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Abstract 

To comprehend language, we continually use prior context to pre-activate expected upcoming 

information, resulting in facilitated processing of incoming words that confirm these predictions. 

But what are the consequences of disconfirming prior predictions? To address this question, most 

previous studies have examined unpredictable words appearing in contexts that constrain 

strongly for a single continuation. However, during natural language processing, it is far more 

common to encounter contexts that constrain for multiple potential continuations, each with 

some probability. Here, we ask whether and how pre-activating both higher and lower 

probability alternatives influences the processing of the lower probability incoming word. One 

possibility is that, similar to language production, there is continuous pressure to select the 

higher-probability pre-activated alternative through competitive inhibition. During 

comprehension, this would result in relative costs in processing the lower probability target. A 

second possibility is that if the two pre-activated alternatives share semantic features, they 

mutually enhance each other’s pre-activation. This would result in greater facilitation in 

processing the lower probability target. To distinguish between these accounts, we recorded 

ERPs as participants read three-sentence scenarios that constrained either for a single word or for 

two potential continuations – a higher probability expected candidate and a lower probability 

second-best candidate. We found no evidence that competitive pre-activation between the 

expected and second-best candidates resulted in costs in processing the second-best target, either 

during lexico-semantic processing (indexed by the N400) or at later stages of processing 

(indexed by a later frontal positivity). Instead, we found only benefits of pre-activating multiple 

alternatives, with evidence of enhanced graded facilitation on lower-probability targets that were 

semantically related to a higher-probability pre-activated alternative. These findings are 

consistent with a previous eye-tracking study by Luke and Christianson (2016, Cogn Psychol) 

using corpus-based materials. They have significant theoretical implications for models of 

predictive language processing, indicating that routine graded prediction in language 

comprehension does not operate through the same competitive mechanisms that are engaged in 

language production. Instead, our results align more closely with hierarchical probabilistic 

accounts of language comprehension, such as predictive coding. 

Keywords: explaining away, prediction, predictive coding, competition, N400, late frontal 
positivity 
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Introduction 

One of the most robust findings in the study of language comprehension is that the more 

predictable the input, the easier it is to process (Kuperberg & Jaeger, 2016; Ehrlich & Rayner, 

1981; Rayner & Well, 1996). Numerous studies have shown that, relative to less predictable 

words, more predictable words are processed faster (Staub, 2015) and produce smaller evoked 

neural responses (Kutas & Hillyard, 1984; Delong, Urbach, & Kutas, 2005).  

The most common explanation for this graded effect of predictability is that the prior 

context predictively pre-activates upcoming lexico-semantic information before new bottom-up 

input becomes available.0F

1 When a new word is encountered, its processing is facilitated to the 

degree that its semantic features have already been pre-activated. So long as these predictions are 

generated probabilistically, based on the statistics of the communicative environment, the ease of 

processing each incoming word should be inversely related to its prior probability, given the 

preceding context (DeLong, Urbach, & Kutas, 2005; Federmeier, 2007; Kuperberg & Jaeger, 

2016). Indeed, we know from numerous studies that the magnitude of the N400 — an ERP 

component that is thought to reflect the ease of accessing (or retrieving) the semantic features 

associated with an incoming word (Kutas & Federmeier, 2011; Van Berkum, 2009; Kuperberg 

2016) — is inversely related to that word’s contextual predictability, regardless of whether this is 

estimated using standard cloze procedures (cf. Taylor, 1953; e.g. Kutas & Hillyard, 1984; 

DeLong, Urbach & Kutas, 2005; Wlotko & Federmeier, 2012), or using large language models 

                                                 
1We use the term “lexico-semantic” to refer to the semantic features associated with a particular word. We provide a 
more precise discussion about the relationship between these features and a word’s conceptual and lexical 
representations towards the end of the Discussion. By “predictive pre-activation”, we mean “the pre-activation of 
information at lower representational level(s) on the basis of information at higher levels within our internal 
representations of context, ahead of the bottom-up input reaching these lower levels” (Kuperberg & Jaeger, 2016, 
section 3, page 39). We do not make any assumptions about whether comprehenders pre-activate an upcoming word’s 
orthographic or phonological features (see DeLong, Urbach, & Kutas, 2005, and Nieuwland et al., 2018 for debate). 
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(cf. Brown et al., 2020; e.g. Michaelov, Coulson, & Bergen, 2021; Szewczyk & Federmeier, 

2022; Heilbron, Armeni, Schoffelen, Hagoort & De Lange, 2022). 

This predictive pre-activation account can also explain why, in plausible sentences, the 

amplitude of the N400 produced by unpredictable words appearing in contexts that strongly 

constrain for an alternative continuation (e.g. “He bought her a pearl necklace for 

her…collection”) is no larger than the N400 produced by unpredictable words appearing in low 

constraint1F

2 contexts that do not strongly predict any single continuation (e.g. “He looked worried 

because he might have broken his...collection”), e.g. Kutas & Hillyard (1984); Federmeier, 

Wlotko, De Ochoa-Dewald & Kutas (2007); Kuperberg, Brothers, & Wlotko (2020). In both 

these situations, the incoming word’s lexico-semantic representation has received no pre-

activation, and so it will be relatively harder to access/retrieve, resulting in a relatively large 

N400 response.  

In most accounts of predictive pre-activation, it is assumed that, rather than predicting 

one word at a time, comprehenders pre-activate multiple potential continuations in parallel, 

outside conscious awareness. For example, when reading “Johnathan brewed the…”, readers 

might pre-activate the lexico-semantic representations of “beer”, “coffee” and “tea” 

simultaneously, each with a different strength that is related to the probability of each lexico-

semantic representation. As a consequence, encountering any of these words would produce a 

smaller N400 than a lower probability continuation (e.g. “Johnathan brewed the poison”). This, 

however, raises a question that has not yet been addressed in the prior literature: During this pre-

activation phase, what influence do these multiple, pre-activated alternatives exert on one 

another (excitatory and/or inhibitory), and what impact does this have on processing the 

                                                 
2 Contextual constraint is usually operationalized as the probability of the context’s best (most probable) completion. 
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incoming word when it subsequently becomes available? In principle, there are three 

possibilities.  

The first is that there are minimal interactions between the multiple pre-activated 

candidates until the new bottom-up input arrives. On this account, when the incoming word is 

encountered, the degree of facilitation it receives should depend solely on its own probability, 

regardless of the probability of any pre-activated alternatives. We refer to this as the independent 

pre-activation account. 

The second possibility is that, during the pre-activation phase, these multiple pre-activated 

alternatives begin to compete, mutually inhibiting one another through a winner-take-all 

mechanism. A consequence of this mutual inhibition is that when an incoming word 

subsequently becomes available, it should receive less facilitation than one would expect given 

its estimated probability. We refer to this as the competitive pre-activation account. 

Competitive interactions of this kind are implemented in classic Interactive Activation and 

Competition (IAC) models, which have been proposed as accounts of written word recognition 

(McClelland & Rumelhart, 1981; McClelland & Elman, 1986), spoken word recognition (Dahan, 

Magnuson, Tanenhaus & Hogan, 2001) and syntactic parsing (competitive ranked parallel 

models: Spivey & Tanenhaus, 1998; MacDonald, Pearlmutter & Seidenberg, 1994). Importantly, 

IAC architectures have also been proposed to implement language production, with mutual 

inhibition between lexical candidates playing a central role in selecting a single candidate for 

later articulation (e.g. Chen & Mirman, 2012). Recent work suggests that an IAC model (Chen & 

Mirman, 2012) can simulate times to produce predicted upcoming words in a speeded cloze 

completion task in which participants first comprehend a sentence context and then produce the 

most likely upcoming word; see Ness and Meltzer-Asscher (2021a) and Nakamura and Phillips 
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(2022). Thus, if this type of competitive mutual inhibition operates during the pre-activation 

phase of language comprehension, this would provide evidence that top-down prediction during 

language comprehension is routinely implemented through one of the same processing 

mechanisms that is employed in language production (Pickering & Garrod, 2013; Fitz & Chang, 

2019; see also Van Petten & Luka, 2012; Thornhill & Van Petten, 2012).2F

3 

The third possibility is that instead of acting as competitors, multiple pre-activated lexico-

semantic candidates (e.g. beer, coffee, tea) serve to reinforce one another if they share semantic 

features. On this account, the presence of a semantically related pre-activated alternative would 

actually lead to more facilitation and a smaller N400 response than one would expect based on 

that word’s lexical probability. We will refer to this as the friendly pre-activation account. 

Evidence consistent with friendly pre-activation comes from the ERP studies showing that 

the pre-activation of semantic features can facilitate the processing of incoming words during 

language comprehension, even if these words are lexically unpredictable. For example, the N400 

is reduced in response to implausible words that are semantically related to a predictable 

alternative (Kutas and Hillyard 1984; Federmeier & Kutas, 1999; for recent replications, see 

DeLong, Chan & Kutas, 2019; Ito, Corley, Pickering, Martin & Nieuwland, 2016). This 

anticipatory semantic facilitation effect on the N400 has also been described on unexpected (zero 

cloze) plausible continuations (Thornhill & Van Petten, 2012; DeLong & Kutas, 2020). 

However, no previous study ERP has asked whether, in contexts that constrain for multiple 

continuations, less expected but non-zero probability words can receive facilitation from a higher 

probability pre-activated alternative as a function of semantic overlap. 

Finally, we note that the competitive and friendly pre-activation accounts are not mutually 

                                                 
3Note, this wouldn’t imply that production-like mechanisms are never engaged in implementing top-down prediction 
during language comprehension, particularly in very high constraint contexts (see Federmeier, 2022). 
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exclusive. For example, some IAC architectures include both intra-lexical competition and 

mutual reinforcement from shared semantic features (Chen & Mirman, 2012). These 

architectures might predict that a lower probability word would receive less facilitation than 

expected if it is semantically unrelated to a higher probability alternative, but more facilitation 

than expected if it shares semantic features with the higher probability alternative. Indeed, Ness 

and Meltzer-Asscher (2021a) recently showed behavioral evidence consistent with this type of 

hybrid account in a speeded cloze production task. 

Understanding whether and how pre-activated lexico-semantic alternatives interact with one 

another is important not only for understanding the nature of routine predictive processing during 

language comprehension (including its relationship with language production), but also because 

of its ecological validity. In natural language, it is relative rare to encounter low probability 

words that violate a very high-constraint context. In contrast, we frequently encounter 

moderately constraining contexts that are predictive of multiple alternatives. Moreover, in these 

contexts, readers often encounter inputs that disconfirm the most probable continuation but 

confirm a lower probability continuation. 

