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Abstract

Registration is an important component of medical image analysis and for analysing large amounts of data it is desirable to have fully
automatic registration methods. Many different automatic registration methods have been proposed to date, and almost all share a
common mathematical framework — one of optimising a cost function. To date little attention has been focused on the optimisation
method itself, even though the success of most registration methods hinges on the quality of this optimisation. This paper examines the
assumptions underlying the problem of registration for brain images using inter-modal voxel similarity measures. It is demonstrated that
the use of local optimisation methods together with the standard multi-resolution approach is not sufficient to reliably find the global
minimum. To address this problem, a global optimisation method is proposed that is specifically tailored to this form of registration. A
full discussion of all the necessary implementation details is included as this is an important part of any practical method. Furthermore,
results are presented for inter-modal, inter-subject registration experiments that show that the proposed method is more reliable at finding
the global minimum than several of the currently available registration packages in common usage.  2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction practice, this formulation relies on the use of a global
optimisation method. This optimisation method is crucial

Registration is an important component in many medical for obtaining good registrations. However, to date most
image analysis applications. It is used in motion correction, attention has been focused on other aspects of the problem,
multi-modal fusion, mapping to Talairach space and many such as defining cost functions, rather than on the optimi-
other tasks. When analysing large quantities of data, such sation method.
as in a clinical study or within a busy imaging unit, it is Most of the mathematical optimisation methods that
desirable to have fully automatic registration methods. exist are only suitable for local optimisation and therefore
Such methods aim to offer reliability and repeatability as will not find the global solution in general. These methods
well as minimising user interaction. include gradient descent, Powell’s method, simplex meth-

A standard method of solving the registration problem is ods and so on (Press et al., 1995). Furthermore, although
to treat it as a mathematical optimisation, using a cost (or some global optimisation methods exist (such as Genetic
similarity) function to quantify the quality of the alignment Algorithms and Simulated Annealing), many of the meth-
of the two images for any given transformation. In ods require a very large number of iterations to satisfy

statistical convergence criteria (Geman and Geman, 1984;
Ingber, 1989). It is therefore the speed of the global*Corresponding author. Tel.: 144-1865-222-739; fax: 144-1865-222-
optimisation methods that is the limiting factor for their717.
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the cost function is particularly time consuming for similarity (7 DOF) transformations as particular cases.
volumetric registration using voxel similarity measures. However, even for these simple cases, with a maximum of
Consequently, although some existing global optimisation 12 DOF for the entire volume, the registration problem is
techniques may be viable (such as Genetic Algorithms) the still difficult. Therefore this paper examines these affine
majority of existing registration methods opt for local transformations because they are the simplest, most com-
optimisation in order to increase the speed. mon transformations used and, furthermore, many non-

In an attempt to solve the global optimisation problem in linear methods rely on having an initial affine fit as a
a reasonable amount of time, many registration methods preprocessing step.
rely on a multi-resolution approach in the hope that local
optimisation will then find the global minimum. The 2.1. Interpolation
assumption is that it is easier to find the global minimum at
a coarse resolution (when using large sub-sampling), since For discrete data, the intensity is normally only defined
larger transformation steps can be taken, which should on a grid, of discrete locations or lattice sites. To evaluate
reduce the chance of there being a local minimum between the intensity at intermediate locations requires interpola-
the initial starting position and the global minimum. This tion. The interpolation can be viewed as reconstructing a
global minimum is then refined by applying successive full continuous image from the discrete points, although to
local optimisations at a series of different resolutions. evaluate the cost function it is usually only necessary to

This paper examines affine registration of brain images know the intensity at the corresponding lattice sites.
using inter-modal voxel similarity measures such as the Typically, interpolation methods are based on a convolu-
Correlation Ratio (Roche et al., 1998) and Mutual In- tion of the discrete data with some continuous kernel such
formation (Viola and Wells, 1997; Maes et al., 1997). It as trilinear, spline and (windowed) sinc kernels.
initially considers the assumptions underlying the registra- One major effect that the choice of interpolation has is
tion problem (Sections 2 and 3) and then proposes a fast in determining the degree that the cost function becomes
global optimisation method (Section 4) that is specifically continuous or discontinuous with respect to changes in the
tailored to this registration problem. A full discussion of transformation parameters. This is also affected by the
all the necessary implementation details (Section 5) is boundary conditions used, such as: padding with zeros;
given next, and then results are presented (Section 6) that using an arbitrary intensity class that is later discarded; or
compare the method with several currently available by only using voxels in the overlapping volume. Studying
registration packages in common usage. These results the precise effects of interpolation is an active research
show that the proposed method is more reliable at finding area (Hajnal et al., 1995; Pluim et al., 2000; Thacker et al.,
the global minimum than the other packages. Furthermore, 1999) but is beyond the scope of this paper. Therefore, in
using the above results, together with different tests which this paper trilinear interpolation is used on the overlapping
compare various optimisation schemes and cost functions, volume. These choices require no additional parameters to
it is demonstrated that the use of local optimisation be set and were motivated largely by experience.
methods together with the standard multi-resolution ap-
proach is not sufficient to reliably find the global mini- 2.2. Cost functions and optimisation
mum.

