probabilities under
the GMM. A third approach is to use One-Class
Support Vector Machines (OCSVM's) (Amer et al.,
2013; Li et al., 2014; Yang et al., 2021). OCSVM's
are a type of SVM that is trained on only one class
of data (in this case, images, free from potential
UAP) and can identify deviations from this norm as
outliers. The algorithm ¯ts a hyperplane (or more
generally, a decision boundary) to the normal data
in high-dimensional feature space. The hyperplane
is selected to maximize the margin between the
normal data points and the hyperplane, which helps
to separate the normal data points from the po-
tential outliers. As new data points are obtained,
they are projected onto the hyperplane, and if the
distance between the data point and the hyperplane
is greater than a certain threshold, it is considered
anomalous. In practice, the OCSVM is often
implemented using a kernel function, which im-
plicitly maps the input data into a high-dimensional
feature space, where it may be easier to ¯nd a sep-
arating hyperplane, without explicitly computing
the feature mapping. In addition, the kernel func-
tion is used to compute the inner products between
the feature vectors, allowing for e±cient computa-
tion of the decision function. This means that
OCSVM's have the advantage of being computa-
tionally e±cient and requiring relatively little
tuning.

Regardless of the approach or approaches we
choose, it must be capable of handling streaming
data and of adapting to changes in the data distri-
bution over time, and it must be computationally
`light' so as to operate on low-powered edge-com-
puters. This means that the above methods and
others will need to be explored in depth over the
coming months as we develop a strategy for
detecting and characterizing potential UAP.

4.6. The decision engine

The Decision Engine (DE) will determine which of
the objects being detected by the Dalek and Alcor
instruments should be targeted and tracked by the
Beacon PTZ. In this initial phase of the project, we
will perform a relatively simple ¯lter-based ap-
proach. Speci¯cally, our decision algorithm will
begin by receiving detection information from
YOLOv5 models operating on the Dalek and Alcor
images, and will construct trajectories for each of
the detected objects. The positional data of the
trajectories are then mapped to world-space coor-
dinates (Szenher, 2023) For each trajectory, the
algorithm will check whether the object is classi¯ed
as a known object (e.g. a bird, airplane, balloon,
etc.) and has a con¯dence score of 80% or more, in
which case the object is ignored. If the object cannot
be classi¯ed or has a con¯dence score of less than
80%, the algorithm checks whether ADS-B data
indicates the presence of an aircraft at the same
coordinates. If an aircraft is present, the object is
ignored. Otherwise, the object is °agged as inter-
esting and the Beacon PTZ camera is instructed to
target and track it. While tracking the object, the
algorithm receives classi¯cation and con¯dence
scores, as well as outlier scores from classi¯cation
and outlier models processing operating on images
obtained from the Beacon PTZ. If the object is
classi¯ed as known and has a con¯dence score of
80% or more, or if the outlier score is low (i.e.
something often seen), the object is ignored. Oth-
erwise, if the con¯dence score is low or the outlier
score is high, the algorithm continues to track the
object. The metrics described (as well as others e.g.
kinematics) will be used to compute an `outlier
score', which will be used as a means to prioritize
tracked objects for tracking. Note that the 80%
threshold is arbitrary and that testing will be re-
quired to determine an ideal value. See Algorithm 1
for pseudo code.
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The above will form the basis of our initial de-
cision strategy. Naturally, the DE will eventually
make use of data from our other instrumentation.
For instance, one approach is to combine the out-
puts of multiple models using a voting ensemble.