This pattern was demonstrated in a key study by Luke and Christianson (2016), who 

measured cloze probability in a corpus of mixed-genre texts by asking readers to predict each 

word in turn. The authors found that most words in these naturalistic texts were only somewhat 

predictable, with content words having an average cloze probability of 13%. Nonetheless, 

readers were more consistent, on average, in their expectations about upcoming content words, 

resulting in an average lexical constraint of 36%. Strikingly, although most incoming words 

disconfirmed an individual reader’s most common prediction, 79% of words matched a cloze 

continuation that was produced by at least some participants.  
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Luke and Christianson also examined eye-movement data as participants read these texts for 

comprehension. Reading times were analyzed as a function of (a) the cloze probability of each 

word, and (b) whether or not each word was the most probable continuation produced by all 

participants in the cloze task. They found only an effect of cloze probability, but no interaction 

with whether or not the word was the most probable completion. In addition, the authors 

calculated the semantic relationship between each content word and the full set of offline cloze 

responses produced in response to the prior context. They found enhanced behavioral facilitation 

on words that were more semantically related to these alternative predictions. Thus, taken 

together, Luke and Christianson’s findings suggest that, during natural reading, parallel lexico-

semantic pre-activation provides benefits (friendly pre-activation), but no costs (no competitive 

pre-activation), on reading times.   

 

Goals of the present study 

Given the theoretical and ecological importance of Luke and Christianson’s behavioral 

findings, we wanted to carry out a conceptual replication of their work. We had three main goals. 

First, we wanted to determine whether Luke and Christianson’s results held up using 

controlled experimental materials. We see the use of naturalistic and controlled experimental 

stimuli as complementary approaches. Luke and Christianson (2016) provided key data about the 

distributions of cloze and constraint values within naturalistic text by virtue of using texts 

gathered from a variety of real-world sources such as news articles and fiction. Moreover, their 

use of extended multi-sentence texts provides the most ecologically valid reading experience for 

experimental participants. However, as the authors discuss, with these types of stimuli, it is 

difficult to dissociate effects of lexical properties such as word length and frequency from effects 
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of context-specific predictability, since these effects are inherently confounded in naturally 

occurring texts. Naturalistic corpus studies also introduce the possibility of uncontrolled spill-

over effects, or other effects arising from uncontrolled properties of the text (Rayner, Pollatsek, 

Drieghe, Slattery & Reichle, 2007; Brothers, Hoversten & Traxler, 2017; Angele et al., 2015; see 

Brothers & Kuperberg, 2021 for recent discussion). Thus, the use of controlled experimental 

stimuli offers an opportunity to specifically test the hypotheses motivated by the theories 

described above, while controlling for lexical factors such as word length and frequency.  

Second, we were interested in replicating Luke and Christianson’s behavioral findings 

using a different technique — ERPs instead of reading times. ERPs provide a time-sensitive 

measure of online comprehension. The N400 component, in particular, is known to be sensitive 

to many of the same factors that influence reading times, including frequency, predictability, and 

semantic overlap, and this component has played a central role in debates on the role of 

prediction and misprediction in language comprehension (Van Petten & Luka, 2012; see also 

Federmeier, 2007; DeLong, Urbach & Kutas, 2005; Nieuwland et al., 2018). Moreover, although 

many classic connectionist and neural network models of language processing were originally 

developed to simulate behavioral findings, ERPs provide an important test case of the 

computational principles implemented by these models (see Nour Eddine, Brothers, & 

Kuperberg, 2022 for a comprehensive review). ERPs therefore provide an important and 

complementary perspective to behavioral findings. 

Third, ERP methods allow us to examine not just the initial stages of lexico-semantic 

processing, indexed by the N400, but also later ERP components that might be particularly 

sensitive to the disconfirmation of prior predictions. Previous behavioral studies have found little 

evidence of late processing costs on lower probability continuations that are inconsistent with a 
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prior higher probability prediction (Luke and Christianson, 2016; Frisson, Harvey, & Staub, 

2017; Steen-Baker, Ng, Payne, Anderson, Federmeier & Stine-Morrow, 2017; Fischler & 

Bloom, 1979, 1985; Schwanenflugel and LaCount,1988; but see Ness & Meltzer-Asscher, 

2021b, who showed that participants took longer to make speeded congruency decisions in two-

word phrases in which the second word violated a prediction, e.g. “rearview camera” where 

mirror was predicted vs. “desert storm” where there was no strong prediction). However, several 

ERP studies have reported that in plausible sentences, unexpected (zero-cloze) words appearing 

in contexts that constrain strongly for a single alternative (e.g. “He bought her a pearl necklace 

for her…collection”) can sometimes produce a larger late frontally-distributed positive 

component between 500–1000ms, in comparison with unexpected words appearing in low 

constraint contexts (e.g. “He looked worried because he might have broken his...collection”, see 

Federmeier et al., 2007; Kuperberg, Brothers, & Wlotko, 2020; Lai, Rommers, & Federmeier, 

2021). 

One possible interpretation of this late frontal positivity effect is that it indexes late 

processing “costs” associated with suppressing an incorrect lexical prediction (Kutas, 1993; Ness 

& Meltzer-Asscher, 2018). This would follow from an account in which the prediction of a 

higher-probability pre-activated alternative remains active in the late time window and, in order 

to successfully integrate the lower-probability incoming word into its prior context, it is 

necessary to suppress/inhibit this incorrect prediction within this later time window. This late 

suppression account would therefore predict a larger late frontal positivity on less versus more 

probable words in contexts that constrain for multiple continuations, where there would also be 

additional demands to inhibit an incorrectly pre-activated competitor.  
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Design and questions addressed in the present study 

To address the questions outlined above, we developed a set of materials with two types 

of contexts, each continuing with either a more or a less expected critical word. 

First, WithCompetitor contexts, such as (1), always constrained for two upcoming words 

— a more probable expected alternative (e.g. hearts) and a less probable alternative (e.g. 

flowers). Following these contexts, participants saw either the Expected critical word (“hearts”) 

or the SecondBest critical word (“flowers”). 

Second, NoCompetitor contexts, such as (2), always constrained for just one upcoming 

continuation (e.g. roses). Participants saw either this Expected critical word or a ZeroCloze but 

plausible critical word (e.g. rocks). 

 

(1) WithCompetitor context:  

Stephen wanted to do something special for his girlfriend. He decided to make her a hand-
made card. On it, he drew some… Expected: hearts / SecondBest: flowers  
 

(2) NoCompetitor context:  

Alexis was thrilled with her new garden. All of the flowers had bloomed overnight. In 
particular, she loved the… Expected: roses / ZeroCloze: rocks  
 

In the WithCompetitor contexts, the cloze probabilities of the SecondBest critical words were, on 

average, lower than those of the Expected critical words in both the WithCompetitor and 

NoCompetitor contexts. However, as discussed in the Methods, the range of cloze probability 

values within each condition was wide, allowing us to address our hypotheses at varying degrees 

of predictability. Specifically, we addressed three sets of questions.  
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First, is there any evidence that competitive pre-activation influences the magnitude of 

the N400? The competitive pre-activation account predicts that in WithCompetitor contexts, prior 

to the presentation of the incoming word, there should be some degree of mutual inhibition 

between the two pre-activated alternatives (e.g. between <hearts> and <flowers> in (1) above). 

This should result in less facilitation and a larger N400 in response to both the SecondBest and 

the Expected critical word than one would expect based only on their cloze probabilities. In 

contrast, if the N400 response to each of these words remains proportional to its cloze 

probability, with no penalty for having pre-activated a competitor, this would provide evidence 

for the independent pre-activation account. For specific details about how we statistically tested 

these hypotheses, see Models 1 and 2 in the Results section. 

Second, is there any evidence that friendly pre-activation influences the N400? The 

friendly pre-activation account predicts that there should be a facilitatory effect on the N400 

produced by a lower probability word whenever it shares semantic features with a higher 

probability pre-activated alternative. To address this question, we began by considering all 

scenarios in which a lower probability critical word appeared in place of a potentially pre-

activated alternative—namely, the NoCompetitor ZeroCloze and the WithCompetitor SecondBest 

scenarios, asking if there was any additional facilitation on the N400 as a function of how 

semantically related the observed word was to the more expected continuation (Model 3, 

Results). In addition, because previous ERP work has only demonstrated this type of facilitatory 

effect on zero-cloze words (Kutas and Hillyard 1984; Federmeier & Kutas, 1999; Thornhill & 

Van Petten, 2012; DeLong & Kutas, 2020), we separately tested for evidence of friendly pre-

activation on the subset of WithCompetitor SecondBest continuations, which always had non-

trivial cloze probabilities (Model 4, Results). 
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Our investigation of the N400 across these scenarios provided a strong test of whether 

pre-activating multiple alternatives results in competition or facilitation. However, as noted 

above, competitive and friendly pre-activation are not mutually exclusive, and, in principle, both 

can influence the degree of facilitation on an incoming word, jointly impacting the amplitude of 

the N400. Therefore, we also wanted to test for an effect of competitive pre-activation in 

isolation of any facilitatory effects. To do this, we conducted an analysis on the subset of 

SecondBest words that were unrelated to the expected continuation (Model 5, Results). 

Third, and finally, we turned to the question of whether there was any evidence of late 

suppression on the late frontal positivity produced by SecondBest critical words in the 

WithCompetitor contexts. According to the late suppression account, late costs should be 

incurred when suppressing an unobserved strongly pre-activated alternative in order to integrate 

an observed lower-probability incoming word into the prior context. In the WithCompetitor 

contexts, this would predict a larger late frontal positivity on SecondBest than on Expected 

completions. We therefore compared the amplitude of the late frontal positivity to these two 

types of completions (Model 6, Results).  

 

Methods 

Materials 

Overall Design 

 Our stimuli consisted of plausible, three-sentence discourse scenarios. This three-sentence 

stimulus design was based on prior studies (Kuperberg, Brothers, & Wlotko, 2020; Brothers, 

Wlotko, Warnke, & Kuperberg, 2020) and provided a slightly more natural reading experience 

than one-sentence stimuli. In each scenario, the first two sentences introduced the scenario using 
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a variety of sentence structures. The third sentence was more controlled and consisted of an 

adverbial phrase, the subject, a transitive verb, an optional determiner, a direct object critical noun, 

and 3–4 words to conclude the sentence.  