For this paper it is the intensity-based inter-modal cost
functions that are investigated: for example, Mutual In-

2. Mathematical formulation formation, Correlation Ratio, etc. These are difficult to
optimise, since there are many non-linear, potentially

The standard registration problem is to find a trans- discontinuous terms involved that result in functions that
rformation that best aligns a reference image I to another are non-smooth and irregular. In general, though, all cost

f(floating) image I . This is formulated as a mathematical functions require global optimisation.
problem by taking a cost function, C(I ,I ), that quantifies The theoretical registration problem, as posed above, is1 2

the quality of the registration and then finding the trans- fully specified by a transformation space, an interpolation
* *formation T which gives the minimum cost: T 5 method and a cost function. However, in practice, an

r fargmin C(I ,I + T ) where S is the space of allowable optimisation method is required to find the transformationT [S TT f ftransformations, and I + T represents the image I after it that minimises the cost function. It is necessary that the
has been transformed by the transformation T. method be capable of finding the global minimum rather

It is necessary when beginning to formulate an approach than one of the more common local minima.
to the registration problem to decide what will be the space Although there do exist general global optimisation
of allowable transformations, S . One basic class of methods (Genetic Algorithms and Simulated AnnealingT

transformations are the affine transformations which, in being notable examples), it has been shown (in the No Free
three dimensions, have 12 degrees of freedom (DOF). Lunch theorem (Wolpert and Macready, 1996)) that there
These transformations include rigid body (6 DOF) and is no general method that is superior for all problems.
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Therefore the method used should ideally be tuned for the applications of the local optimisation algorithm, converge
particular problem at hand — in this case, volumetric to that minimum. This basin depends on the precise
registration using voxel similarity measures. optimisation algorithm used and can have very compli-

The performance of the optimisation method is im- cated boundaries, often with a fractal nature.
portant since evaluating the cost function requires a large However, these assumptions do not always hold. The
amount of computation. This, together with the general following describes some cases where they are not valid.
combinatorial explosion which occurs for higher dimen- • If the cost function for some extreme transformation

12sional spaces (for example, 5 ) makes any simple search gives a low value then the global minimum will be (at
algorithm impractical. For example, a search which uses N least degenerately) given by this limiting case. For
values per degree of freedom D, with a cubic voxel size of example, large scalings can create low cost values even
n mm (n-mm resolution) and a fixed FOV, requires a though the registration is poor. Furthermore, limiting

D 3number of calculations that is proportional to N /n . In the domain is not a general solution to this as it would
our implementation a single cost function at 1-mm res- be necessary to guarantee that the cost at the edge of the
olution takes approximately 1 second to calculate, so that domain was higher than the global minimum value
with only N 5 10 values per parameter, the total search which is unknown.
time would be approximately 11 days with six DOF • Sub-sampling to lower resolutions may not reduce the
(D 5 6) and over 10000 years for the full 12 DOF! number of local minima sufficiently. In fact, some work

To overcome these problems, one common tactic is to on interpolation (Pluim et al., 2000) has shown how it
adopt a multi-resolution approach in conjunction with a can actually create additional local minima.
local optimisation method (Woods et al., 1993; Studholme • Minima can move in scale-space, so that the location of
et al., 1996), that is, to start at a coarse resolution of n mm a minimum for some sub-sampling may fall inside the
(where the volume is sub-sampled such that the voxel basin of attraction of a different minimum for another
side-length becomes n mm), find a solution with the local sub-sampling.
optimisation method and then refine the solution by To develop a reliable, automatic registration method it is
progressively increasing the resolution (decreasing the necessary to examine these assumptions and tailor the
value of n). For instance, a method may start with n 5 9 method to this problem. In order to do this the characteris-
then progress to n 5 3 and finally to n 5 1. tics of typical cost functions need to be understood, and

An advantage of this multi-resolution approach is that these are examined in the next section.
the initial optimisation, at large n, has a dramatically
reduced computational load, since the number of sample
points is substantially less. In addition, for large sub- 3. Characterisation of cost functions
samplings it should be the gross features of the image
which dominate, and so the overall alignment should be In this section, the behaviour of five different inter-
easier to find. This belief is equivalent to saying that there modal cost functions will be examined. The cost functions
are less local minima for the optimisation method to get that will be compared here are: the Woods function
caught in, although, as has been shown in (Pluim et al., (Woods et al., 1993), Correlation Ratio (Roche et al.,
2000) that this is not necessarily true. 1998), Joint Entropy (Studholme et al., 1995; Collignon et

al., 1995), Mutual Information (Viola and Wells, 1997;
2.3. Difficulties Maes et al., 1997), and Normalised Mutual Information

(Studholme et al., 1999; Maes, 1998). Definitions of these
The standard formulation for cost function optimisation functions are given in Table 1. Note that to form the cost

described above, is based on the assumption: functions it is necessary that low values represent good
1. The location of the global minimum of the cost function registrations, so many definitions are reversed such as

MIcorresponds to the desired solution. C 52Mutual Information.
To use (multi-resolution) local optimisation techniques to All of these definitions require the intensity values in at
solve the problem requires the following additional as- least one image to be ‘binned’. That is each intensity, I,
sumptions. has a bin number k assigned to it if I , I < I andk21 k

2. At the maximum sub-sampling the global minimum is hI ,I , . . . ,I j is a partition of the intensities. Then, given0 1 M

the nearest minimum to the starting position and can be this bin number, iso-sets or the joint histogram are easily
found by local optimisation, determined.