Models operating on various sensor data streams
could submit a `vote' on what the detected object
may represent. In this way, we would be able to
validate the outputs of one or more instruments
and obtain a multi-dimensional assessment of a
detection. If a su±cient number of models were to
agree on the classi¯cation or signi¯cance of a
particular event, the appropriate action could be
taken, such as ignoring or investigating further via
the Beacon PTZ camera (and in later project
phases, other narrow-¯eld instruments). However,
the voting approach requires that the models
perform comparably well; otherwise, their inaccu-
rate outputs may sway the system consensus,
leading to errors or worse, missing a truly anom-
alous event. Moreover, a voting ensemble may fail
to take advantage of the information embedded
within an event if examined as a whole from all
available sensor streams. To address these issues,
Late Fusion (Akilan et al., 2017) can be used,
which combines the outputs of various models as
inputs to a ¯nal model. That is, individual models
represent informative, discriminating, and inde-
pendent features; they are individual, measurable
properties or characteristics of a phenome-
non (Bishop, 2006). These instrument-speci¯c,
derived quantities can be used as a higher-dimen-
sional basis on which more nuanced predictions
can be made, rather than just totaling yey or nay
votes. Importantly, ensemble models such
as Late Fusion can often produce higher inference
accuracy in comparison to individual models (Lai
et al., 2015). This is because errors are dealt with
individually by the initial set of models and as
such, they do not propagate through the fusion
process and into the ¯nal `combined' inference
model. Taking a Late Fusion approach to outlier
detection will therefore help minimize the rate of
false positives we might otherwise observe and in
turn ensure our system does not spend valuable
time monitoring non-outliers. Figure 7 describes,
from a high-level, the Late Fusion approach.

Fig. 7. (Color online) Example of late-fusion. The outputs from several models can be fused and used as input to a ¯nal decision
model.
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5. O®line Data Analysis

In addition to real-time analysis (described above),
in which we aim to detect, characterize, and track
UAP, we will also perform o®line analysis. This
analysis will be performed on images obtained from
the various Dalek, Alcor and Beacon PTZ cameras,
as well as data recorded from the other observatory
sensors (see Sec. 2), including magnetometers, bar-
ometers, particle counters, temperature and hu-
midity sensors, microphones, and more. Our goal in
analyzing these data will be to both identify any
unusual measurements that may have occurred si-
multaneously with potential UAP observations and
to gain a better understanding of their character-
istics. In addition, analysis will help us to validate
our observations.

O®line image analysis will be primarily focused
on spectral analysis (to measure re°ectance,
brightness, etc.), shape analysis (e.g. using seg-
mentation to measure curvatures, area), colorime-
try (to measure color distributions), and other
techniques that will enable us to better understand
the properties of the object captured by our cam-
eras. Fortunately, many of the techniques required
are implemented in the popular Python library,
SciKit-Learn (Pedregosa et al., 2011).

As mentioned, data from the observatory sen-
sors will also be analyzed; this will be done when
unusual aerial objects have been observed and
tracked using the real-time system described earlier.
Here, the ¯rst step will be to clean and preprocess
the data, ensuring that it is accurate and complete.
This will involve removing any duplicates, ¯lling in
missing values, and correcting any errors that may
have been introduced e.g. by noisy sensor mea-
surements, adverse weather conditions, etc. Any
data that is not relevant to the analysis, such as
sensor data collected before or after the time period
of interest (the event duration), will be ignored.
After cleaning the data, exploratory data analysis
will be performed to gain a better understanding of
the data and identify any patterns or trends. This
will involve visualizing the data to identify any
unusual patterns or trends, e.g. using box plots,
histograms, etc. Next, we will proceed to apply
various techniques for detecting outliers in our data.

5.1. Statistical measures

Statistical measures are commonly used for detect-
ing outliers in data and may be particularly useful

when analyzing the time series data that will be
produced by instruments such as magnetometers. A
popular measure is the moving average, where the
mean value of the data within a sliding window is
computed; any data point falling outside a certain
range of the moving average is identi¯ed as anom-
alous. The Exponentially Weighted Moving Average,
or EWMA, is another measure that emphasizes re-
cent observations more than older ones (Zhang
et al., 2019). The purpose of this is to provide a
more up-to-date estimate of the average value of the
data within the window, which may be more sensi-
tive to sudden changes in the data. The primary
advantage of EWMA is that it provides a smoothed
version of the time series that highlights recent
observations while still capturing the overall trend.
This makes it useful for detecting gradual changes
or anomalies in the data. Another measure that can
be employed is the z-score (Rousseeuw & Hubert,
2011), which is a standardized score that calculates
the number of standard deviations a data point
deviates from the mean of the data. This can be
combined with a sliding window, such that if the z-
score exceeds a prede¯ned threshold, the data
within the window can be °agged as anomalous.
Naturally, the choice of the window size is a critical
factor. That is, a smaller window size allows for a
more detailed analysis of the data, but it may also
result in more false positives. Conversely, a larger
window size may miss smaller anomalies that occur
within the window, but it is more likely to capture
longer-lasting anomalies. Other statistical measures
can be used, too, including the modi¯ed z-score,
local outlier factor, interquartile range and many
others; these and others will be explored.