 As described in the Introduction, the prior context either constrained for either one or two 

upcoming words, i.e., WithCompetitor and NoCompetitor contexts, respectively (see Table 1). In 

the WithCompetitor contexts, participants either saw the Expected (A1) or SecondBest (A2) 

continuation. In the NoCompetitor contexts, participants either saw the Expected continuation (A3) 

or a ZeroCloze but plausible (A4) continuation. We refer to these four conditions as the 

TargetScenarios. Because the specific critical words varied across the four types of 

TargetScenarios, to control for low-level lexical differences across items, we also constructed a 

set of ControlScenarios, which used the same four critical words as those used in the 

TargetScenarios (B1–B4). These were generated by writing two new introductory sentences and 

pairing these with the same final sentences used in the TargetScenarios. In these ControlScenarios, 

there were no clear preferences for a particular continuation, making them relatively non-

constraining and non-competitive in nature.  

 In Table 1, we present all of the eight conditions described above—namely, the four 

conditions in the TargetScenarios group (A1: WithCompetitor Expected, A2: WithCompetitor 

SecondBest, A3: NoCompetitor Expected, A4: NoCompetitor ZeroCloze), and the four conditions 

with lexically-matched critical words in the ControlScenarios group (B1–B4). All scenarios were 

written to be semantically plausible (see below for a rating study that verified that this was the 

case). 
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Table 1. Stimuli 

Stimulus 
Group 

Context  
Type 

Continuation 
Type 

Average  
Cloze (SD) 

Example Contexts with both 
Continuation Types 

Target 
Scenarios 

WithCompetitor 

Expected 
(A1) 

57.4%  
(14.7%) 

 
Stephen wanted to do 
something special for his 
girlfriend. He decided to make 
her a hand-made card.  
 
On it, he drew some…  
hearts (A1) / flowers (A2) 
 

SecondBest  
(A2) 

16.3%  
(8.5%) 

NoCompetitor 

Expected  
(A3) 

60.9%  
(15.0%) 

 
Alexis was thrilled with her 
new garden. All of the flowers 
had bloomed overnight.  
 
In particular, she loved the…  
roses (A3) / rocks (A4) 

ZeroCloze  
(A4) 

0.1%  
(0.4%) 

Control 
Scenarios 

Controls for 
WithCompetitor  

Control for A1 
(B1) 

4.5%  
(7.2%) 

 
Stephen always doodled in 
class. He took out a fresh sheet 
of paper.  
 
On it, he drew some…  
hearts (B1) / flowers (B2) 

Control for A2 
(B2) 

3.0%  
(5.0%) 

Controls for 
NoCompetitor 

 
Control for A3 

(B3) 

5.5%  
(7.9%) 

 
Alexis had just moved to a new 
city. She enjoyed exploring new 
sites.  
 
In particular, she loved the…  
roses (B3) / rocks (B4) 

Control for A4 
(B4) 

0.3%  
(1.3%) 

 

 

Cloze norming and item selection 

 To create and classify our stimuli into the eight conditions described in Table 1, we carried 

out cloze norming studies. For this, we recruited participants from within the United States through 

Amazon Mechanical Turk. Based on self-report, all participants were between the ages of 18–35 
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and their native language was English. All participants provided informed consent, and they were 

compensated for their time. 

 On each trial in this task, participants saw one stimulus item up to (but not including) the 

critical word. They were then asked to respond with “the most likely next word” (Taylor, 1953). 

After providing their response, participants were then asked to give two further possible responses 

for each context, each with the prompt, “Please enter another likely next word.” In this way, we 

obtained the first, second, and third best continuations from each subject for each item (see also 

Federmeier et al, 2007; Schwanenflugel, Harnishfeger & Stowe, 1988). All participants completed 

a guided practice before viewing the experimental stimuli. Stimuli were normed in batches of 

different sizes (from 4–74 stories), which took approximately 3–60 minutes. Participants were paid 

up to $6 per hour for their time. At least 50 participants provided continuations for each context. 

In total, over 800 vignettes were normed for consideration. 

 For each item, we determined its contextual constraint by identifying the most common 

completion for each context, and then calculating the percentage of participants who provided that 

particular word as their first response. The cloze probability of each critical word was calculated 

as the percentage of respondents providing that word as their first response. We will refer to this 

as the top-1 cloze probability. In addition, for each item, we calculated a measure of cloze 

probability that was based on the percentage of respondents for whom the critical word was one 

of their three responses. As discussed below, this was particularly important in allowing us to 

identify WithCompetitor contexts, even in contexts where most of the top-1 probability mass was 

taken up by the most expected target word. We will refer to this second measure as the top-3 cloze 

probability.  

 Using these norming data, we then constructed a set of 60 WithCompetitor and 60 
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NoCompetitor contexts with a wide range of contextual constraints (33–92%). As described above, 

the NoCompetitor contexts (Mean constraint: 61%) did not have a second continuation with non-

trivial cloze probability (i.e. all alternative continuations provided in the cloze task had a top-1 

cloze probability below 10%). The NoCompetitor Expected (A3) words had a top-1 cloze 

probability of at least 33% and were always the modal completion for their context. The 

NoCompetitor ZeroCloze (A4) words were chosen to have a cloze probability of near 0%.3F

4 

 As also described above, the WithCompetitor contexts (Mean constraint: 57%) could be 

followed by at least two continuations with non-trivial cloze probabilities. The WithCompetitor 

Expected (A1) critical words had a top-1 cloze probability of at least 36% and were always the 

modal completion for their context. The WithCompetitor SecondBest (A2) words either had a top-

1 cloze probability greater than 10% or a top-3 cloze probability greater than 25%.4F

5  These 

SecondBest completions were typically listed as being “second most likely” by participants. 

However, in a few cases, we instead took the third best completions in order to avoid repeating a 

critical word within the experiment. To the extent possible, all critical words were matched across 

conditions in length, log word frequency, orthographic neighborhood size, and semantic 

concreteness. 

 Across the ControlScenarios (60 for the WithCompetitor conditions and 60 for the 

NoCompetitor conditions: B1–B4), the average constraint was 19% with a range of 8–52%. The 

critical words, when presented in these control discourse scenarios, had an average top-1 cloze 

probability of below ~5%. 

                                                 
4 3 out of 60 words in this condition were chosen by a single participant (out of >50 participants) in cloze norming, 
giving them a non-zero cloze probability of <2%. The remainder had 0% cloze probability. 
 
5 The choice of the exact values of 10% and 25% was arbitrary, reflecting our intuition of approximately what 
constitutes a non-trivial competitor. However, we do not expect there to be a true categorical cutoff for what 
constitutes a non-trivial competitor. 
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 Across the full stimulus set, the contexts had an average constraint of 39% and an average 

cloze probability of 18.5% for the target and control critical words. Therefore, unlike some prior 

studies, these levels of constraint and predictability were highly similar to those encountered in 

naturalistic texts (Luke & Christianson, 2016). 

 

Plausibility norming 

Late frontally distributed positivities are only produced by unexpected words when they 

can be plausibly integrated into their prior contexts (e.g. Van Petten & Luka, 2012; Kuperberg, 

Brothers, & Wlotko, 2020). In contrast, highly implausible/anomalous critical words often produce 

a late posteriorly distributed positivity effect, known as the P600 (Kuperberg, 2007, section 3.4 

page 32; Kuperberg et al., 2003; van de Meerendonk, Kolk, Vissers & Chwilla, 2010; Paczynski 

& Kuperberg, 2012; Kuperberg, Brothers, & Wlotko, 2020), while mildly implausible words tend 

not to produce robust late positivities at all (e.g. Kuperberg, Sitnikova, Caplan & Holcomb, 2003; 

van de Meerendonk, Kolk, Vissers & Chwilla, 2010). We therefore wanted to verify that our 

scenarios were indeed plausible. To do this, we conducted a plausibility norming study using the 

online platform, Prolific (www.prolific.co). We recruited a set of participants in the US and UK 

who listed their first language as English, and then asked them to rate various scenarios on a scale 

of 1–7 (1 = “makes no sense at all”; 7 = “makes perfect sense”).  

In this norming study, we included not only all the scenarios from the current study, but 

also sets of three-sentence scenarios from prior studies run in our lab that had previously been 

normed to be plausible, highly implausible/anomalous, and semi-implausible. Specifically, we 

included (a) the high constraint expected and high constraint unexpected scenarios from a study 

http://www.prolific.co/
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by Kuperberg, Brothers and Wlotko (2020), which had been normed to be plausible,5F

6 (b) the high 

constraint anomalous scenarios, also from Kuperberg, Brothers and Wlotko (2020), which 

contained selection restriction violations and were therefore highly implausible, and (c) a set of 

scenarios from Greene, Brothers, Weber, Noriega, and Kuperberg (2020), without selection 

restriction violations, that had previously been normed to be semi-implausible.  

To keep the task length reasonable, each participant saw a subset of items: 60 from the 

current experiment, 38 or 39 from the previous studies, as well as 10 sanity check items that were 

designed to be either very plausible or highly implausible. Items were counterbalanced such that 

no participant saw more than one version of each scenario. Each version was rated by 10 

participants. 

 The results are given in Table 2. They confirm that the TargetScenarios (A1–A4) and 

ControlScenarios (B1–B4) in the present study all received plausibility scores that were higher 

than those of the highly implausible/anomalous and semi-implausible scenarios used in our 

previous work. 

Table 2. Mean plausibility ratings for all conditions in the present study and those from Kuperberg, 
Brothers, and Wlotko, 2020 (KBW20) and Greene, Brothers, Weber, Noriega, and Kuperberg, 
2020 (GBWNK20). 

Experiment Condition Plausibility 

Present study WithCompetitor Expected (A1) 6.66 
Present study WithCompetitor SecondBest (A2) 6.45 
Present study NoCompetitor Expected (A3) 6.55 
Present study NoCompetitor ZeroCloze (A4) 5.10 

Present study ControlScenario for A1 (B1) 5.55 
Present study ControlScenario for A2 (B2) 5.35 
Present study ControlScenario for A3 (B3) 5.20 
Present study ControlScenario for A4 (B4) 4.84 

                                                 
6 33 items from Kuperberg, Brothers, & Wlotko (2020) were not included because they were extremely similar or 
identical to the scenarios used in the present study. 
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KBW20 Expected 6.57 
KBW20 

GBWNK20 
Unexpected (plausible) 
Semi-implausible (no selection restriction violations) 

5.29 
2.89 

KBW20 Anomalous (selection restriction violations) 1.89 

 

Counterbalancing of stimuli and construction of final stimulus lists 

 In the ERP experiment, we created four counterbalanced lists. Each participant saw each 

context in the TargetScenarios and ControlScenarios just once. However, our counterbalancing 

scheme worked to ensure that they never saw the same critical word twice; that is, if a participant 

saw a critical word in a WithCompetitor or NoCompetitor context, they saw a different critical 

word in the ControlScenario for that item. In addition, participants did not see a WithCompetitor 

or NoCompetitor trial and its corresponding ControlScenario in the same half of the experiment. 