3. The location of the global minimum found using one
sub-sampling is inside the basin of attraction (as defined 3.1. Asymptotic behaviour
by the optimisation method) of the global minimum for
the next sub-sampling. In order that the global minimum correspond to the

Here the basin of attraction for some minimum is defined desired registration it is necessary that the cost functions
as the set of initial transformations that, after successive have the correct asymptotic behaviour. That is, for extreme
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Table 1
Mathematical definitions of several inter-modal intensity-based cost

afunctions

Cost function Definition Minimum Maximum

]]
n Var(Y )k œ kW ] ]]C o 0 `k N m(Y )k

n1 kCR ]] ]C o Var(Y ) 0 1k kNVar(Y)

JE Fig. 1. Example of an asymptotically large transformation betweenC H(X,Y) 0 `
images X and Y where the overlap volume becomes small. The proportion

MIC H(X,Y)–H(X)–H(Y) 2` 0 of non-background voxels in the overlap volume (shaded) is denoted by
x for X and x for Y.1 2

H(X,Y)NMI ]]]C 0 1
H(X) 1 H(Y)

a The notation used is defined by: quantities X and Y are images, each
boundaries when the FOV only includes part of the headrepresented as a set of intensities; m(A) is the mean of set A; Var(A) is the

variance of the set A; Y is the kth iso-set defined as the set of intensities (for example, when the top few mm of the head/brain arek

in image Y at positions where the intensity in X is in the kth intensity bin; not included the intensity suddenly drops from that of
n is the number of elements in the set Y such that N 5 o n ; H(X,Y) 5k k k k brain matter to zero) – which is relatively common. These
2 o p log p is the standard entropy definition where p represents theij ij ij ij

artificial boundaries would then bias the registration, whichprobability estimated using the (i, j) joint histogram bin, and similarly for
is undesirable. Therefore, better alternatives are to eitherthe marginals, H(X) and H(Y).

use an arbitrary intensity class that is later discarded or to
calculate the cost function only for the region where the
volumes overlap. The only difference between these

(and hence erroneous) registrations they should return high options is whether the total number of voxels used to
cost values, otherwise the first assumption outlined in normalise the calculations remains constant, as in the
Section 2.3 is invalid. In this section two asymptotic former option, or varies with the size of the overlapping
registrations are investigated: large translations where the volume, as in the latter option. It is apparent that these
volume overlap is minimal; and large scale disparity where alternatives should provide less biased registrations; how-
a small portion of one volume is stretched to cover the ever, a proof of unbiasedness remains a topic for future
entire other volume. work.

When examining the asymptotic behaviour it is im-
portant to define what the boundary conditions are. That is, 3.1.1. Large translation
what is done for points in space which do not lie in one or Consider the case where there is a large translational
other of the volume domains. One option is to (con- misalignment between one image and another. In these
ceptually) pad the volumes with zeros to give them infinite conditions the intersection of the volume domains becomes
domain. However, this creates artificial intensity small and generally any tissue in one volume corresponds

Table 2
Asymptotic forms of the cost functions for large translational misalignment

Cost Approximation Limit as Limit as
function x → 0 x → 01 2

1 / 22 1 / 2 21 / 2x x x 12 2 2W 2]] ]] ]] ]C (1 2 x ) B 2 B B 2 1 `S S D D S D S D1 1 2 x 1 2 x 1 2 x x1 1 1 2

2x x2 2CR 2 2 2 2 21]] ]]C (1 2 x ) B 2 B x B 2 x B 1 1s dS S D D1 2 21 2 x 1 2 x1 1

JEC 2 x log(x ) 2 x log(x ) 2 (1 2 x 2 x ) log(1 2 x 2 x ) 0 01 1 2 2 1 2 1 2

MIC 2 x log(x ) 2 x log(x ) 2 (1 2 x 2 x ) log(1 2 x 2 x ) 1 x log(x )1 1 2 2 1 2 1 2 1 1

1 (1 2 x ) log(1 2 x ) 1 x log(x ) 1 (1 2 x ) log(1 2 x ) 0 01 1 2 2 2 2

x log(x ) 1 x log(x ) 1 (1 2 x 2 x ) log(1 2 x 2 x )1 1 2 2 1 2 1 2NMI ]]]]]]]]]]]]]]]]C 1 1
x log(x ) 1 (1 2 x ) log(1 2 x ) 1 x log(x ) 1 (1 2 x ) log(1 2 x )1 1 1 1 2 2 2 2
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Table 3 stant over the volume of overlap. This implies that H(Y) ¯
Asymptotic forms of the cost functions for large scale disparity 0, leading to the results shown in Table 3. Note that it is

also assumed that the spatial variation of Y is uncorrelatedCost Approximation Limit
function with the iso-sets of X, such that o (n /N) Var(Y ) ¯Var(Y).i i i

]] In this instance both the Woods function and Joint
n Var(Y )i œ iW ] ]]C o 0 Entropy give low cost values indicating a good registra-i ¯N Y

tion, and so are likely to violate the assumption (stated in
Section 2.3) that the global minimum is the desiredn1 iCR ]] ]C o Var(Y ) 1 solution. Consequently, these functions should not be used.i iNVar(Y)
Note that although the Joint Entropy does not approach

JEC H(X,Y) > H(X) H(X) zero, the value is H(X) 5 H(X,X) which is the same as it
MI would be for a perfect registration of the image X withC H(X,Y)–H(X) 0

itself.
H(X,Y)NMI Overall, therefore, only the Correlation Ratio, Mutual]]C 1
H(X) Information and Normalised Mutual Information display

the correct asymptotic behaviour and so these are the only
suitable cost functions (from this selection) to use.

only to background in the other volume. More specifically, 3.2. Extent of minima
consider the case where there is a single, small amount of
tissue contained in either volume, with the proportion of The number and location of local minima for a given
voxels containing tissue to total number of voxels in the cost function can only be determined empirically, as
intersection volume being x for X and x for Y (see Fig. otherwise the registration problem could be solved ana-1 2

1). Furthermore, without loss of generality, take the lytically. However, the typical extent of local minima, the
background intensity as zero and the tissue intensity as B. size of their basins of attraction and their inherent smooth-
The cost functions then tend to the asymptotic values ness are important for designing effective optimisation
shown in Table 2. strategies.

