Intro to Likelihood

Gov 2001 Section

February 2, 2012

Gov 2001 Section ()

Intro to Likelihood

February 2, 2012 1 / 44

э

Outline

Replication Paper

- 2 An R Note on the Homework
- Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
 - Basic Likelihood
- 5 Transforming Distributions

-

47 ▶

Replication Paper

- Read "How to Write a Publishable Paper" on Gary's website and "Publication, Publication".
- Find a partner.
- Find a set of papers you would be interested in replicating.
 - Recently published (in the last two years).
 - From a good journal.
 - **③** Use methods at least as sophisticated as in this class.
- E-mail us (Gary, Jen, and Molly) to get our opinion.
- Find the data.

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

Replication Paper

An R Note on the Homework

Probability Distributions
 Discrete Distributions

- Continuous Distributions
- 4 Basic Likelihood
- 5 Transforming Distributions

3

(日) (同) (三) (三)

An R Note on the Homework

- How would we find the expected value of a distribution analytically in R?
- For example, $Y \sim Normal(\mu, \sigma^2)$, where $\mu = 6, \sigma^2 = 3$.
- In math, we want to integrate

$$\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

• Plugging in for μ and σ

$$\int_{-\infty}^{\infty} x \frac{1}{\sqrt{2*3\pi}} e^{-\frac{(x-6)^2}{2*3}} dx$$

An R Note on the Homework cont

- First, we would write a function of what we want to integrate out: ex.normal <- function(x){ x*1/(sqrt(6*pi))*exp(-(x-6)^2/6) }
- Use integrate to get the expected value. integrate(ex.normal, lower=-Inf, upper=Inf)
 - 6 with absolute error < 0.00016

- 4 同 6 4 日 6 4 日 6

Outline

- 1 Replication Paper
- 2 An R Note on the Homework
- 3 Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
 - Basic Likelihood
 - 5 Transforming Distributions

-

.∃ >

< 🗗 🕨

Why become familiar with probability distributions?

• You can fit models to a variety of data.

What do you have to do to use probability distributions?

- You have to recognize what data you are working with.
- What's the best way to learn the distributions? Learn the "stories" behind them.

Outline

- 2 An R Note on the Homework
- Probability Distributions
 Discrete Distributions
 Continuous Distributions
 - Basic Likelihood
- 5 Transforming Distributions

∃ → < ∃</p>

< 4 **₽** ► <

The Bernoulli Distribution

- Takes value 1 with success probability π and value 0 with failure probability 1π .
- Ideal for modelling **one-time** yes/no (or success/failure) events.
- The best example is **one** coin flip if your data resemble a single coin flip, then you have a Bernoulli distribution.
- ex) one voter voting yes/no
- ex) one person being either a man/woman
- ex) the Patriots winning/losing the Super Bowl

The Bernoulli Distribution

 $Y \sim \text{Bernoulli}(\pi)$

y = 0, 1

probability of success: $\pi \in [0,1]$

$$p(y|\pi) = \pi^{y}(1-\pi)^{(1-y)}$$

 $E(Y) = \pi$

 $\mathsf{Var}(Y) = \pi(1-\pi)$

Discrete Distributions

The Binomial Distribution

- The Binomial distribution is the total of a bunch of Bernoulli trials.
- You flip a coin three times and count the total number of heads you got. (The order doesn't matter.)
- The number of women in a group of 10 Harvard students
- The number of rainy days in the seven week

The Binomial Distribution

$$Y \sim \mathsf{Binomial}(n,\pi)$$

$$y = 0, 1, ..., n$$

number of trials: $n \in \{1, 2, \dots\}$

probability of success: $\pi \in [0,1]$

(日) (同) (三) (三)

$$p(y|\pi) = \binom{n}{y} \pi^y (1-\pi)^{(n-y)}$$

$$E(Y) = n\pi$$

 $\operatorname{Var}(Y) = n\pi(1-\pi)$

The Multinomial Distribution

- Suppose you had more than just two outcomes e.g., vote for Republican, Democrat, or Independent. Can you use a binomial?
- We can't use a binomial, because a binomial requires two outcomes(yes/no, 1/0, etc.). Instead, we use the multinomial.
- Multinomial lets you work with several mutually exclusive outcomes.

For example:

- you toss a die 15 times and get outcomes 1-6
- ten undergraduate students are classified freshmen, sophomores, juniors, or seniors
- Gov graduate students divided into either American, Comparative, Theory, or IR

イロト イポト イヨト イヨト 二日

The Multinomial Distribution

$$Y \sim \mathsf{Multinomial}(n, \pi_1, \dots, \pi_k)$$

$$y_j = 0, 1, \dots, n; \ \sum_{j=1}^k y_j = n$$

number of trials: $n \in \{1, 2, \dots\}$

probability of success for $j: \pi_j \in [0, 1]; \sum_{j=1}^k \pi_j = 1$

$$p(\mathbf{y}|n, \pi) = rac{n!}{y_1!y_2!\dots y_k!} \pi_1^{y_1} \pi_2^{y_2} \dots \pi_k^{y_k}$$

 $E(Y_j) = n\pi_j$

 $\mathsf{Var}(Y_j) = n\pi_j(1-\pi_j)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

The Poisson Distribution

- Represents the number of events occurring in a fixed period of time.
- Can also be used for the number of events in other specified intervals such as distance, area, or volume.
- Can never be negative so, good for modeling events.