Presentation order was counterbalanced across participants, and participants were randomly 

assigned to one of these four lists. 

 

Participants 

 We report data from 32 native English speakers who were recruited from Tufts University 

and the surrounding community. Fifteen further participants were tested but were subsequently 

excluded because of excessive noise in the ERP recording (see Data Preprocessing for cutoff 

criteria).6F

7 The final set of participants were between the ages of 18 and 35 (Mean age = 24.0; SD: 

4.1). All were right-handed and had normal or corrected-to-normal vision. All participants reported 

having no significant exposure to any language other than English before the age of 5, no history 

of neurological disorder(s), and no current use of psychoactive medication. All participants 

                                                 
7 This relatively high exclusion rate was because data were collected on a new high impedance system, and in these 
participants, we used minimal scalp abrasion prior to data collection. 
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provided written informed consent and were paid for their time at a rate of $15 per hour. All 

protocols were approved by Tufts University Social, Behavioral, and Educational Research 

Institutional Review Board. 

 

Stimulus Presentation 

 Participants sat in a comfortable chair in a dimly lit room approximately 150cm from the 

LCD computer monitor. They were asked to minimize muscle activity, eye movements, and 

blinking, particularly while reading the sentences. Stimuli were presented word-by-word using 

PsychoPy 1.83 software (Peirce, 2007). Each word was presented in a white Arial font on a black 

background, with 3 characters covering approximately 1 degree of visual angle. Each trial began 

with the prompt “READY?” in green font presented at the center of the screen, and the participant 

pressed a button to advance. The first two sentences of each context appeared in full, separated by 

a button press. After participants read the second sentence, a fixation marker (“++++”) appeared 

for 750ms before the third sentence appeared, one word at a time, in the center of the screen (450ms 

word duration, 100ms inter-stimulus interval). 

 In 128 trials, a yes/no comprehension question appeared immediately after the third 

sentence. These sentences often required readers to draw inferences based on the entire scenario, 

and they never referred specifically to the critical words. Their purpose was to encourage 

participants to attend to and deeply comprehend the scenarios. 

Within each half of the experiment, the order of item presentation was randomized 

individually for each participant. Trials were presented in blocks of 30 items, which generally took 

8–10 minutes, with a break between each block. Prior to seeing the experimental trials, participants 

saw 12 practice items with a similar structure to the experimental items. 



 
 

22 

 

ERP Acquisition and Preprocessing 

 We recorded ERPs using the BioSemi ActiveTwo EEG system with ActiView v7.05 EEG 

acquisition software (http://www.biosemi.com/). We recorded from 32 active Ag/AgCl electrodes 

in an elastic cap placed according to a modified international 10-20 system. Additional electrodes 

were placed below the left eye and beside the right eye to monitor for blinks and eye movements, 

as well on each mastoid to serve as reference. The EEG signal was amplified, digitally filtered 

online with the Biosemi Active-Two acquisition system using a low pass 5th order sinc response 

filter with a half-power cutoff at 104 Hz, and continuously sampled at 512Hz. 

Data was processed using the EEGLAB (Delorme & Makeig, 2004) and ERPLAB (Lopez-

Calderon & Luck, 2014) toolboxes in MATLAB. EEG channels were referenced offline to the 

average of the left and right mastoid channels. A 2nd order Butterworth IIR filter with a half-

amplitude high pass cutoff of 0.1 Hz was applied offline. The ERP was then segmented into epochs 

spanning from –300ms to 900ms, time-locked to the critical word. Only trials free from ocular, 

muscular, and electrical artifacts were included in analysis, as determined by preprocessing 

routines from the EEGLAB and ERPLAB toolboxes using participant-specific artifact detection 

thresholds, combined with manual inspection. To be included in the analysis, participants had to 

have at least 15 artifact-free trials per condition, and at least 160 artifact-free trials overall (across 

the 8 conditions). On average, 18% of trials were rejected for artifacts for the included participants, 

and artifact rejection rates did not different significantly across the eight conditions, F(7,255) = 

0.58, p = 0.77. 

 

ERP statistical analysis 

http://www.biosemi.com/


 
 

23 

We extracted single trial artifact-free ERP data, using a baseline of –300 to 0ms, by 

averaging across electrode sites and time windows in two spatiotemporal regions of interest, which 

were selected a priori, based on previous studies using a similar design (Kuperberg, Brothers, & 

Wlotko, 2020; Brothers, Wlotko, Warnke, & Kuperberg, 2020). The N400 was operationalized as 

the average voltage between 300–500ms across five central electrode sites (Cz, CPz, C3/4, CP1/2). 

The late frontal positivity was operationalized as the average voltage between 600-900ms across 

five prefrontal electrode sites (FPz, FP1/2, AF3/4). 

 We analyzed these trial-level data using a series of linear mixed-effects regression models, 

which allowed us to look for effects of categorical predictors as well as continuous item-level 

predictors. This random effect for items refers to contexts (not individual target words). Thus, all 

trials that use the same introductory scenarios (and their control contexts) have the same item label. 

 All regression analyses were conducted in R (R Core Team, 2022), using the lme4 package 

version 1.1–31 (Bates et al., 2015) and lmerTest version 3.1–3 (Kuznetsova et al., 2017). Following 

Barr et al. (2013), all regression analyses included the maximal random effects structures justified 

by the design both by subjects and by items. Random effect correlations were included by default. 

However, if we encountered issues with model convergence or singular fits, we removed these 

correlations. If this step did not resolve the issues, we continued to simply the random effects 

structure until reaching convergence without singular fits. 

 For the analyses designed to test the friendly pre-activation account (Models 3 and 4), we 

calculated the semantic relatedness between the lower and higher probability words in all of our 

TargetScenarios. Specifically, we calculated the semantic relatedness (1 – cosine distance) on an 

item-by-item basis between the WithCompetitor SecondBest (A2) and the WithCompetitor 

Expected (A1) words, and between the NoCompetitor ZeroCloze (A4) and NoCompetitor Expected 
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(A3) words. The semantic vectors used for these computations were obtained using a predictive 

Continuous Bag of Words model (see Mandera, Keuleers, & Brysbaert, 2017; 

http://meshugga.ugent.be/snaut-english, 300 dimensions, window size = 6).  

 We also conducted two additional analyses that are only reported in the Supplementary 

Materials/OSF. First, we conducted a series of Bayesian analyses. This is because, to foreshadow 

our findings, we report a series of null main effects and interactions that are critical to 

distinguishing the theoretical accounts under discussion. For these supplementary analyses, we 

calculated the Bayes Factor (BF01) to quantify the evidence in favor or against these null findings. 

Second, to explore the possibility of other late ERP effects related to misprediction (e.g. a left 

frontally distributed negativity described by Wlotko and Federmeier’s, 2012), which might occur 

outside our spatiotemporal regions of interest, we implemented a series of Mass Univariate 

analyses across all time points from 600–900ms and all electrode sites (except for temporal sites), 

correcting for multiple comparisons using a cluster-based approach. 

 

Results 

Behavioral results 

Comprehension question accuracy across all conditions was 91% (on average), suggesting that 

readers were attending carefully to the discourse contexts. 

 

ERP Results 

In Figure 1, we show grand-average ERPs produced by the WithCompetitor Expected (A1) and 

SecondBest (A2) critical words in the TargetScenarios, along with the collapsed grand-averages 

produced by the same critical words in the ControlScenarios (B1–B2). Between 300–500ms, the 
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WithCompetitor Expected critical words elicited the smallest N400 responses; the WithCompetitor 

SecondBest critical words, which, on average had moderate cloze probabilities, produced a larger 

N400 responses, and the ControlScenario continuations, which, on average, had low cloze 

probabilities, produced the largest N400 response. Beyond the N400 time-window, between 600–

900ms, the WithCompetitor SecondBest words appeared to produce a slightly larger positivity at 

frontal sites than the critical words in the ControlScenarios. 

In Figure 2, we show grand-average ERPs from the NoCompetitor Expected (A3) and 

ZeroCloze (A4) conditions, as well as ERPs produced by the same critical words appearing in the 

ControlScenarios. Here, the critical words in the two unexpected conditions (ZeroCloze, 

ControlScenarios) had similarly low cloze probabilities, and produced a larger N400 than the 

NoCompetitor Expected critical words. Beyond the N400 time-window, there again appeared to be 

a slightly larger positivity at frontal sites between 600–900ms to the NoCompetitor ZeroCloze 

words relative to the critical words in the ControlScenarios. 

ERP plots for all conditions individually at all electrodes sites and all time points are included 

in Supplementary Materials. 
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Figure 1. Grand-average event-related potentials, time-locked to the onset of Expected and 
SecondBest critical words in the WithCompetitor contexts, and to the same critical words 
appearing the ControlScenarios. 
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Figure 2. Grand-average event-related potentials, time-locked to the onset of Expected and 
ZeroCloze critical words in the NoCompetitor contexts, and to the same critical words appearing 
the ControlScenarios.  
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It is important to note that although there were clear differences between conditions in the 

mean cloze probability of the critical words, which was reflected by the differences in N400 shown 

in Figures 1 and 2, there was considerable variability in cloze values within each of these 

conditions. Indeed, several conditions actually overlapped in their ranges of cloze probabilities 

(see Methods). For example, the range of top-1 cloze probabilities for critical words in the 

WithCompetitor SecondBest condition was 0–36%, which overlapped with the ranges in the 

WithCompetitor Expected (36–92%), NoCompetitor Expected (33.3–88%), NoCompetitor 

ZeroCloze (0–1.9%) conditions, as well as with the range of critical words in the ControlScenarios 

(range across B1–B4, 0–36%). Therefore, to test the divergent predictions made by the competitive 

pre-activation, independent pre-activation, and friendly pre-activation accounts, we used 

condition labels as categorical predictors (where relevant), while controlling for item-specific 

cloze probability as a continuous predictor variable.7F

8 This enabled us to address three sets of 

questions. 

