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Basic Probability

Three Axioms of Probability

Let S be the sample space and A be an event in S .

1 For any event A, P(A) ≥ 0.
e.g. The probability of getting a heads cannot be -1.

2 P(S) = 1.
e.g. P(heads) + P(tails) = 1

3 If A1,A2, . . . ,An are mutually disjoint, then

P(A1 ∪ A2 ∪ · · · ∪ An) = P(A1) + P(A2) + · · ·+ P(An)

e.g. P(rolling a 3 or rolling a 2) = 1
6 + 1

6 = 1
3

Molly Roberts () Section 1: Probability Review January 26, 2012 3 / 35



Basic Probability

Conditional Probability

P(A|B) =
P(A ∩ B)

P(B)

●

S

A

B

A and B
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Basic Probability

Conditional Probability

P(A|B) =
P(A ∩ B)

P(B)

Multiplicative Law of Probability:

P(A ∩ B) = P(A|B)P(B)

P(B ∩ A) = P(B|A)P(A)

P(B ∩ A) = P(A ∩ B)

P(A|B)P(B) = P(B|A)P(A)

Bayes’ Rule:

P(A|B) =
P(B|A)P(A)

P(B)
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Basic Probability

Side Note: Bayes Rule

Bayes rule will be extremely important going forward.

Why?

Often we want to know P(θ|data).

But what we do know is P(data|θ).

We’ll be able to infer θ by using a variant of Bayes rule. Stay tuned.

Bayes’ Rule:

P(θ|y) =
P(y |θ)P(θ)

P(y)
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Random Variables & Probability Distributions
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Random Variables & Probability Distributions

Random Variables

A random variable is a function from S, the sample space, to R the real
line, e.g. When rolling a two dice, we may be interested in whether or not

the sum of the two dice is 7.
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Random Variables & Probability Distributions

Ex. Waiting for the Redline – How long will it take for the next T to get
here?

X =



1 if the redline arrives within 1 minute
2 if 1− 2 minutes
3 if 2− 3 minutes
4 if 3− 4 minutes
...

...
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Random Variables & Probability Distributions

Ex. Waiting for the Redline Cont

Now, suppose the probability that the T comes in any given minute is a
constant π = .2, and whether the T comes is independent of what has
happened in previous periods.

What’s Pr(X=1)?
Pr(X = 1) = π = .2.

What’s Pr(X=2)?

Pr(X = 2) = (1− π)π = .8 · .2 = .16.

What’s Pr(X=3)?

Pr(X = 3) = (1− π)2π = .82 · .2 = .128

And generally...

Pr(X = x) = (1− π)x−1π = .8x−1 · .2
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Random Variables & Probability Distributions

A Pictorial Representation of the PMF
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X is a Geometric random variable with parameter π = .2.
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Random Variables & Probability Distributions

Probability Density Function

Ex. Waiting for the Redline: an alternative model where Y is exact time
the T arrives.

f (y) = λe−λy = .25e−.25y
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Y is an Exponential random variable with parameter λ = .25.
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Random Variables & Probability Distributions

Ex. Calculating probabilities for continuous RVs

Recall that to identify probabilities for continuous random variables we
have to use:

P(Y ∈ A) =

∫
A
f (y)dy .

Pr(2 ≤ y ≤ 10) =
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Random Variables & Probability Distributions

Probability Density Function

Ex. Waiting for the Redline.: an alternative model where Y is exact time
the T arrives.

f (y) = λe−λy = .25e−.25y
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Random Variables & Probability Distributions

Probability Density Function

Ex. Waiting for the Redline.: an alternative model where Y is exact time
the T arrives.

f (y) = λe−λy = .25e−.25y
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Random Variables & Probability Distributions

Ex. Calculating probabilities for continuous RVs

Recall that to identify probabilities we must use1:

P(Y ∈ A) =

∫
A
f (y)dy .

Pr(2 ≤ y ≤ 10) =

∫ 10

2
.25e−.25ydy

= −e−.25y |102
= −e−.25·10 + e−.25·2

≈ .525

1Here we also use the fact that the antiderivative of ebx is ebx

b
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Random Variables & Probability Distributions

Characteristics of all PDFs and PMFs:

1. The support is all y’s where P(Y = y) > 0.

2. Probability mass/density must integrate to 1

3. P(Y = y) ≥ 0 for all Y

Ex.:

1.
∫∞
0 .25e−.25ydy = −e−.25y |∞0 = 0 + 1 = 1

2. .25e−.25y ≥ 0 for all y ∈ (0,∞)

Molly Roberts () Section 1: Probability Review January 26, 2012 17 / 35



Random Variables & Probability Distributions

Expectation

Discrete Case:

E (X ) =
∑
i

xiP(X = xi )

where P(X = x) is the probability mass function (PMF).

Continuous Case:

E (Y ) =

∫ ∞
−∞

yf (y)dy

where f (y) is the probability density function (PDF).
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Random Variables & Probability Distributions

Our running examples...

Discrete Time:

E (X ) =
∑
i

xiP(X = xi )

=
∞∑

xi=1

xi (1− .2)xi−1 · .2

= 5

Continuous Time:

E (Y ) =

∫ ∞
−∞

yf (y)dy

=

∫ ∞
0

y · .25e−.25ydy

= 4
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Random Variables & Probability Distributions

Expectation of a Function of a Random Variable

Now let’s complicate things: suppose we want to find E [g(X )], where
g(X ) is any function of X .

E [g(X )] =
∑
i

g(xi )P(X = xi )

for discrete random variables

E [g(y)] =

∫ ∞
−∞

g(y)f (y)dy

for continuous random variables.
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Random Variables & Probability Distributions

Return of our running examples

Suppose we want to find E [g(X )], where g(X ) =
√

1 + x .

