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Replication Paper

Replication Paper

Read ”How to Write a Publishable Paper” on Gary’s website and
”Publication, Publication”.

Find a partner.

Find a set of papers you would be interested in replicating.
1 Recently published (in the last two years).
2 From a good journal.
3 Use methods at least as sophisticated as in this class.

E-mail us (Gary, Jen, and Molly) to get our opinion.

Find the data.
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An R Note on the Homework

An R Note on the Homework

How would we find the expected value of a distribution analytically in
R?

For example, Y ∼ Normal(µ, σ2), where µ = 6, σ2 = 3.

In math, we want to integrate∫ ∞
−∞

x
1√

2πσ2
e−

(x−µ)2

2σ2 dx

Plugging in for µ and σ∫ ∞
−∞

x
1√

2 ∗ 3π
e−

(x−6)2

2∗3 dx
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An R Note on the Homework

An R Note on the Homework cont

1 First, we would write a function of what we want to integrate out:

ex.normal <- function(x){

x*1/(sqrt(6*pi))*exp(-(x-6)^2/6)

}

2 Use integrate to get the expected value.

integrate(ex.normal, lower=-Inf, upper=Inf)

6 with absolute error < 0.00016
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Probability Distributions

Why become familiar with probability distributions?

You can fit models to a variety of data.

What do you have to do to use probability distributions?

You have to recognize what data you are working with.

What’s the best way to learn the distributions? Learn the “stories”
behind them.
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Probability Distributions Discrete Distributions

The Bernoulli Distribution

Takes value 1 with success probability π and value 0 with failure
probability 1− π.

Ideal for modelling one-time yes/no (or success/failure) events.

The best example is one coin flip – if your data resemble a single coin
flip, then you have a Bernoulli distribution.

ex) one voter voting yes/no

ex) one person being either a man/woman

ex) the Patriots winning/losing the Super Bowl
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Probability Distributions Discrete Distributions

The Bernoulli Distribution

Y ∼ Bernoulli(π)

y = 0, 1

probability of success: π ∈ [0, 1]

p(y |π) = πy (1− π)(1−y)

E (Y ) = π

Var(Y ) = π(1− π)
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Probability Distributions Discrete Distributions

The Binomial Distribution

The Binomial distribution is the total of a bunch of Bernoulli trials.

You flip a coin three times and count the total number of heads you
got. (The order doesn’t matter.)

The number of women in a group of 10 Harvard students

The number of rainy days in the seven week
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Probability Distributions Discrete Distributions

The Binomial Distribution

Histogram of Binomial(20,.3)
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Y ∼ Binomial(n, π)

y = 0, 1, . . . , n

number of trials: n ∈ {1, 2, . . . }

probability of success: π ∈ [0, 1]

p(y |π) =
(n
y

)
πy (1− π)(n−y)

E (Y ) = nπ

Var(Y ) = nπ(1− π)
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Probability Distributions Discrete Distributions

The Multinomial Distribution

Suppose you had more than just two outcomes – e.g., vote for
Republican, Democrat, or Independent. Can you use a binomial?

We can’t use a binomial, because a binomial requires two
outcomes(yes/no, 1/0, etc.). Instead, we use the multinomial.

Multinomial lets you work with several mutually exclusive outcomes.

For example:

you toss a die 15 times and get outcomes 1-6
ten undergraduate students are classified freshmen, sophomores,
juniors, or seniors
Gov graduate students divided into either American, Comparative,
Theory, or IR
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Probability Distributions Discrete Distributions

The Multinomial Distribution

Y ∼ Multinomial(n, π1, . . . , πk)

yj = 0, 1, . . . , n;
∑k

j=1 yj = n

number of trials: n ∈ {1, 2, . . . }

probability of success for j : πj ∈ [0, 1];
∑k

j=1 πj = 1

p(y|n,π) = n!
y1!y2!...yk !

πy11 π
y2
2 . . . πykk

E (Yj) = nπj

Var(Yj) = nπj(1− πj)
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Probability Distributions Discrete Distributions

The Poisson Distribution

Represents the number of events occurring in a fixed period of time.