From the results in Table 2 is can be seen that most cost One approach for examining the cost function is to look
functions approach their maximum values, indicating poor at how it changes as individual parameter values vary
registrations, as desired. However, Joint Entropy actually about some fixed point, that is, to plot the function values
approaches its minimum value indicating, erroneously, that versus one parameter value, with all other parameters held
the registration is good. constant.

As it is the global minimum that is of most interest, the
3.1.2. Large scale disparity fixed point is chosen to be the global minimum itself. Fig.

Consider now the case where a small portion of the 2 shows the cost function plots for a selection of parame-
1floating volume is stretched to cover the reference volume. ters (rotation angle about x, translations in x, scaling in z

The floating volume (Y) is therefore approximately con- and skew in z) using the images shown in Fig. 3. This
image pair was chosen as it had been found to be a
difficult pair to register successfully. However, despite this
fact, the global minimum is still quite broad and well1Similar results are obtained when the floating volume is compressed,
defined.although the analysis is slightly different as the overlap volume varies

The plots shown in Fig. 2 give an idea of the grosswith scale.

Fig. 2. Plots of the Correlation Ratio cost function versus some of the individual parameter values. In each plot, a single parameter is varied over a large
range while the others are kept fixed. The central point about which the parameters varied was the global minimum. All cost function calculations were
done using the image pair shown in Fig. 3 with a resampling (including appropriate pre-blurring) to cubic voxels with 8 mm side-length.
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Fig. 3. Example slices from the volumes used for plotting the cost function. (a) A T2-weighted image of a subject; (b) the T1-weighted MNI 305 image
(Collins et al., 1994). The voxel dimensions for these images were 0.93 3 0.93 3 5 mm for (a), and 1 3 1 3 1 mm for (b).

Fig. 4. Plots of the Correlation Ratio cost function versus rotation about the x-axis, showing the presence of local minima. (a) An expansion of the plot
shown in Fig. 2(a), over a small range about the global minimum. It can be seen that several small, local minima exist, generated by small fluctuations in
the cost function. In (b) the cost function is plotted about a different central point — one that is offset from the global minimum by a translation of 5 mm in
z and a rotation of 408 about the y-axis. This produces significant changes in the cost function, showing the presence of large local minima.

behaviour of the cost function about the global minimum. However, the optimisation method is quite general and can
However, on a small scale there exist many small, local be used for most cost functions, provided that they have
minima, as shown in Fig. 4(a). In addition, there also exist the correct asymptotic behaviour.
larger local minima as shown in Fig. 4(b), where the
central point is no longer the global minimum, but a 4.1. Overview
transformation more typical of an initial alignment. Note
that even though there is a clearly defined, large local The fundamental idea of this method is to combine a
minimum in this plot, in the full 12-dimensional trans- fast local optimisation Powell’s method (Press et al., 1995)
formation space this minimum may or may not lead (along with an initial search phase, tuned to be computationally
a ‘valley’) to the global minimum. Consequently a suc- feasible. Our implementation of the whole optimisation
cessful optimisation method must be able to cope with method executes in approximately 30 minutes on a modern
both small, densely packed local minima and much larger, PC.
and widely separated, local minima. These problems are, There are four different resolution levels that are used
respectively, dealt with in Section 4 by (1) an adaptive by the optimisation algorithm: n 5 8, 4, 2, 1 mm. Initially,
step local minimisation method (Section 4.2) and (2) an 8-mm cubed voxels are used and a full search is conducted
initial search stage (Section 4.3). over the rotation angles. Following this, various local

optimisations are performed with a variety of starting
points in the local neighbourhood of the best points
identified in the search. These local optimisations are done

4. Global optimisation method using 4-, 2- and finally 1-mm cubed voxels. An exception
to this occurs when the initial images are inherently low-

This section presents a global optimisation method that resolution in which case the resolution n is not allowed to
is specifically tailored for volumetric registration of brain decrease below a certain limit. For instance, if the original
images. It uses trilinear interpolation with either the images had voxel sizes of 4-mm cubed then the final stages
Correlation Ratio or Mutual Information as a cost function. are performed with n 5 4 rather than n 5 2 or n 5 1. Each
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of the optimisation stages is described below in more parameters (Euler angles), with M angles per dimension
3detail. (total of M grid points).

2. At each point in the grid, perform a four-DOF local
optimisation to find the translation and (global) scale —

4.2. Local optimisation method
using initial values of translation50 and scale51.

3. Calculate the median scaling from the optimised results.
A major component in the overall optimisation process

4. Form a finer grid over the rotation angles, with N
is the local optimisation method. This local optimisation is

angles per dimension.
called repeatedly and so should be efficient. Here Powell’s

5. Provide initial parameter estimates for translation at
method was chosen since it is a commonly used and

each fine grid point by interpolating the optimised
efficient local optimisation method (Press et al., 1995).

translation values found at the coarse grid points.
Since the objective at coarse resolutions is only to find

6. Evaluate the cost function (no optimisation) at all points
an approximate transformation, suitable for refinement at

on the fine grid with scale set to the previously
finer resolutions, it follows that the changes in transforma-

calculated median scale.
tion used by the optimisation method should also be

7. Find all points that have lower cost than their neigh-
adapted to the resolution of the volumes. For example,

bours (local minima) and perform a seven-DOF optimi-
computing very small changes in transformation when the

sation for each of these points, storing the results of the
voxel size is large corresponds to very small sub-voxel

transformations (and costs) both before and after op-
changes and is a waste of computation. Consequently, a

timisation.
lower limit for the transformation step size is enforced.