E [g(X )] =
∑
i

g(xi )P(X = xi )

=
∞∑
x=1

√
1 + x(1− .2)x−1 · .2

E [g(Y )] =

∫ ∞
−∞

g(y)f (y)dx

=

∫ ∞
0

√
1 + y .25e−.25ydy
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Simulation

The Monte Carlo Method

Basic idea: rather than calculate quantities analytically using deterministic
formulae, approximate quantities using random sampling.
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Simulation Example 1: Finding a Mean

Simulating an expectation

E (X ) =
∞∑

xi=1

xi (1− .2)xi−1 · .2

> draws <- rgeom(n = 100000, prob = .2)

> mean(draws)

[1] 4.99796

E (Y ) =

∫ ∞
0

y · .25e−.25ydy

> draws <- rexp(n = 100000, rate = .25)

> mean(draws)

[1] 4.008509

Neither of these are perfectly accurate but they become arbitrarily
accurate as n→∞.
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Simulation Example 1: Finding a Mean

Monte Carlo Integration

What we just did was called Monte Carlo Integration, which means
exactly what it sounds like (doing integrals via Monte Carlo simulation).

If we need to take an integral of the following form:

I =

∫
g(x)f (x)dx

Monte Carlo Integration allows us to approximate it by simulating M
values from f (x) and calculating:

ÎM =
1

M

M∑
i=1

g(x (i))

By the Strong Law of Large Numbers, our estimate ÎM is a simulation
consistent estimator of I as M →∞(our estimate gets better as we
increase the number of simulations).
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Simulation Example 1: Finding a Mean

Back to our examples

E [g(X )] =
∞∑
x=1

√
1 + x(1− .2)x−1.2

Approach:

1. Draw M = 100000 samples from the geometric distribution.

2. Calculate g(x (i)) for each.

3. Find the mean of these.

> draws <- rgeom(n = 100000, prob = .2)

> g.draws <- sqrt(1 + draws)

> mean(g.draws)

[1] 2.312
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Simulation Example 1: Finding a Mean

Back to our examples

E [g(X )] =

∫ ∞
0

√
1 + y .25e−.25ydy

Approach:

1. Draw M = 100000 samples from the exponential distribution.

2. Calculate g(x (i)) for each.

3. Find the mean of these.

> draws <- rexp(n = 100000, rate = .25)

> g.draws <- sqrt(1 + draws)

> mean(g.draws)

[1] 2.096
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Simulation Example 2: Probability

Simulation for Probability Problems

I have an urn composed of 5 red balls and 5 green balls. If I sample 4 balls
without replacement from the urn, what is the probability of drawing 4
balls all of the same color?
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Simulation Example 2: Probability

Here are some steps:

1. Construct our population aka our urn.

2. Figure out how to take one sample from it.

3. Figure out a programming rule for determining whether our condition
was met i.e. we drew ”4 red balls or 4 green balls”.

4. Throw a for loop around it and sample repeatedly.

5. Determine what proportion of times our condition was successful.

Molly Roberts () Section 1: Probability Review January 26, 2012 29 / 35



Simulation Example 2: Probability

1. Construct our population

Here are some possibilities:

> urn <- c("G","G","G","G","G","R","R","R","R","R")

> urn

[1] "G" "G" "G" "G" "G" "R" "R" "R" "R" "R"

> urn <- c(rep("red",5),rep("green",5))

> urn

[1] "red" "red" "red" "red" "red"

"green" "green" "green" "green" "green"

> urn <- c(rep(1,5),rep(0,5))

> urn

[1] 1 1 1 1 1 0 0 0 0 0

I’ll use this last one because numbers will be easier to use later on.
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Simulation Example 2: Probability

2. Figure out how to take one sample

We need to use the sample() function with the replace = FALSE

argument:

> sample(x = urn, size = 4, replace = FALSE)

[1] 1 1 1 0
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Simulation Example 2: Probability

3. Determine if a success or failure

Because we used numeric signifiers for red and green, there is an easy test
for whether or not we have drawn balls of all one color. If the numbers
sum up to either 0 or 4, then we have a ’success’.

> draw <- sample(x = urn, size = 4, replace = FALSE)

> draw

[1] 0 0 0 0

> sum(draw) == 4

[1] FALSE

> sum(draw) == 0

[1] TRUE

But we can combined these test using ‘|’ which means ‘or’

> sum(draw == 4) | sum(draw == 0)

[1] TRUE
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Simulation Example 2: Probability

4. Throw a for-loop around it

Here’s our guts so far:

draw <- sample(x = urn, size = 4, replace = FALSE)

success <- sum(draw == 4) | sum(draw == 0)

We can repeat this ad nauseum:

sims <- 1000

success <- NULL

for(i in 1:sims){

draw <- sample(x = urn, size = 4, replace = FALSE)

success[i] <- sum(draw) == 4 | sum(draw) == 0

}
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Simulation Example 2: Probability

5. Determine proportion of success

Here are two equivalent approaches.

> sum(success)/sims

[1] 0.047

> mean(success)

[1] 0.047
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Simulation Example 3: Integrating the Normal Density

Why is this useful?

Math is hard or impossible and takes too long.

Consider trying to integrate

I (f ) =
1

2π

∫ 1

0
e−

x2

2 dx

Which is the standard normal density and cannot be evaluated in
closed form.

How could we solve this?
1 Sample 1000 points, X1, . . . ,X1000, uniformly distributed over the

interval (0, 1).
2 Evaluate the function at each of these points and take the mean.

1

1000

(
1

2π

) 1000∑
i=1

e−
X2
i
2
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