Can also be used for the number of events in other specified intervals
such as distance, area, or volume.

Can never be negative – so, good for modeling events.

For example:

The number Prussian solders who died each year by being kicked in the
head by a horse (Bortkiewicz, 1898)
The of number shark attacks in Australia per month
The number of search warrant requests a federal judge hears in one year
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Probability Distributions Discrete Distributions

The Poisson Distribution

Histogram of Poisson(5)
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Y ∼ Poisson(λ)

y = 0, 1, . . .

expected number of occurrences:
λ > 0

p(y |λ) = e−λλy

y !

E (Y ) = λ

Var(Y ) = λ
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Probability Distributions Continuous Distributions
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Probability Distributions Continuous Distributions

The Univariate Normal Distribution

Describes data that cluster in a bell curve around the mean.

A lot of naturally occurring processes are normally distributed.

For example:

the weights of male students in our class
high school students’ SAT scores
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Probability Distributions Continuous Distributions

The Univariate Normal Distribution
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Y ∼ Normal(µ, σ2)

y ∈ R

mean: µ ∈ R

variance: σ2 > 0

p(y |µ, σ2) =
exp

(
− (y−µ)2

2σ2

)
σ
√
2π

E (Y ) = µ

Var(Y ) = σ2
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Probability Distributions Continuous Distributions

The Uniform Distribution

Any number in the interval you chose is equally probable.

Intuitively easy to understand, but hard to come up with examples.
(Easier to think of discrete uniform examples.) For example:

the numbers that come out of random number generators
the number of a person who comes in first in a races (discrete)
the lottery tumblers out of which a person draws one ball with a
number on it (also discrete)
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Probability Distributions Continuous Distributions

The Uniform Distribution
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Y ∼ Uniform(α, β)

y ∈ [α, β]

Interval: [α, β]; β > α

p(y |α, β) = 1
β−α

E (Y ) = α+β
2

Var(Y ) = (β−α)2
12
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Probability Distributions Continuous Distributions

Quiz: Test Your Knowledge of Discrete Distributions

Are the following Bernoulli (coin flip), Binomial(several coin flips),
Multinomial (Rep, Dem, Indep), Poisson (Prussian soldier deaths), Normal
(SAT scores), or Uniform (race numbers)?

The heights of trees on campus?

The number of airplane crashes in one year?

A yes or no vote cast by Senator Brown?

The number of parking tickets Cambridge PD gives out in one month?

The poll your Facebook friends took to choose their favorite sport out
of football, basketball, and soccer

The time until a country adopts a treaty?
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Basic Likelihood

Likelihood

The whole point of likelihood is to leverage information about the data
generating process into our inferences.

Here are the basic steps:

Think about your data generating process. (What do the data look
like? Use your substantive knowledge.)

Find a distribution that you think explains the data. (Poisson,
Binomial, Normal? Something else?)

Derive the likelihood.

Maximize the likelihood to get the MLE.

Note: This is the case in the univariate context. We’ll be introducing
covariates later on in the term.
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Basic Likelihood

Likelihood: An Example

Ex. Waiting for the Redline – How long will it take for the next T to get
here?
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Basic Likelihood

Likelihood: Waiting for the Redline
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Y is a Exponential random variable with parameter λ = .25.

f (y) = λe−λy = .25e−.25y
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Basic Likelihood

Likelihood: Waiting for the Redline

Last week we assumed λ to get the probability of waiting for the redline
for X mins.

λ = .25→ data.

p(y |λ = .25) = .25e−.25y → p(2 < y < 10|λ) = .525

This week we will observe the data to get the probability of λ.

data→ λ.

p(λ|y) = ?
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Basic Likelihood

Likelihood: Waiting for the Redline

From Bayes’ Rule:

p(λ|y) =
p(y |λ)p(λ)

p(y)

Let

k(y) =
p(λ)

p(y)

(Note that the λ in k(y) is the true λ, a constant that doesn’t vary.
So k(y) is just a function of y .)