5.2. Clustering

Clustering approaches can also be used and are in-
deed well-known for their suitability to outlier de-
tection. Here, the basic idea is to ¯nd clusters of
feature vectors, and then use the distance from
these clusters to recognize outliers that may indicate
an anomalous measurement. Such techniques can be
useful for identifying outliers in high-dimensional
data, such as data from multiple types of sensors.

k-means (Hartigan & Wong, 1979) is a widely
used clustering method. It involves partitioning the
data into k clusters based on their similarity, with
the goal being to minimize the sum of squared dis-
tances between each data point and its nearest
cluster center.

Integrated Computing Platform for Detection and Tracking of Unidenti¯ed Aerial Phenomena (UAP)
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Hierarchical clustering, on the other hand,
involves constructing a tree-like structure of clus-
ters, with each data point initially assigned to its
own cluster. Similar clusters are then merged to-
gether until a single cluster containing all data
points is obtained.

DBSCAN (Sheridan et al., 2020) is a density-
based clustering algorithm and works by de¯ning a
neighborhood around each data point, and then
expands the neighborhood until a minimum number
of points (the `density threshold') are found. Points
that fall within a neighborhood with a density
greater than the threshold are classi¯ed as `core
points'. Points that are not core points but are
within the neighborhood of a core point are classi-
¯ed as `border points'. Points that neither core
points nor within the neighborhood of any core
point are classi¯ed as `noise points'. Once a cluster is
formed, the algorithm proceeds to the next point
that has not been assigned to a cluster and repeats
the process until all points have been assigned to a
cluster or marked as noise points.

Regardless of the particular clustering ap-
proach, the distance between clusters is typically
measured using a dissimilarity metric, such as Eu-
clidean distance (Jain et al., 1999), dynamic time
warping (Berndt & Cli®ord, 1994), or the Mahla-
nobis Distance (DeMaesschalck et al., 2000). Outliers
can be identi¯ed as data points that do not ¯t into
any of the clusters or that are far away from the
nearest cluster.

5.3. Other approaches

Many other methods for outlier detection have been
developed and described, including autoencoders
(mentioned earlier), geometric models (e.g. angle-
based and depth-based techniques), etc. One im-
portant approach worth mentioning is the Isolation
Forrest (Liu et al., 2012). Isolation Forests work by
randomly selecting a feature and a split point to
create a binary tree. The process is then repeated
until the data points are isolated in individual
`leaves' of the `tree'. Data points that are isolated
with a small number of splits will be considered
outliers. That is, outlier points are expected to re-
quire fewer splits to isolate, as they are further from
the norm than typical data points. Isolation Forest
is fast and scalable, can handle high-dimensional
data, and does not require any assumptions about
the distribution of the data. Additionally, it is

capable of detecting outliers in both structured and
unstructured data, and can handle both continuous
and categorical variables.

In summary, o®line data analysis will be per-
formed in order to characterize detections, as well as
to determine whether outlier events or unusual
objects were detected by environmental sensors.
The above are a few potential ways in which we will
analyze our data. However, the choice of analysis
technique will depend on the nature and char-
acteristics of the data. Each technique has its
advantages and disadvantages, and as such, it will
be important for us to experiment so as to under-
stand which methods are most suitable for our
dataset. Fortunately, all of the above mentioned
approaches (and more) are implemented and readily
available via the popular Python Outlier Detection
library, PyOD (Zhao et al., 2019).