 

                                                 
8 For all analyses that included the WithCompetitor contexts, we also carried out the same set of analyses with an 
independent measure of lexical probability, taken from the large language model, GPT-3 (Brown et al., 2020). When 
we estimate lexical probability via cloze responses from multiple individuals, we assume that each individual response 
represents a noisy sample from an internal probability distribution of representation within an individual brain, and so 
multiple averaged guesses should provide a more precise estimation of these probabilistic representations than 
responses from a single individual – the so-called "wisdom of the crowd" effect (Galton, 1907; Stroop, 1932). Thus, 
if two words in two different contexts are matched in cloze probability, we tend to assume that their levels of pre-
activation are also matched. However, it is possible that this assumption may not hold for the WithCompetitor contexts. 
This is because competition amongst pre-activated representations could, in principle, directly influence the 
probability with which these items are produced during the cloze task. For example, inhibition from the more probable 
alternative may reduce pre-activation of the SecondBest representation, making it less likely that this SecondBest 
continuation is produced than if it appeared in a NoCompetitor context. If this was the case, then it could lead to a 
systematic underestimation of the lexical probability of these SecondBest items, which would, in turn, reduce the 
likelihood of detecting evidence of competitive pre-activation during language comprehension. Our use of an 
independent corpus-based measure of lexical probability helped rule out this potential confound: For all tests of 
theoretical interest, we observed the same pattern of results using these GPT-3 estimates (see Supplementary 
Materials/OSF for results of these analyses in the annotated R script). 
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Question 1: Competitive or independent pre-activation? Evidence from the N400 

 We began by asking whether there was any evidence of competitive pre-activation. This 

account predicts that in contexts with more than one likely continuation, there should be some 

degree of mutual inhibition between pre-activated alternatives prior to the incoming word 

becoming available. For example, in the WithCompetitor context from Table 1, the pre-activated 

lexico-semantic representations, <hearts> and <flowers>, should inhibit one another during the 

prediction phase, resulting in less facilitation and a larger N400 than one would expect (based 

only on cloze probability) to the incoming SecondBest and Expected critical words. In contrast, 

the independent pre-activation account predicts that the amplitude of the N400 evoked by these 

words should depend solely on their cloze probabilities, regardless of the presence of a co-activated 

alternative. We tested these divergent predictions with Models 1 and 2.  

 

Model 1: Does competitive pre-activation result in an increased N400 to SecondBest words? 

In Model 1, we focused on the N400 in response to the WithCompetitor Expected (A1), and 

WithCompetitor SecondBest (A2) critical words, while controlling for Item-specific cloze 

probability. In order to control for low-level lexical variables, we also included the N400 responses 

from the identical set of critical words appearing in their associated ControlScenarios (B1 and B2, 

respectively). Thus, this model included fixed effects of Item-specific Cloze, Continuation Type 

(Expected = –0.5, SecondBest = 0.5), Stimulus Group (TargetScenarios = 0.5, ControlScenarios = 

–0.5), and an interaction between Continuation Type and Stimulus Group.  

If there is competitive pre-activation in the WithCompetitor contexts, then we should see 

larger N400 responses to the SecondBest words, relative to Expected words, after controlling for 

item-specific cloze probability. In contrast, we should see no such difference between the N400 
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produced by the same critical words appearing in their ControlScenarios. In other words, we 

should see an interaction between Continuation Type and Stimulus Group.  

Our results showed a clear main effect of Item-specific Cloze on the N400 (b = 3.58, t = 

2.47, p = .014). Critically, however, we saw no significant interaction between Continuation Type 

and Stimulus Group (see Table 3). These findings suggest that all critical words in our study evoked 

N400 amplitudes in proportion to their cloze probabilities, with no penalties for being in the 

presence of a pre-activated alternative.  

 

Table 3. WithCompetitor Expected, SecondBest and ControlScenario conditions 
 

Model 1 (N400) Estimates 

Predictor   b SE   t-value p-value 
Item-specific Cloze   3.58 1.45   2.47    .01 * 
Continuation Type  –0.18 0.41 –0.44 .66 
Stimulus Group   0.71 0.60   1.18 .24 
Continuation Type × Stimulus Group –0.50 0.77 –0.65 .52 

Random Effects Structure: (1 + continuation*stimulus_group || subject) + (1 + stimulus_group + continuation:stimulus_group || 
item) 

 

Model 2: Does competitive pre-activation result in an increased N400 to Expected words? 

 In Model 2, we compared the N400 responses to the WithCompetitor Expected (A1) and 

the NoCompetitor Expected (A3) critical words. Again, to control for lexical variables, we included 

the N400 responses from the identical critical words appearing in their associated 

ControlScenarios (B1, B3). In this model, we included fixed effects of Item-specific Cloze, 

Contextual Competition (WithCompetitor = 0.5, NoCompetitor = –0.5), Stimulus Group 

(TargetScenario = 0.5, ControlScenario = –0.5), and an interaction between Contextual 

Competition and Stimulus Group. 
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 If Expected words in WithCompetitor contexts were slightly inhibited by their SecondBest 

competitors during the pre-activation phase, then they should produce slightly larger N400s than 

the cloze-matched Expected words in the NoCompetitor contexts. As in Model 1, we would expect 

to see no such differences between the same critical words in their associated ControlScenarios. 

In other words, there should be an interaction between Contextual Competition and Stimulus 

Group (see Table 4).  

In this model, however, we found only a main effect of Item-specific Cloze on the N400 (b 

= 3.51, t = 2.87, p = .005). There were no other significant main effects, nor interactions. Taken 

together with Model 1, these results fail to provide evidence for the competitive pre-activation 

account; that is, the degree of pre-activation for a given word did not appear to be sensitive to the 

presence or absence of a pre-activated alternative. 

 

Table 4. WithCompetitor Expected, NoCompetitor Expected, and ControlScenario conditions 
 

Model 2 (N400) Estimates 

Predictor b SE t-value p-value 
Item-specific Cloze 3.51 1.22 2.87      .005 * 
Contextual Competition  0.41 0.28 1.45 .15 
Stimulus Group 0.10 0.71 0.14 .89 
Contextual Competition × Stimulus Group 0.75 0.58 1.30 .20 

Random Effects Structure: (1 + cloze + contextual_competition:stimulus_group || subject) + (1 + cloze + stimulus_group || item) 
 

Question 2: Friendly pre-activation due to shared semantic features: Evidence from the N400 

 Our second aim was to determine whether there is any evidence for friendly pre-activation 

as a result of overlap between the semantic features associated with the observed lower probability 

critical word and an unobserved higher probability pre-activated alternative. In contrast to the 

competitive pre-activation account, which predicted less facilitation and a larger N400 than that 
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one would expect based on cloze probability alone, the friendly pre-activation account predicts 

more facilitation and a smaller N400 than one would expect based only on cloze. Moreover, this 

account also predicts that the reduction in the N400 should be graded with increasing levels of 

relatedness between the critical word and its unobserved, higher probability alternative. To address 

this question, we first assessed the effects of friendly pre-activation in all lower probability 

continuations (Model 3). We then restricted our analyses to the subset of SecondBest continuations 

in the WithCompetitor contexts (Models 4 and 5).  

 

Model 3: For all lower probability words, is there a graded effect of friendly pre-activation? 

 In Model 3, we included the N400 responses to all lower probability continuations in 

contexts with a potentially pre-activated higher probability alternative—namely, the NoCompetitor 

ZeroCloze and the WithCompetitor SecondBest conditions. According to the friendly pre-activation 

account, the mere pre-activation of a higher probability alternative should provide facilitation on 

the N400 evoked by a lower probability continuation, but only if the two words are semantically 

related to one another. Thus, if there is friendly pre-activation, the N400 produced by lower 

probability continuations should become smaller (than predicted by cloze) as semantic relatedness 

increases.  

 To test this hypothesis, Model 3 included a continuous fixed effect of Semantic 

Relatedness, which was calculated, item-by-item, between each critical word and its higher 

probability competitor (see Methods). The model also included a fixed effect of Item-specific 

Cloze to control for differences between the two lower probability conditions. 

 Consistent with a friendly pre-activation account, we observed a significant effect of 

Semantic Relatedness such that the N400 produced by lower probability continuations (ZeroCloze, 

SecondBest) decreased as semantic relatedness increased (see Table 5; b = 6.01, t = 3.55, p < 
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.001).8F

9 In Figure 3 (left panel), we show the averaged N400 responses for each lower probability 

word as a function of its semantic relatedness with its higher probability alternative. Consistent 

with the model results, the amplitude of the N400 increases with increasing similarity between the 

critical word and its higher probability alternative. 

 

Table 5. ZeroCloze and SecondBest continuations 
 

Model 3 (N400) Estimates 

Predictor b SE t-value p-value 
Item-specific Cloze 2.78 2.52 1.10      .28 
Semantic Relatedness  6.01 1.69 3.55 < .001 * 

Random Effects Structure: (1 + cloze + semantic_relatedness | subject) + (1 | item)  
 

 To further visualize this effect, we used a median split to subdivide the trials into those that 

were semantically related to a higher probability continuation (Mean semantic relatedness: 0.44; 

SD: 0.10) and those that were semantically unrelated to a higher probability continuation (Mean 

semantic relatedness: 0.19; SD: 0.07). We then computed grand-average waveforms for each of 

these conditions across central electrode sites. Figure 3 (right panel) shows these waveforms, 

together with the waveforms produced by Expected critical words (averaged across conditions A1 

and A3) and critical words in the ControlScenarios (averaged across conditions B2 and B4). As 

expected, we found graded N400s such that Expected words evoked the smallest responses, 

followed by a larger N400 to critical words that were Related to a higher probability alternative, 

and the largest N400s to critical words that were Unrelated to a higher probability alternative, and 

                                                 
9 In Model 3, as well as in Model 4, which included only a subset of the non-modal continuations, there was no 
significant effect of Cloze, perhaps because of the relatively restricted range of cloze probability in these analyses. 
However, the fact that Semantic Relatedness predicted N400 amplitude, while controlling for cloze probability, 
supports the friendly pre-activation account. 
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that appeared in the ControlScenarios. Taken together, these findings suggest that, instead of 

reducing the degree of lexico-semantic facilitation, the pre-activation of a higher probability 

alternative can further facilitate the processing of a lower probability critical word. 

 

 

Figure 3. Left: The averaged N400 response (300–500ms) for each lower probability critical word 
in conditions A2 (WithCompetitor SecondBest) and A4 (NoCompetitor ZeroCloze) plotted as a 
function of its semantic relatedness to its more probable alternative (taken from the 
WithCompetitor Expected condition, A1, and the NoCompetitor Expected condition, A3).  
Right: Grand-averaged ERPs within the N400 spatiotemporal region in response to (a) critical 
words in the ControlScenarios (averaged across conditions B2 and B4, blue dotted), (b) critical 
words in conditions A2 and A4 that were semantically unrelated to a higher probability alternative 
(Unrelated to Expected, red), (c) critical words in conditions A2 and A4 that were semantically 
related to a higher probability predicted alternative (Related to Expected, orange), and (d) Expected 
critical words (averaged across conditions A1 and A3, black) 
 

Model 4: Does friendly pre-activation also enhance facilitation on SecondBest critical words in 

WithCompetitor contexts? 