Define L(λ|y) = p(y |λ)k(y)

→ L(λ|y) ∝ p(y |λ)
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Basic Likelihood

Monday Data

L(λ|y1) ∝ p(y1|λ)

= λe−λ∗y1

= λe−λ∗12
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Basic Likelihood

Plotting the likelihood

First, note that we can take advantage of a lot of pre-packaged R
functions

rbinom, rpoisson, rnorm, runif → gives random values from that
distribution

pbinom, ppoisson, pnorm, punif→ gives the cumulative distribution
(the probability of that value or less)

dbinom, dpoisson, dnorm, dunif→ gives the density (i.e., height of
the PDF – useful for drawing)

qbinom, qpoisson, qnorm, qunif→ gives the quantile function
(given quantile, tells you the value)
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Basic Likelihood

Plotting the example

We want to plot L(λ|y) ∝ λe−λ∗12

dexp(x, rate, log=FALSE)

e.g. dexp(12, .25)

[1] 0.01244677

curve(dexp(12, rate = x),

xlim =c(0,1), xlab ="lambda", ylab = "likelihood")
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Basic Likelihood

Plotting the example
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What do you think the maximum likelihood estimate will be?
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Basic Likelihood

Solving Using R

1 Write a function.

expon <- function(lambda,data) {

-lambda*exp(-lambda*data)

}

2 Optimize.

optimize(f=expon, data=12, lower=0, upper=100)

3 Output

$minimum

[1] 0.0833248

$objective

[1] -0.03065662
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Basic Likelihood

Where are we going with this?

What if we have two or more data points that we believe come from
the same model?

We can derive a likelihood for the combined data by multiplying the
independent likelihoods together.
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Basic Likelihood

Tuesday Data

L(λ|y2) ∝ p(y2|λ)

= λe−λ∗y2

= λe−λ∗7
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Basic Likelihood

Likelihood for Monday and Tuesday

Remember that for independent events:

P(A,B) = P(A)P(B)

L(λ|y1, y2) = λe−λ∗y1 ∗ λe−λ∗y2

= λe−λ∗12 ∗ λe−λ∗7
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Basic Likelihood

A Whole Week of Data

L(λ|y1 . . . y5) =
5∏

i=1

λe−λ∗yi

= λe−λ∗y1 ∗ λe−λ∗y2 ∗ λe−λ∗y3 ∗ λe−λ∗y4 ∗ λe−λ∗y5

= λe−λ∗12 ∗ λe−λ∗7 ∗ λe−λ∗4 ∗ λe−λ∗19 ∗ λe−λ∗2
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Transforming Distributions

Transforming Distributions

X ∼ p(x |θ)
y = g(x)
How is y distributed?

For example, if X ∼ Exponential(λ = 1) and y = log(x)

y ∼?
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Transforming Distributions

Transforming Distributions

It is NOT true that p(y |θ) ∼ g(p(x |θ)). Why?
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Transforming Distributions

Transforming Distributions

The Rule

X ∼ px(x |θ)

y = g(x)

py (y) = px(g−1(y))

∣∣∣∣dg−1dy

∣∣∣∣
What is g−1(y)?

What is
∣∣∣dg−1

dy

∣∣∣? The Jacobian.
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Transforming Distributions

Transforming Distributions – the log-Normal Example

For example,

X ∼ Normal(x |µ = 0, σ = 1)

y = g(x) = ex

what is g−1(y)?

g−1(y) = x = log(y)

What is dg−1

dy ?

d(log(y))

dy
=

1

y
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Transforming Distributions

Transforming Distributions – the log-Normal Example

Put it all together

py (y) = px (log(y))

∣∣∣∣1y
∣∣∣∣

Notice we don’t need the absolute value because y > 0.

py (y) =
1√
2π

e−
1
2
(log(y))2 1

y

Y ∼ log-Normal(0, 1)

Challenge: derive the chi-squared distribution.
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