6. Information Security

As described in this paper, the Galileo Project sys-
tem architecture consists of heterogeneous proces-
sing environments, as well as the potential to collect
and produce information of national and global
signi¯cance. As such, ensuring the con¯dentiality,
integrity, and availability of system information
during processing, storage, and transmission is es-
sential to achieving the goals of the Galileo Project,
which include validating hypotheses and drawing
robust conclusions. The con¯dentiality, integrity,
and availability categories of risk, commonly known
as `CIA' in cybersecurity, are widely accepted and
indoctrinated across various standards, tools, and
processes, such as the National Institute of Stan-
dards and Technologies (NIST) Risk Management
Framework (RMF) process (Force, 2019).

The RMF process provides guidance for apply-
ing appropriate risk mitigation strategies in terms of
`security controls'. As an example, the observatory
system will apply security controls for the encryp-
tion of sensitive data at rest and in transit for the
primary purpose of ensuring data integrity. To en-
sure that a comprehensive and appropriate infor-
mation security plan is in place, the observatory
data processing pipeline will follow the NIST RMF
process. This process includes the development and
implementation of a tailored risk assessment and
risk mitigation strategy, producing the System Se-
curity Plan (SSP), Security Assessment Report
(SAR), and `Plans, Assessments, and Plans of
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Action and Milestones' (POAM) artifacts. Certi¯ed
and accredited information security professionals
will oversee the development and execution of the
RMF process. The Galileo System Security Plan
will include a cyber table-top exercise that assesses
the system and associated environments for
unique risk and threat mitigation requirements.
This exercise will leverage MITRE CAPEC (Com-
mon Attack Pattern and Enumerations) de¯nitions
and NIST security control catalog for guid-
ance (Force, 2017).

To facilitate the risk assessment and mitigation
processes, the GP system architecture has been
partitioned into ¯ve distinct security domains. Each
domain has speci¯c system and process attributes
that result in varying security requirements and
mitigation strategies. Table 3 provides an example
of an associated risk and security control (mitiga-
tion strategy) for each of the ¯ve domains of De-
velopment, Edge Gateway, Edge Computing, Cloud
Computing, and Site Installation Location.

7. Conclusion

The Galileo Project is developing a multimodal,
multispectral suite of instruments to detect, track
and classify aerial phenomena. This paper outlines
our Phase 1 computing infrastructure and system

architecture, as well as our proposed real-time pro-
cessing pipeline for detecting and tracking aerial
outliers. In addition, we discuss promising approa-
ches for o®line data analysis and explain how we
plan to ensure the security of our systems and the
data we collect. Overall, our work is an important
step towards an integrated computing platform for
multimodal all-sky observatories designed to moni-
tor a regional airspace for anomalous objects, and
for improving data collection and analysis methods
in UAP research. We hope that this paper will serve
as a valuable starting point and reference for the
development of future computing systems designed
for investigating UAP, inspiring others to contrib-
ute to this fascinating and emerging ¯eld of re-
search.
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Table 3. Security domains with risk and mitigation examples.

Security Domain Trust Level Description

Development Medium This security domain includes the environment, processes, and information for which
the development, maintenance, and support of the system is dependent upon. Most
security controls for this domain will be provided (inherited) via third party services
and environments, though some con¯guration may be necessary (e.g. con¯gure two
factor authentication).

Edge Gateway Low This security domain includes the components of the system that support information
ingress and egress. This domain also includes any user interfaces that support
work°ows such as system maintenance and data analysis on the edge. This domain is
of highest risk, represents the most signi¯cant attack surface (low trust) as well as
limited bandwidth and will require supplemental and tailored security controls.

Edge Computing Medium This security domain includes the components of the system that perform the edge
computing services such as sensors, sensor data processing, and analytics (e.g.
classi¯cation and object tracking). This domain is the second highest risk domain
(medium trust) and will require supplemental and tailored security controls.

Cloud Computing Moderate This security domain includes the components of the system that is hosted in 3rd party
cloud computing environments for post-processing and analysis. Most security
controls for this domain will be inherited by 3rd party services and environments.

Site Installation Location Low This security domain represents the physical installation site and related physical risk
and security concerns. This domain is of highest risk due to the nature of installation
sites likely lacking existing physical security and security monitoring. It is antcipated
that sites may vary greatly with regards to risk posture.
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