In Model 3, we grouped together responses to all lower probability continuations in 

contexts with a potentially pre-activated alternative, including zero-cloze continuations where 

previous work has already demonstrated friendly pre-activation (Kutas and Hillyard 1984; 
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Federmeier & Kutas, 1999; Thornhill & Van Petten, 2012; DeLong & Kutas, 2020). Here, in Model 

4, we focused solely on the N400 produced by the WithCompetitor SecondBest continuations, 

which have not been examined in previous studies. This provided a more direct test of whether, in 

these WithCompetitor contexts, SecondBest critical words receive friendly pre-activation from 

their higher probability alternatives, which, as discussed earlier, could have potentially acted as 

competitors. Similar to Model 3, this model included fixed effects of Semantic Relatedness and 

Item-specific Cloze (see Table 6). We again found a significant effect of Semantic Relatedness on 

the N400 on the WithCompetitor SecondBest continuations (b = 7.37, t = 2.87, p = .006), when 

controlling for cloze probability.  

 

Table 6. WithCompetitor SecondBest only 
 

Model 4 (N400) Estimates  

Predictor b SE t-value p-value 
Item-specific Cloze   0.03 4.04 0.01      .99 
Semantic Relatedness    7.37 2.57 2.87   .006 * 

Random Effects Structure: (0 + cloze + semantic_relatedness || subject) + (1 | item) 
 

Model 5: When minimizing friendly pre-activation, is there any evidence of a competition effect 

on SecondBest completions? 

 As noted in the Introduction, the competitive pre-activation and friendly pre-activation 

accounts are not mutually exclusive. Thus, even though, as shown in Model 4, SecondBest 

critical words that were semantically related to a more expected continuation received more 

facilitation than one would expect based on their cloze probability, it remained possible that 

SecondBest critical words that were semantically unrelated to a more expected continuation 

might receive less facilitation than expected, as a result of competitive pre-activation (see Ness 
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and Meltzer-Asscher, 2021a, for evidence during a speeded cloze task). On this account, one 

explanation for why we found no evidence of competitive pre-activation in Model 1 could be 

that any effects of competitive pre-activation were outweighed by friendly pre-activation. 

To explore this possibility, we further restricted our analysis to the subset of 

WithCompetitor items in which the Expected and SecondBest continuations were unrelated to one 

another. All trials were split into Related and Unrelated groups using a median split on Semantic 

Relatedness (Median = 0.39). We then selected the SecondBest words from these semantically 

Unrelated trials and paired them with their associated ControlScenarios. We then implemented 

another model with fixed effects of Stimulus Group (TargetScenarios = 0.5, ControlScenarios = 

–0.5) and Item-specific Cloze as a control variable. If there was any evidence of competitive pre-

activation on the N400, we should see an effect of Stimulus Group in this model. However, 

similar to the models above, we observed no such categorical effect of Stimulus Group; if 

anything the beta-weight for this model went in the opposite direction, with greater facilitation 

on unrelated SecondBest words in the WithCompetitor contexts than when the same words 

appeared in the ControlScenarios (see Table 7). 

 

Table 7. WithCompetitor SecondBest continuations from semantically Unrelated trials 
 

Model 5 (N400) Estimates 

Predictor b SE t-value p-value 
Item-specific Cloze –4.29 4.39 –0.98       .33 
Stimulus Group    1.44 0.82   1.75 .09 

Random Effects Structure: (1 + cloze + stimulus_group || subject) + (1 + stimulus_group || item) 
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Question 3. Late costs of suppressing higher probability alternatives: Evidence from the late 

frontal positivity.  

Our final aim was to determine whether, in the WithCompetitor contexts, there was any 

evidence for costs associated with late inhibition when processing SecondBest versus Expected 

continuations. To address this question, we focused on the late frontal positivity, which has 

sometimes been interpreted as an index of inhibiting or suppressing an incorrect lexical prediction 

in order to successfully integrate an observed input into the unfolding context (Kutas, 1993; Ness 

& Meltzer-Asscher, 2018).  

 

Model 6: Are there inhibitory costs on the late frontal positivity produced by SecondBest relative 

to Expected continuations in WithCompetitor contexts? 

Similar to Model 1 for the N400, Model 6 compared the late frontal positivities produced 

by WithCompetitor Expected (A1) and WithCompetitor SecondBest (A2) critical words, as well as 

the same critical words appearing in the ControlScenarios (B1 and B2, respectively), i.e., it 

included fixed effects of Item-specific Cloze, Continuation Type (Expected = –0.5, SecondBest = 

0.5), Stimulus Group (TargetScenarios = 0.5, ControlScenarios = –0.5), and an interaction 

between Continuation Type and Stimulus Group. 

If late costs are incurred when comprehenders suppress/inhibit an incorrectly pre-activated 

alternative, then the SecondBest completions should produce a larger frontal positivity than the 

Expected continuations, and there should be no such differences between the same critical words 

appearing in the ControlScenarios, i.e., a there should be an interaction between Continuation Type 

and Stimulus Group. However, our results did not indicate any such interaction (see Table 8). Thus, 
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in WithCompetitor contexts, there was no evidence of any late penalty in processing lower 

probability words in the presence of a higher probability alternative. 

 

Table 8. WithCompetitor Expected, WithCompetitor SecondBest, and ControlScenario conditions 
 

Model 6 (Late Frontal Positivity) Estimates 

Predictor b SE t-value p-value 
Item-specific Cloze –1.49 1.47 –1.02       .31 
Continuation Type   0.45 0.40   1.12 .26 
Stimulus Group   0.79 0.57   1.37 .17 

Continuation Type × Stimulus Group  –0.53 0.83 –0.63 .53 

Random Effects Structure: (1 + cloze + stimulus_group || subject) + (0 + cloze + continuation_type:stimulus_group || item) 
 

Models 7 and 8: Are there continuous effects of Constraint on the late frontal positivities to lower 

probability critical words?  

One reason why some researchers have suggested that the late frontal positivity reflects 

late costs associated with suppressing an incorrectly predicted alternative is that this component is 

sometimes larger in response to zero-cloze words appearing in high constraint contexts, which 

constrain for a single alternative, relative to zero-cloze words appearing in low constraint contexts 

that do not constrain for any specific word (e.g. Federmeier et al., 2007; Kuperberg, Brothers, & 

Wlotko, 2020).  

In light of these findings, we attempted to replicate (and extend) these previous findings 

by investigating how the late frontal positivity to lower probability continuations varies as a 

function of Contextual Constraint in the present study (Models 7 and 8). In comparison with 

previous studies, which have contrasted ERPs to zero-cloze words appearing in high constraint 

versus low constraint contexts, the present study included discourse contexts with a fairly wide 

range of constraint across conditions. Thus, even though, the average constraint of the contexts in 
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the ControlScenarios was lower (Mean constraint = 19.5%, SD = 7.8%) than that of the 

TargetScenarios (Mean constraint = 59.1%, SD = 14.8%), there was still a considerable amount 

of variability in Contextual Constraint within both these stimulus groups (ControlScenarios Range 

= 8–52%, TargetScenarios Range = 33.3–92%). We therefore decided to combine these two 

conditions and use a continuous item-level measure of constraint, rather than categorical measure 

of constraint, for these analyses. 

In Model 7, we examined the effect of Item-specific Constraint on the late frontal positivity 

produced by zero-cloze items (analogous to what has been examined in previous studies). In the 

present study, this included all items in the NoCompetitor ZeroCloze (A4) and their associated 

ControlScenarios (B4). This model included fixed effects of Item-specific Cloze and Item-specific 

Constraint (see Table 9). In this analysis, we found that the effect of Item-specific Constraint 

trended toward significance in the predicted direction (b = 1.46, t = 1.90, p = .06). 

 
 
Table 9. ZeroCloze and their associated ControlScenarios 
 

Model 7 (Late Frontal Positivity) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze 9.96 19.09 0.52 .60 

Item-specific Constraint 1.46 0.77 1.90 .06 

Random Effects Structure: (1 + cloze + constraint || subject) + (1 | item) 
 

 Because of this near replication, and given the interest of an anonymous reviewer, we then 

ran another model (Model 8) with the same predictors to explore whether there was an influence 

of Item-specific Constraint on the late frontal positivities produced by the WithCompetitor 

SecondBest critical words (A2) and their corresponding controls (B2). Results indicated a 
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significant effect of Item-specific Constraint (see Table 10) such that late frontal positivities 

became larger as the constraint of the context increased (b = 2.46, t = 2.51, p = .014).  

The results from these two analyses (Models 7 and 8), taken together with the prior 

literature, suggest that lower probability continuations show larger late frontal positivities in higher 

relative to lower constraint contexts.9F

10 We discuss this finding further in the Discussion.  

 
Table 10. SecondBest and their associated ControlScenarios 
 

Model 8 (Late Frontal Positivity) Estimates 

Predictor b SE t-value p-value 

Item-specific Cloze –1.16   2.14 –0.54 .59 

Item-specific Constraint   2.46   0.98   2.51      .014 * 

Random Effects Structure: (1 + constraint || subject) + (0 + constraint || item) 

 
 

Discussion 

It is well-established that linguistic predictions are probabilistic, and that the processing 

of incoming words is facilitated in a graded fashion to the degree that they have been pre-

activated by the prior context. This raises an obvious question: Are there “costs” associated with 

generating lexico-semantic predictions during language comprehension? 

To address this question, most researchers have focused on the specific situation in which 

a plausible but lexically unpredictable target word violates a strong lexical prediction that is 

generated in a highly constraining context (e.g. “He bought her a pearl necklace for 

her...collection”). It has been hypothesized that such prediction violations might incur 

processing costs as a result of competition between the bottom-up input and the incorrect 

                                                 
10 For completeness, we also ran identical models to Models 7–8 on the N400 response. Consistent with the prior 
literature, we did not see any effects of constraint on the N400 to the NoCompetitor ZeroCloze continuations (b = 
0.40, t = 0.49, p = .62) nor the WithCompetitor SecondBest continuations (b = 1.93, t = 1.71, p = .09). 
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prediction. To test this hypothesis, researchers have contrasted these prediction-violating-target 

words with target words that are equally unpredictable, but that do not violate a strong prediction 

(e.g. “He looked worried because he might have broken his...collection”). 