For example:

- The number Prussian solders who died each year by being kicked in the head by a horse (Bortkiewicz, 1898)
- The of number shark attacks in Australia per month
- The number of search warrant requests a federal judge hears in one year

イロト 不得下 イヨト イヨト

The Poisson Distribution

Gov 2001 Section ()

February 2, 2012 17 / 44

Outline

- 2 An R Note on the Homework
- Probability Distributions
 Discrete Distributions
 - Continuous Distributions
 - Basic Likelihood
- 5 Transforming Distributions

3

()

- ∢ ศ⊒ ▶

The Univariate Normal Distribution

- Describes data that cluster in a bell curve around the mean.
- A lot of naturally occurring processes are normally distributed.

For example:

- the weights of male students in our class
- high school students' SAT scores

The Univariate Normal Distribution

Gov 2001 Section ()

February 2, 2012 20 / 44

The Uniform Distribution

- Any number in the interval you chose is equally probable.
- Intuitively easy to understand, but hard to come up with examples. (Easier to think of discrete uniform examples.) For example:
 - the numbers that come out of random number generators
 - the number of a person who comes in first in a races (discrete)
 - the lottery tumblers out of which a person draws one ball with a number on it (also discrete)

The Uniform Distribution

Gov 2001 Section ()

February 2, 2012 22 / 44

Quiz: Test Your Knowledge of Discrete Distributions

Are the following Bernoulli (coin flip), Binomial(several coin flips), Multinomial (Rep, Dem, Indep), Poisson (Prussian soldier deaths), Normal (SAT scores), or Uniform (race numbers)?

- The heights of trees on campus?
- The number of airplane crashes in one year?
- A yes or no vote cast by Senator Brown?
- The number of parking tickets Cambridge PD gives out in one month?
- The poll your Facebook friends took to choose their favorite sport out of football, basketball, and soccer
- The time until a country adopts a treaty?

- 3

・ロト ・四ト ・ヨト ・ヨト

Outline

- Replication Paper
- 2 An R Note on the Homework
- Probability DistributionsDiscrete Distributions
 - Continuous Distributions

Basic Likelihood

Transforming Distributions

(日) (同) (三) (三)

Likelihood

The whole point of likelihood is to leverage information about the data generating process into our inferences.

Here are the basic steps:

- Think about your data generating process. (What do the data look like? Use your substantive knowledge.)
- Find a distribution that you think explains the data. (Poisson, Binomial, Normal? Something else?)
- Derive the likelihood.
- Maximize the likelihood to get the MLE.

Note: This is the case in the univariate context. We'll be introducing covariates later on in the term.

- 3

(日) (周) (三) (三)

Likelihood: An Example

 \underline{Ex} . Waiting for the Redline – How long will it take for the next T to get here?

E ▶.

Likelihood: Waiting for the Redline

Exponential Distribution

Y is a Exponential random variable with parameter $\lambda = .25$.

$$f(y) = \lambda e^{-\lambda y} = .25e^{-.25y}$$

Gov 2001 Section ()

February 2, 2012 27 / 44

___ ▶

Likelihood: Waiting for the Redline

Last week we assumed λ to get the probability of waiting for the redline for X mins.

•
$$\lambda = .25 \rightarrow data$$
.

•
$$p(y|\lambda = .25) = .25e^{-.25y} \rightarrow p(2 < y < 10|\lambda) = .525$$

This week we will observe the data to get the probability of λ .

- data $\rightarrow \lambda$.
- $p(\lambda|y) = ?$

Likelihood: Waiting for the Redline

• From Bayes' Rule:

$$p(\lambda|y) = \frac{p(y|\lambda)p(\lambda)}{p(y)}$$

Let

$$k(y) = \frac{p(\lambda)}{p(y)}$$

(Note that the λ in k(y) is the true λ , a constant that doesn't vary. So k(y) is just a function of y.)