Ideally, by choosing a large value for M, the initial stage
This step size is easily calculated by imposing the con-

(steps 1 and 2) of the search would be sufficient. However,
dition that the maximum voxel position shift should be less

as it typically takes about 2 seconds to perform each
than half a voxel. More precisely, at a resolution n (with

4-DOF optimisation in our implementation, only a small
cubic voxels of side-length n mm), a brain of radius R, and

value for M can be chosen if the search is to be carried out
an origin located at the centre of mass for the brain, the

in a limited amount of time. Therefore another two stages
maximum shifts are x < n /2 which gives Dt < n /2 formax are introduced into the search to allow a finer grid (N . M)
translation, Du < n /2R for rotation, Ds < n /2R for scale

to be used. In practice, it has been found that values as low
and Dk < n /2R for skew.

as M 5 6 and N 5 20 give good results.
Given these lower limits on the parameter steps,

To find the cost at each point on a finer grid (where
Powell’s algorithm is modified by changing the termina-

N . M) only a single evaluation, rather than an optimi-
tion conditions so that when the 1D optimisation (Brent’s

sation, is done. However, in order that the cost value is
method) has bounded the minimum within an interval that

close to the optimal value it is necessary to ensure that
is less than one parameter step, then it returns the mid-

they are not significantly influenced by translation and
point of the current interval. In this way, significant

scale differences. In order to achieve this, good initial
savings in computation can be had without any sacrifice of

estimates for these parameters are required. The initial
accuracy. Moreover, the final accuracy is largely deter-

estimates used are obtained from the parameters stored
mined by the final pass, which can have more conservative

after optimisation on the coarse grid. Since the translation
bounds if better accuracy is required.

is strongly coupled to the rotation, the initial translation
parameters are obtained by interpolating the values from

4.3. Initial search the coarse grid. However, the scaling parameter is not
strongly coupled with rotation, and so a single, robust

As shown in Section 2.2, the amount of time required to estimate (the median) is taken from all the coarse grid
perform all but the most perfunctory search is prohibitive, values.
especially when the voxels are smaller than 8-mm cubed. This method relies on certain assumptions, namely:
However, in order to find the global minima reliably, some 1. At least one point in the fine grid will occur in the
search must be performed. global minimum’s basin of attraction, and be lower than

To allow a useful search to be conducted in under 20 its neighbours.
minutes, a multi-stage search was devised. This search is 2. The initial estimates for translation and scale, obtained
based on the empirical observation that finding the correct by a four-DOF optimisation at each coarse grid point,
orientation, or rotation, is the most difficult task, since the are reasonable.
three rotation parameters are highly coupled and most of 3. The typical anisotropic scaling and skews are sub-voxel
the erroneous registrations that we have examined have with 8-mm cubed voxels, and can be ignored.
been primarily due to an incorrect orientation. Therefore, The first assumption can be partly justified by the results
the search concentrates on the rotational part of the shown in Section 3.2. It can be seen that the typical size of
transformation space. The outline is: the global minimum’s basin of attraction is large enough
1. Initially form a coarse grid over the three rotation that a suitably fine grid should manage to have at least one
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point within the basin of attraction, even though the initial For the 2-mm case, the optimisation is initially run with
orientation may lie outside. 7 then 9 then 12 DOF in order to iteratively improve the

fit. Note that it is only at this resolution that anisotropic
4.4. Re-optimising with perturbations scalings and skews are included in the optimisation, as in

coarser resolutions they are only expected to have a small,
Following the search at 8-mm resolution, a progressive sub-voxel effect.

refinement is required, starting with the 4-mm resolution. In the 1-mm case, the computational burden is high,
The 8-mm stage identifies many candidate local minima. such that a single optimisation pass with 12 DOF takes

Since the relative costs of each candidate solution may approximately 10 minutes. Therefore, only a single optimi-
change at higher resolutions, where structures become sation pass is performed, in order to make minor adjust-
more sharply defined, several candidate solutions are ments in the transformation. Even so, this stage typically
considered in the 4-mm stage, rather than just the single takes 10 minutes to run which is approximately 25% of the
best solution. This effectively makes the algorithm a multi- entire execution time.
start algorithm, similar to the approach used in Genetic
Algorithms. In practice, the best three solutions from the 4.6. Discussion
8-mm stage are used. Furthermore, perturbations about
each of these solutions are applied, as described below. No practical guarantee of finding the global minimum is

For each candidate solution, an initial 7-DOF optimi- available using this method. However, this is true for most
sation is run at 4 mm in order to find the position of the global optimisation methods which at most provide only
local minima with this new resolution, which is likely to statistical guarantees for convergence which can never be
have moved slightly from the position found at the 8-mm met in practice (as they require infinite time in theory). The
resolution. Furthermore, 7-DOF optimisations are per- timing for this method, on the other hand, is more or less
formed for several perturbations of this newly optimised guaranteed to be less than an hour for our implementation.
candidate solution. These perturbations attempt to correct Much is based on empirical observations; however, the
for typical registration errors, with the perturbations being performance will certainly not be worse than using the