ERP and behavioral studies examining this contrast have found no evidence of costs 

associated with violating strong predictions during lexico-semantic processing (ERP studies 

examining the N400: Kutas & Hillyard, 1984; Federmeier, Wlotko, De Ochoa-Dewald & Kutas, 

2007; Kuperberg, Brothers, & Wlotko, 2020; behavioral studies: Frisson et al., 2017; Steen-

Baker, Ng, Payne, Anderson, Federmeier & Stine-Morrow, 2017; Fischler & Bloom, 1979, 1985; 

Schwanenflugel and LaCount, 1988; see also Wong, Veldre & Andrews, 2022). However, some 

ERP studies have shown that, in plausible sentences, this contrast sometimes reveals a frontally-

distributed positivity effect at a later stage of processing (e.g. Federmeier et al., 2007; 

Kuperberg, Brothers, & Wlotko, 2020). This effect has sometimes been interpreted as indexing 

later costs as a result of competition between the predicted word and the bottom-up input (Kutas, 

1993; Ness & Meltzer-Asscher, 2018). 

In the present study, we ask a different question that has received far less attention in the 

literature: Are there any consequences of disconfirming a prior prediction in contexts that 

constrain for multiple possible candidates? 

In contrast to prediction violations on zero-cloze words, where any competition would 

begin only once the bottom-up input is encountered, in these WithCompetitor contexts, the pre-

activated alternative candidates could begin to compete with one another before the onset of the 

target word. This would lead to relative costs in processing the bottom-up input; that is, even if 

the target is partially predictable because it confirms one of the pre-activated alternatives, it may 

still be more difficult to process than if there had been no pre-activated competitor. These 
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relative costs could be incurred during the initial stages of lexico-semantic processing, predicting 

a larger N400 than would be expected based only on cloze probability. Alternatively, they might 

manifest at a later stage of processing on the late frontal positivity. 

In a naturalistic eye-tracking study, Luke and Christianson (2016) showed (a) that such 

“high competition” contexts followed by “second best” continuations are encountered frequently 

in natural texts, but (b) when these texts are read for comprehension, the second-best 

continuations incurred no behavioral processing costs on either early or late reading time 

measures. Instead, these authors found evidence of increased facilitation when less predictable 

words were semantically related to a higher probability alternative. 

In the present study, we conceptually replicated Luke and Christianson’s findings using a 

different method — ERPs — and using a controlled experimental design, which allowed us to 

control for potential lexical confounds. Contrary to the predictions of a competitive pre-

activation account, we found that in WithCompetitor contexts, the N400s produced by 

SecondBest and Expected continuations were no larger than would be predicted given their cloze 

probabilities alone. Instead, we found evidence for friendly pre-activation on the N400: 

Extending previous ERP findings showing that zero-cloze words that are semantically related to 

a predicted continuation produce facilitation on the N400 (e.g. Federmeier & Kutas, 1999), we 

found that when a SecondBest critical word was semantically related to the higher probability 

alternative, it produced a smaller N400 than expected given its cloze probability (i.e. enhanced 

facilitation). Finally, we found no evidence for differences in the responses produced by the 

SecondBest and the Expected continuations on a later frontal positivity, even though this 

component was influenced by the constraint of the prior context. 

These findings have important theoretical implications for understanding the mechanisms 
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underlying probabilistic prediction during language comprehension. In the remainder of this 

discussion, we first consider the lack of evidence for competitive effects on the N400 in the 

WithCompetitor contexts. We then consider the lack of evidence for competitive effects on the 

late frontal positivity and consider reasons why this late effect was nonetheless sensitive to 

contextual constraint. Third, we discuss how our findings extend previous work that has 

demonstrated the role of friendly pre-activation on the processing of zero-cloze words. Finally, 

we discuss the computational principles of a parallel, interactive framework of predictive 

processing that can accommodate these findings, and how these principles might be implemented 

by a biologically plausible architecture and algorithm known as predictive coding. 

 
No evidence for effects of competitive pre-activation on the N400 

During language comprehension, prediction is often viewed as a top-down process in 

which comprehenders use their current high-level interpretation to pre-activate lower-level 

lexico-semantic representations of upcoming words. At face value, this top-down process is 

similar in many respects to language production, in which producers use an intended high-level 

message to activate lower-level lexical representations for later articulation. This has led some 

researchers to propose that top-down prediction during language comprehension routinely 

employs the same mechanisms that are employed during language production (e.g. Pickering & 

Garrod, 2013; Fitz & Chang, 2019; Van Petten & Luka, 2012). 

In testing this theory, a critical factor to consider is that, to produce language, there is 

continuous top-down pressure to select a single word (e.g. Levelt, 2001). One well-known 

mechanism of top-down lexical selection during language production is mutual competitive 

inhibition in which co-activated lexical representations each exert lateral inhibition on one 

another until a single candidate is selected. This type of “winner-takes-all” selection mechanism 
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is a fundamental characteristic of classic Interactive Activation and Competition (IAC) models 

that have been used to model language production (e.g. Chen & Mirman, 2012). For example, in 

a recent study, Ness and Meltzer-Asscher (2021a) used an IAC model (Chen & Mirman, 2012) 

to simulate production times in a speeded cloze tasks. These authors showed that competitive 

inhibition between unrelated pre-activated lexical representations could explain the longer-than-

expected times to produce upcoming words (see also Nakamura & Phillips, 2022).  

To the extent that the same IAC principles have been proposed to underlie aspects of 

language comprehension (e.g. McClelland & Rumelhart, 1981; McClelland & Elman, 1986; see 

also Spivey & Tanenhaus, 1998; MacDonald, Pearlmutter & Seidenberg, 1994), then this would 

predict that the presence of a competing alternative during the predictive phase of language 

comprehension should reduce lexico-semantic facilitation on incoming words when they become 

available. This would result in larger N400s on critical words in WithCompetitor contexts than 

one might expect based on cloze probability alone. This reduced facilitation should be 

particularly apparent on SecondBest continuations (e.g. “flowers”) because, in IAC models, 

lateral inhibition scales non-linearly, such that more strongly activated lexical units exert the 

greatest inhibitory pressure. Specifically, during the pre-activation phase, the more weakly pre-

activated second-best alternative (e.g. <flowers>) would receive strong inhibition from the more 

strongly pre-activated alternative (e.g. <hearts>), and so when this SecondBest input (“flowers”) 

actually appears, it should be relatively more difficult to access its lexico-semantic 

representation. In addition, one might also expect to see some effect of top-down competitive 

inhibition on the Expected words in the WithCompetitor contexts (“hearts") compared to 

Expected words in NoCompetitor contexts with the same cloze probability, although this 

inhibition effect should be smaller in magnitude.  



 
 

45 

 However, we found no evidence for these types of competitive effects in the 

WithCompetitor contexts: First, the SecondBest words produced N400s in proportion to their 

cloze probabilities, with no additional effect of Continuation Type (Expected vs. SecondBest). 

Second, the Expected words in WithCompetitor context had comparable N400s to the Expected 

words in NoCompetitor contexts. These findings therefore do not support the idea that mutual 

inhibition between multiple pre-activated candidates influences subsequent lexico-semantic 

processing of incoming words between 300–500ms. 

 

No evidence for late suppression costs to SecondBest versus Expected critical words on the late 

frontal positivity 

 We also found no evidence for neural costs in processing SecondBest relative to Expected 

continuations at a later stage of processing, either on the late frontal positivity or on any other 

late ERP component (see Supplementary Material).10F

11 This provides evidence against a late 

suppression account, which claims that in order to integrate a lower probability word into its 

prior context, it is necessary to suppress an alternative predicted (but unobserved) representation 

that remain active past the N400 time window (Kutas, 1993; Ness & Meltzer-Asscher, 2018).  

 The original motivation for the late suppression account of the late frontal positivity was 

that this ERP component is sometimes larger to plausible zero-cloze words appearing in very 

high constraint versus low constraint contexts (e.g. Federmeier, Wlotko, De Ochoa-Dewald & 

                                                 
11 Wlotko and Federmeier (2012) proposed that another ERP component might reflect late costs associated with 
competition: In an exploratory post-hoc analysis, these authors observed a left-lateralized frontal negativity in response 
to medium-high (75–90%) cloze probability words, particularly those with an alternative competing continuation. 
These authors speculated that this effect indexed working memory resources necessary to deal with multiple 
competing possibilities during lexical selection. We did not find any evidence of this effect, either in the analyses 
presented in this manuscript or in further analyses reported in Supplementary Materials, despite the fact that our 
NoCompetitor Expected versus WithCompetitor Expected contrast closely resembled the contrast where Wlotko and 
Federmeier found their late left-lateralized frontal negativity. 
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Kutas, 2007; Kuperberg, Brothers, & Wlotko, 2020; although this is not always the case, e.g. see 

Thornhill and Van Petten, 2012; Zirnstein, van Hell & Kroll, 2018). In the present study, we 

replicate and extend this original finding by showing significant (and near significant) graded 

effects of Item-specific Constraint on the late frontal positivity (see Models 7 and 8). Therefore, 

our findings raise the question of what neurocognitive processes the late frontal positivity does 

index, and why this component is sometimes sensitive to contextual constraint, but not to lexical-

level inhibition. 

 In recent work, we have argued that, rather than indexing processes that operate over 

individual lexical items (such as lexical suppression), the late frontal positivity indexes processes 

related to the successful updating of the comprehender’s higher-level situation model upon 

encountering new unpredicted input (Brothers, Wlotko, Warnke, & Kuperberg, 2020; Kuperberg, 

Brothers, & Wlotko, 2020; Brothers, Greene, & Kuperberg, 2020). On this account, the reason 

why the late frontal positivity is often enhanced on unexpected plausible words that violate a 

higher probability prediction is that these types of unexpected words tend to trigger larger 

updates/shifts of the situation model (by retrieving new schema-relevant information from long-

term memory). For example, when reading “He bought her a pearl necklace for her collection”, 

the final word (collection) may produce a large late frontal positivity because the comprehender 

updates the situation model by inferring new schema-relevant events that are related to the 

collection of jewelry. 

 Critically, this account of the late frontal positivity implies that the presence of a strong 

lexical-level competitor is neither necessary nor sufficient to induce updates of the situation 

model and produce this effect. In the present study, this would explain why the WithCompetitor 

SecondBest completions (e.g. “flowers”) did not produce a larger late frontal positivity than the 
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WithCompetitor Expected completions. We suggest that both these critical words produced some 

degree of update in the comprehender’s situation model, which was, on average, greater than that 

produced by critical words in the ControlScenarios. 

 This situation model updating account can also explain why the late frontal positivity 

effect is not produced by unexpected words that violate strong predictions in very short sentences 

where comprehenders are unlikely to engage in building a situation model (e.g. “James unlocked 

the…[door]/laptop”, see Brothers, Wlotko, Warnke, & Kuperberg, 2020, Experiment 1). In 

addition, it can explain why, relative to expected words, a robust late positivity is sometimes 

produced by unexpected words appearing in low constraint contexts (e.g. Chow, Lau, Wang & 

Phillips, 2018; Freunberger & Roehm, 2016; Davenport & Coulson, 2011), sometimes with an 

amplitude that is, in fact, just as large as to high constraint unexpected continuations (e.g. 