- Define $L(\lambda|y) = p(y|\lambda)k(y)$
- $\rightarrow L(\lambda|y) \propto p(y|\lambda)$

イロト 不得下 イヨト イヨト

Monday Data

$$L(\lambda|y_1) \propto p(y_1|\lambda)$$

= $\lambda e^{-\lambda * y_1}$
= $\lambda e^{-\lambda * 12}$

Gov 2001 Section ()

Intro to Likelihood

February 2, 2012 30 / 44

3

<ロ> (日) (日) (日) (日) (日)

Plotting the likelihood

First, note that we can take advantage of a lot of pre-packaged R functions

- \bullet rbinom, rpoisson, rnorm, runif \rightarrow gives random values from that distribution
- pbinom, ppoisson, pnorm, punif→ gives the cumulative distribution (the probability of that value or less)
- dbinom, dpoisson, dnorm, dunif→ gives the density (i.e., height of the PDF – useful for drawing)
- qbinom, qpoisson, qnorm, qunif \rightarrow gives the quantile function (given quantile, tells you the value)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Plotting the example

```
We want to plot L(\lambda|y) \propto \lambda e^{-\lambda * 12}
```

```
dexp(x, rate, log=FALSE)
```

```
e.g. dexp(12, .25)
[1] 0.01244677
```

```
curve(dexp(12, rate = x),
    xlim =c(0,1), xlab ="lambda", ylab = "likelihood")
```

Plotting the example

What do you think the maximum likelihood estimate will be?

Gov 2001 Section ()

Intro to Likelihood

February 2, 2012 33 / 44

Solving Using R

Write a function.

```
expon <- function(lambda,data) {</pre>
-lambda*exp(-lambda*data)
}
```

Optimize.

optimize(f=expon, data=12, lower=0, upper=100)

Output

\$minimum [1] 0.0833248

\$objective [1] -0.03065662

- 4 同 6 4 日 6 4 日 6

Where are we going with this?

- What if we have two or more data points that we believe come from the same model?
- We can derive a likelihood for the combined data by multiplying the independent likelihoods together.

- 4 同 6 4 日 6 4 日 6

Tuesday Data

$$L(\lambda|y_2) \propto p(y_2|\lambda)$$

= $\lambda e^{-\lambda * y_2}$
= $\lambda e^{-\lambda * 7}$

Gov 2001 Section ()

Intro to Likelihood

February 2, 2012 36 / 44

3

<ロ> (日) (日) (日) (日) (日)

Likelihood for Monday and Tuesday

Remember that for independent events:

P(A,B) = P(A)P(B)

$$L(\lambda|y_1, y_2) = \lambda e^{-\lambda * y_1} * \lambda e^{-\lambda * y_2}$$
$$= \lambda e^{-\lambda * 12} * \lambda e^{-\lambda * 7}$$

Gov 2001 Section ()

February 2, 2012 37 / 44

(日) (同) (三) (三)

A Whole Week of Data

$$L(\lambda|y_1...y_5) = \prod_{i=1}^5 \lambda e^{-\lambda * y_i}$$

= $\lambda e^{-\lambda * y_1} * \lambda e^{-\lambda * y_2} * \lambda e^{-\lambda * y_3} * \lambda e^{-\lambda * y_4} * \lambda e^{-\lambda * y_5}$
= $\lambda e^{-\lambda * 12} * \lambda e^{-\lambda * 7} * \lambda e^{-\lambda * 4} * \lambda e^{-\lambda * 19} * \lambda e^{-\lambda * 2}$

3

<ロ> (日) (日) (日) (日) (日)

Outline

- Replication Paper
- 2 An R Note on the Homework
- 3 Probability Distributions
 - Discrete Distributions
 - Continuous Distributions
- Basic Likelihood
- 5 Transforming Distributions

э

(日) (同) (三) (三)

Transforming Distributions

- $X \sim p(x|\theta)$
- y = g(x)
- How is y distributed?

For example, if $X \sim Exponential(\lambda = 1)$ and y = log(x)

Transforming Distributions

• It is NOT true that $p(y|\theta) \sim g(p(x|\theta))$. Why?

Transforming Distributions

The Rule

- $X \sim p_x(x|\theta)$
- y = g(x)

$$p_y(y) = p_x(g^{-1}(y)) \left| \frac{dg^{-1}}{dy} \right|$$

What is g⁻¹(y)?
What is \left| \frac{dg^{-1}}{dy} \right|? The Jacobian.

(日) (周) (三) (三)

- 2

Transforming Distributions – the log-Normal Example

For example,

- $X \sim Normal(x|\mu = 0, \sigma = 1)$
- $y = g(x) = e^x$
- what is $g^{-1}(y)$?

$$g^{-1}(y) = x = \log(y)$$

• What is $\frac{dg^{-1}}{dy}$?

$$\frac{d(\log(y))}{dy} = \frac{1}{y}$$

Gov 2001 Section ()

February 2, 2012 43 / 44

イロト イポト イヨト イヨト 二日

Transforming Distributions – the log-Normal Example

Put it all together

$$p_y(y) = p_x(log(y)) \left| \frac{1}{y} \right|$$

• Notice we don't need the absolute value because y > 0.

$$p_y(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\log(y))^2} \frac{1}{y}$$

- $Y \sim \log$ -Normal(0, 1)
- Challenge: derive the chi-squared distribution.

Gov	2001	Section	C
-----	------	---------	---