1
]6 Du in each rotation angle and 6Ds, 62Ds in scale, standard (no search) multi-resolution approach as this is afine2

giving a total of 10 different perturbations, where Du and special case of the above method, equivalent to having
Ds are the local optimisation step sizes evaluated for the M 5 N 5 1 and using no perturbations. A justification of
8-mm resolution. It has been found that this simple, this method on theoretical grounds, although desirable,
relatively inexpensive procedure, corrects for the majority remains a topic for future research. At present the justifica-
of mis-registrations. tion is instead found in the results presented in Section 6,

This perturbation stage is equivalent to using extra local which shows that having a fast global optimisation method
searches about the candidate solutions. A similar approach is an important practical issue for fully automatic registra-
is used in Simulated Annealing to escape from local tion.
minima, with the difference here being that a set number of
deterministic perturbations (determined from an under-
standing of the previous stage) are used, rather than some 5. Implementation
number of stochastic perturbations terminated by some
convergence criterion. In almost all methods there are several additional

Overall, therefore, a total of 33 optimisations with 7 choices which need to be made at the implementation
DOF are performed at the 4-mm resolution. This acts as a stage. These choices are important and a re-implementa-
local search about each of the most promising local tion of a method will be unlikely to give similar results
minima found by the previous (8-mm) stage. The time (and may even fail completely) unless these details are
taken to complete this stage is typically less than 10 treated the same way.
minutes but it is a critical stage in eliminating many
common mis-registrations (see results in Section 6.1.2). 5.1. Parameterisation

4.5. Refining the transformation The first implementation choice to make is the way in
which the transformation is represented. The best parame-

After the 4-mm stage has completed, and the best terisation is one that decouples the parameters in a sensible
solution at this resolution found (the least cost solution way. One standard decomposition of an affine matrix,
from the previous stage), this single solution is refined which decouples the parameters, is to split the transforma-
further at the higher resolutions. No further multi-start tion into three rotation (Euler angles), three translation,
optimisation is performed here for reasons of speed, since three scale and three skew parameters.
the computational burden now becomes much more signifi- It is also necessary to choose an origin for the above
cant. decomposition. Our implementation uses the Centre of
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Mass (COM) as the origin since it helps to minimise the However, it is not resampled afterwards since it is compu-
coupling between the translation and other parameters. In tationally more efficient to only store the initial grid values
addition, the COM of each volume is initially aligned at and just calculate the required interpolated intensities as
the beginning of the search phase. required in each cost function evaluation.

5.2. Histogram bin size

6. Results
Another important choice to make for most cost func-

tions is the histogram bin size, or equivalently, number of
The registration method described above in Sections 4

bins. All the cost functions examined in Section 3.1 require
and 5 has been implemented in C11 and is called FLIRT–

some form of intensity binning, and the number of
FMRIB’s Linear Image Registration Tool. This program

intensity bins determines the accuracy of the calculated
has undergone extensive trials over several months, being

statistics.
used by various researchers including trained neurologists,

For a uni-modal distribution it has been shown (see
psychologists and physiologists. During this time it has

(Izenman, 1991) for details) that the optimal histogram bin
been used to perform many thousands of registrations in

size, which provides the most efficient, unbiased estima-
the context of FMRI analysis and structural studies (Smith

tion of the probability density function, is achieved when
et al., 2001).21 / 3 21 / 3W 5 3.49sN or W 5 2(IQR)N where W is the

Feedback from the users has been positive, with the vast
width of the histogram bin, s is the standard deviation of

majority of registrations producing acceptable results and
the distribution, N is the number of available samples, and

only a few cases of failure where the misalignment of
IQR is the interquartile range (the 75th percentile minus

some anatomical structures was substantial (more than
the 25th percentile).

several millimetres). It was also found that, of the failures21 / 3In both formulations the width is proportional to N .
reported, the other registration methods available (see

Assuming that this proportionality will also hold for multi-
below) also failed to find an acceptable registration.

modal distributions, and using the fact that the number of
Furthermore, these volumes were usually difficult to23voxels at resolution n mm is proportional to n , then the
manually register as they often had unusual features such

optimal bin width will be proportional to n. In practice, the
as particularly enlarged ventricles which, if aligned, caused

number of intensity bins used at resolution n is 256/n.
large misalignments in other structures, while if the other

This sets the bin width proportional to n and fixes the
structures were aligned the ventricles were then substan-

number of bins for the 1-mm resolution to 256, in common
tially misaligned. Consequently, these cases are ones

with many other registration implementations and which
where the main problem appears to be the transformation

has been found, empirically, to be a good choice for most
space. That is, a good affine registration does not exist. It

images.
would require the use of higher order transformations
(non-linear warpings) to achieve a good solution.

5.3. Sub-sampling and resolution

The precise method of sampling and sub-sampling the 6.1. Consistency test
volumes to calculate the cost function is also important. In
the method proposed here the reference volume is initially The feedback discussed above is purely qualitative,
re-sampled (if of sufficient quality) to an isotropic grid based on the subjective assessment of many individuals.
with voxel size 1-mm cubed. This is done by interpolating However, as is generally the case for many registration
the values available in the original volume which usually problems in practice, there was no ground truth available
has anisotropic voxel dimensions. Once this isotropic 1- to test the registration against. This makes the area of
mm resolution reference volume has been obtained, the 2-, quantitative assessment of methods quite difficult.
4- and 8-mm sub-sampled versions are created. In order to test the method more quantitatively, a

Sub-sampling the reference volume is done by first comparative consistency test was performed. That is, the
blurring the intensities using a convolution with a discrete, registrations obtained using various different initial starting
3D Gaussian kernel where FWHM 5 n mm (or s 5 0.425 positions of an image are compared to see if they are
n mm), with n being the size of the required sub-sampling consistent with one another. Consistency is a necessary but
(that is, 2, 4 or 8). This blurring is done so that all points not sufficient condition that all correctly functioning
on the lattice contribute equally to the sub-sampled registration methods must possess. This is essentially a
version. The sub-sampling then simply takes every nth measure of the robustness rather than the accuracy (West
point on the lattice in each direction. Therefore, the new et al., 1997) of the registration method. Robustness is

3volume contains 1 /n as many points as the original. defined here as the ability to get close to the global
The floating image is also blurred at each resolution minimum on all trials, whereas accuracy is the ability to

using the same size of Gaussian kernel (FWHM 5 n mm). precisely locate a (possibly local) minimum of the cost
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function. Ideally a registration method should be both precise implementation details makes it difficult to produce
robust and accurate. a good working method.

More specifically, the consistency test for an individual The particular experiment that was performed (which is
image I involved taking the image and applying several also described in (Jenkinson and Smith, 1999)) was inter-
pre-determined affine transformations, A , to it. All these subject and inter-modal using 18 different images as thej

images (both transformed and un-transformed) were regis- floating images (like the one shown in Fig. 3(a)), all with
rtered to a given reference image, I , giving transformations the MNI 305 brain (Collins et al., 1994) as the reference

T . If the method was consistent the composite transforma- image. The 18 images were all 256 3 256 3 30, T2-j

tions T + A should all be the same, as illustrated in Fig. 5. weighted MR images with voxel dimensions of 0.933j j

The transformations are quantitatively compared using 0.9335 mm, while the MNI 305 template is a 172 3

the RMS deviation between the composite registration 220 3 156, T1-weighted MR image with voxel dimensions
T ? A and the registration from the un-transformed case of 13131 mm. Note that this is an inter-subject, inter-j j

T . This RMS deviation is calculated directly from the modal registration problem.0

affine matrices (Jenkinson, 2000). That is, d 5 The results of such a test, using six different rotationsRMS]]]]]]2 ¡ ¡1 about the anterior–posterior axis, are shown in Fig. 6. It]R Tr(M M) 1 t t where d is the RMS deviation inRMSœ5
can be seen that only FLIRT and MRITOTAL weremm, R is a radius specifying the volume of interest, and
consistent with this set of images. This indicates that theM t 21S D5 T ? A ? T 2 I is used to calculate the 3 3 3j j 00 0 other methods, AIR, SPM and UMDS, get trapped in local

matrix M and the 3 3 1 vector t. minima more easily, and are not as robust.
A further consistency test was then performed compar-

6.1.1. Comparison with existing methods ing only MRITOTAL and FLIRT. This test used initial
A comparison of FLIRT with several other registration scalings rather than rotations. The reason that this is

packages was initially performed using the consistency test important is that MRITOTAL uses a multi-resolution local
explained above. The other registration packages used optimisation method (Gradient Descent) but relies on
were AIR (Woods et al., 1993), SPM (Friston et al., 1995), initial pre-processing to provide a good starting position.
UMDS (Studholme et al., 1996) and MRITOTAL (Collins This pre-processing is done by finding the principle axes of
et al., 1994). These methods were chosen because the both volumes and initially aligning them. However, this
authors’ implementations were available, and so this initial alignment does not give any information about
constituted a fair test as opposed to a re-implementation of scaling.
a method described in a paper, where often the lack of The results of the scaling consistency test are shown in

Fig. 7. It can be seen that, although generally consistent, in
three cases MRITOTAL produces registrations that deviate
by more than 20 mm (RMS) from each other. In contrast,
FLIRT was consistent (less than 2 mm RMS) for all
images.

6.1.2. Comparison of optimisation methods and cost
functions

To further investigate the effects of the proposed
optimisation method two more consistency tests were
performed. These tests were designed to separate out the
contribution that the cost function and the various com-
ponents of the optimisation method make to achieving the
consistency demonstrated in the previous tests.

Firstly, the rotation consistency test was applied using
the Correlation Ratio cost function but with various
components of the optimisation method removed. These
results are shown in Fig. 8 for two cases: (a) no initial
search (that is, N 5 M 5 1) and no perturbations, and (b)Fig. 5. Illustration of the consistency test for a single image. An image

(top) has a number of initial affine transformations A (rotations are used an initial search, but no perturbations. In neither case arej

in this study) applied to it. The resulting images (middle) are then the results consistent (as they are in Fig. 6(a)), demon-
registered to the reference image (bottom), giving transformations T .j strating that both components of the optimisation method
Therefore, the overall transformation from the initial image to the

are necessary to achieve the consistent results.reference image is F 5 T ? A , and these are compared with T which isj j j 0
Secondly, the same test as above was applied but usingthe registration of the initial image directly to the reference image. For a

consistent method, all the transformations, F , should be the same as T . Mutual Information as a cost function. The results shownj 0
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Fig. 6. Results of the consistency study, plotting RMS deviation (in mm) versus image number for (a) AIR, (b) SPM, (c) UMDS, (d) MRITOTAL and (e)
FLIRT. For each of the 18 source images (T2-weighted MRI images with voxel dimensions of 0.9330.9335 mm) there are 6 results corresponding to
initial starting rotations of 210, 22, 20.5, 0.5, 2 and 10 degrees about the y-axis (anterior–posterior axis). All of the methods, except FLIRT and
MRITOTAL, show large deviations and are therefore inconsistent and non-robust.

in Fig. 9 are for (a) no initial search and no perturbations Correlation Ratio or Mutual Information as cost functions.
and (b) full optimisation, including initial search and Therefore, the improvement in performance, by compari-
perturbations. son with the methods examined in Section 6.1.1, is due to

These last two tests indicate clearly that both parts of the the optimisation method and not due to the different cost
optimisation method (the initial search and the subsequent function used, since Mutual Information is used as the cost
use of perturbations) are critical for obtaining the observed function in UMDS, SPM and MRITOTAL. Note that for
consistency. That is, using a multi-resolution local optimi- FLIRT, the Correlation Ratio is adopted as the default cost
sation method alone (Figs. 8(a) and 9(a)) is insufficient to function since, for our implementation, it is quicker to
achieve the desired robustness. Furthermore, the full compute and the results are, as judged qualitatively in
optimisation method performs robustly using either the many different cases, slightly more accurate.
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Fig. 7. Results of the scale consistency study, plotting RMS deviation (in mm) versus image number for (a) MRITOTAL and (b) FLIRT. For each of the
18 source images (T2-weighted MRI images with voxel dimensions of 0.9330.9335 mm) there are 6 results corresponding to initial scalings of 0.7, 0.8,
0.9, 1.1, 1.2 and 1.3 about the Centre of Mass. In three cases MRITOTAL shows large deviations and so is less consistent and robust than FLIRT in this
case.

Fig. 8. Results of the Rotation Consistency Test for FLIRT using the Correlation Ratio cost function and different optimisation methods. The results shown
in (a) are with no initial search (that is, N 5 M 5 1) and no perturbations, while in (b) the initial search is performed, but no perturbations. Comparing these
to the results obtained using the full optimisation method (shown in Fig. 6(e)) it can be seen that both components of the optimisation method are needed to
obtain a robust method.

Fig. 9. Results of the Rotation Consistency Test for FLIRT using the Mutual Information cost function and different optimisation methods. The results
shown in (a) are with no initial search and no perturbations, while in (b) the full optimisation method (initial search and perturbations) is used. This
demonstrates that the full optimisation method is required for robustness. Furthermore, comparing (b) with Fig. 6(e) shows that the results using the full
optimisation method are similar for either Mutual Information or the Correlation Ratio cost functions.
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7. Discussion of the optimisation method was necessary to achieve the
robust registrations, hence showing that multi-resolution
local optimisation alone is insufficient.In this paper the problem of global optimisation for fully

The global optimisation method proposed here does not,automatic registration of brain images was examined. Only
however, guarantee finding the global minimum. This isaffine registration was examined as, although this is a
typical though, as even methods such as Simulated An-much easier problem than general, non-linear transforma-
nealing and Genetic Algorithms only provide a statisticaltions, finding the global minimum is still difficult. Further-
guarantee which cannot be met in practice. The results,more, many non-linear methods rely on an initial affine
though, are encouraging, and by using finer search grids,registration to find a good starting position, and so having
the likelihood of finding the global minimum can bea good method of affine registration is important.
increased. This requires that there be sufficient time atThe standard mathematical formulation of the registra-
hand, or a sufficiently fast computer. However, even withtion problem was detailed and its assumptions examined.
modest resources this method can find the global minimumThis included an analysis of the asymptotic behaviour of
(solving the registration problem) within 1 hour moreseveral multi-modal cost functions and showed that only
reliably than the other methods tested.the Correlation Ratio, Mutual Information and Normalised

Optimisation is only one aspect of the registrationMutual Information correctly yielded high costs for these
problem, although it is practically a very important one.extreme misalignments. Consequently, only these functions
Other aspects such as interpolation, alternative cost func-(out of those considered) are suitable for the global
tions and understanding the properties of existing costoptimisation formulation.
functions remain important areas for further work. InA fast global optimisation method, which was tailored to
addition, a theoretical justification for the current methodthis registration problem, was then proposed together with
and finding a method suitable for higher dimensionala complete discussion of the implementation details re-
transformations are important areas for future research.quired to turn the method into a practical registration tool.

Finally, as stated before, it is important to be precise
This method uses the Correlation Ratio or Mutual In-

about the implementational details of such methods. This
formation (although any suitable cost function could be

allows (1) the methods to be more easily re-implemented
used) and combines a common local optimisation method by others, (2) the various methods to be compared fairly
(Powell’s method with step size proportional to the voxel (by using the author’s parameters) and (3) the results to be
size to improve the efficiency) with several search strate- repeated. The alternative is finding the best value for
gies. The main search is a global search through the various implementation parameters by trial and error which
transformation space using the most sub-sampled volumes, is extremely tedious and error prone. In addition to
with smaller neighbourhood-based searches taking place as including the implementation details in this paper the
the sub-sampling decreases. In such methods, the major source code for the FLIRT package is available for
constraint is the amount of time that is considered reason- downloading from www.fmrib.ox.ac.uk / fsl. This should
able. In the design of this method the search time was avoid others needing to re-implement the method and
limited to 20 minutes using our implementation. Even with facilitate the evaluation of the method, hopefully leading to
this constraint it was still possible to perform a full search further improvements.
and identify the global minimum more reliably.

Evaluation of this registration method was done in two
ways. Firstly, the software has been used routinely in the Acknowledgements
FMRIB Centre, allowing many people to use and comment
on the performance. The qualitative feedback was positive The authors wish to thank the Medical Research Council
in its own right and in comparison with other available and the European MICRODAB project for supporting this
methods. This method has now been used to satisfactorily work.
solve thousands of registration problems.

Secondly, quantitative results were found for a consis-
tency test. This test is designed to examine the robustness
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