Thornhill & Van Petten, 2012; Ng, Payne, Steen, Stine-Morrow, & Federmeier, 2017; Hubbard, 

Rommers, Jacobs, & Federmeier, 2019; Zirnstein, van Hell & Kroll, 2018). In these cases, both 

types of unexpected words may be informative enough to induce fairly large updates of the 

situation model (see Brothers, Greene & Kuperberg, 2020). 

 We emphasize, however, that the present study was not designed to directly test this 

situation model updating account of the late frontal positivity, and so it will be important for 

future studies to further explore the function role of this late frontal effect.   

 

Friendly pre-activation 

 In contrast to the lack of evidence for competitive pre-activation, we did find clear 

evidence for friendly pre-activation on lexico-semantic processing. The N400 response produced 

by lower probability words was reduced when these words shared semantic features with a more 
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strongly pre-activated alternative (bride – groom). This finding is consistent with previous ERP 

studies that have reported this type of “anticipatory semantic overlap effect” both on unexpected 

implausible words (Federmeier & Kutas, 1999; DeLong, Chan, & Kutas, 2019; Ito, Corley, 

Pickering, Martin, & Nieuwland, 2016) as well as on unexpected zero-cloze plausible words 

(Thornhill & Van Petten, 2012; DeLong & Kutas, 2020; for consistent behavioral results, see 

Frisson et al., 2017, Experiment 2; Roland, Yun, Koenig & Mauner, 2012; Wong, Veldre & 

Andrews, 2022).11F

12   

 Importantly, by conceptually replicating Luke and Christianson’s (2016) behavioral 

findings in their natural corpus, our findings extend this previous ERP work in two ways: First, 

we show that the anticipatory effect of semantic relatedness on the N400 is graded, with a linear 

relationship between degree of semantic relatedness and degree of facilitation. Second, we 

demonstrate that this additional facilitation occurs on SecondBest continuations (with non-trivial 

cloze probabilities) that are encountered in WithCompetitor contexts. Unlike a zero-cloze word, 

which will receive facilitation from a higher-probability predicted alternative only after it is 

encountered, SecondBest completions are likely to have already received some pre-activation 

from the semantically related alternative before the onset of the bottom-up input (see below for 

further discussion). As discussed earlier, during this pre-activation phase, the higher probability 

alternative could have, in principle, acted as a competitor. Therefore, by showing that these 

higher probability alternatives can facilitate, rather than inhibit, subsequent lexico-semantic 

access, we provide important evidence that semantic overlap from alternative pre-activated items 

                                                 
12 In a previous eye-tracking study, Frisson, Harvey and Staub, 2017 (Experiment 2) observed semantic overlap 
effects on plausible prediction violations, but only on late eye-tracking measures. This led the authors to conclude 
that lexical predictability and semantic overlap influenced distinct processing stages (word recognition and 
integration). The current findings, however, suggest that lexical predictability and semantic relatedness both 
modulated the same underlying ERP response (the N400) with a similar time course. Again, this finding supports the 
claim that semantic overlap effects are anticipatory in nature and can influence the initial stages of lexico-semantic 
retrieval (for additional supporting evidence, see Wong, Veldre & Andrews, 2022). 
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can support everyday language processing. Indeed, as noted earlier, Luke and Christianson 

(2016) showed that such SecondBest continuations in WithCompetitor contexts occur frequently 

in natural language. 

We should note that finding an anticipatory semantic overlap effect on critical words in 

WithCompetitor contexts is compatible with some IAC architectures. For example, in Chen & 

Mirman's IAC model (2012), in addition to receiving inhibitory lateral connections from other 

localist lexical items, each lexical item also receives cross-layer excitatory connections from 

distributed sets of semantic features. If two pre-activated candidates share semantic features, then 

this shared excitation can sometimes outweigh any mutual lexical-level inhibition. Evidence that 

this can impact language production comes from a recent study by Ness & Meltzer-Asscher 

(2021a), who carried out simulations using Chen and Mirman's IAC model, and showed that the 

additional pre-activation received by an expected lexical unit that shared semantic features with 

its second best “competitor” was able to explain peoples’ faster response latencies to produce 

this word in a speeded cloze task. 

However, as discussed earlier, Ness & Meltzer-Asscher (2021a) also found that the 

mutual lateral inhibition between lexical units in the IAC model was able to explain why 

producers took longer to produce expected words the presence of an unrelated competitor. In the 

present study, however, we found no evidence that this type of mutual inhibition between pre-

activated competitors influenced comprehension: Even when we considered only the subset of 

WithCompetitor contexts in which the SecondBest continuation was semantically unrelated to the 

Expected continuation (based on a median split), the N400 produced by SecondBest continuation 

was no larger than that produced by the same critical words in the ControlScenarios. 

Taken together, these findings provide strong evidence for friendly pre-activation, but no 

evidence for competitive pre-activation during language comprehension. 
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Explaining parallel, graded and friendly pre-activation within a hierarchical probabilistic generative 

framework 

 In the sections above, we discussed how researchers have appealed to architectures such as 

IAC in which lateral inhibitory connections between lexical representations play a key role in 

inhibiting pre-activated competitors. These frameworks, however, are incompatible with our 

current findings, as we found no evidence that inhibition between pre-activated lexical competitors 

influences lexico-semantic processing during comprehension. In this section, we will argue that 

our findings can be better understood within a probabilistic generative framework of language 

processing (see Kuperberg & Jaeger, 2016 for an overview). We first discuss the computational 

principles of this framework at Marr’s first level of analysis (Marr, 1971), and consider how these 

principles can explain the present set of findings. We then consider how this framework could be 

implemented at the algorithmic level, highlighting predictive coding as a particularly promising 

architecture and algorithm for achieving this goal. 

 

Marr level 1: Probabilistic Inference: Explaining the bottom-up input and explaining away 

alternatives 

 At the heart of all probabilistic generative frameworks is the generative model — an 

internal network of hierarchically organized knowledge that encodes the agent’s probabilistic 

assumptions about how latent causes (also called hypotheses) cause or “generate” observations 

from the environment (see Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010). At each level 

of representation, each hypothesis is held with a particular probability, referred to as a belief, and 

at any given time, an agent can hold multiple beliefs in parallel, which, together can be described 
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as a probability distribution. When new input (evidence) becomes available from the 

environment, prior beliefs at each level of representation are updated through Bayes’s rule, with 

belief flowing dynamically up and down the hierarchical generative network until it settles on the 

latent causes that best “explain” the statistical structure of the input (Pearl, 1982). 

 Within this probabilistic framework, the process of deep language comprehension can be 

understood as the process of inferring the high-level message that the producer intended to 

communicate from a sequence of linguistic inputs that unfold in real time. We will refer to this 

high-level interpretation as a situation model –– a representation of the set of events being 

communicated, including the referential, spatial, temporal, motivational and causal coherence 

relationships that link them (Van Dijk & Kintsch, 1983; Zwaan & Radvansky, 1998). We assume 

that this situation model lies at the top of the comprehender’s internal generative model, and that 

the network below it comprises all relevant information that is needed to infer this interpretation. 

This network encodes information at multiple levels of linguistic and non-linguistic 

representation (e.g. event structures, syntax, semantics, phonology, orthography). However, for 

the purpose of explaining our current findings, we will primarily focus on just four of these 

levels of representation: concepts, semantic features, lexical items, and orthographic features. 

Within this part of the generative network, each individual concept (e.g. {lime}) serves as a 

latent cause of a unique combination of distributed semantic features (e.g. the combination of 

<sour> and <edible> and <squeezable> and <green>). Each unique combination of semantic 

features, in turn, serves as a latent cause of a specific lexical representation (e.g. /lime/), which 

similarly serves as the latent cause for a particular set of distributed form features (e.g. "L-I-M-

E"). Note that, with these assumptions, each lexical representation describes a mapping function 
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that uniquely links a particular unique combination of semantic features with a particular set of 

form features.12F

13 

 During word-by-word language comprehension, the situation model continually 

propagates belief down to lower levels of the generative hierarchy. Because this high-level 

situation model represents information over a long time span, these beliefs will reach the 

conceptual, semantic, and lexical levels before new bottom-up input becomes available to these 

levels. Thus, within this framework, a lexico-semantic prediction corresponds to the 

comprehender’s prior beliefs about the particular concepts, the particular sets of semantic 

features, and the particular lexical items that are most likely to have caused/generated the 

orthographic features of the upcoming word. For example, when reading the scenario, “At the 

restaurant, Anthony got his food. He squeezed the fresh....”, a comprehender may have a 70% 

prior belief that Anthony squeezed a {lemon}/lemon/ and its unique set of semantic features, and 

a 30% belief that Anthony squeezed a {lime}/lime/ and its unique set of semantic features. (Note 

that, as discussed later, at the level of semantic features, a comprehender’s prior belief about a 

particular combination of features does not necessarily equate to the average of their prior belief 

of encountering each of these features individually). 

 Then, when new orthographic/phonological input is encountered (e.g. the orthographic 

features, L-I-M-E), this provides strong new evidence that is compatible with only one candidate 

hypothesis (only one latent cause) at each level of representation. As a result, over multiple 

cycles of belief updating, the agent’s belief over the conceptual representation, {lime}, its unique 

combination of semantic features (<sour> and <edible> and <squeezable> and <green>), and its 

                                                 
13 Within a Bayesian belief network, each individual lexical item would correspond to a particular value of a variable 
that functions to “d-separate” these semantic and form features such that they are conditionally independent (Pearl, 
1988; see Narayanan & Jurafsky, 2001 for discussion in relation to a different aspect of language comprehension). 
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lexical representation, /lime/, will each rise to nearly 100%, while belief will fall over all other 

mutually exclusive hypotheses at each of these levels of representation. This process of belief 

updating can be conceptualized as a type of “competitive selection” in that it involves selecting 

one latent cause from multiple mutually exclusive hypotheses. However, as we discuss next, and 

as illustrated in Figure 4, this type of “selection-by-inference” is quite different from the 

competitive selection that is implemented by IAC networks. 

 As explained earlier, in an IAC architecture, selection is implemented through mutual 

lateral inhibition between active units at a single lexical level of representation. In contrast, in 

probabilistic inference, latent causes compete to explain observations at the level below. To win 

this competition, each possible hypothesis at the conceptual and lexical levels must be evaluated 

in relation to each possible combination of observed semantic and orthographic features in order 

to determine which hypothesis/latent cause provides the best possible explanation of the 

particular combination of features that are observed. For example, at the lexical level, /lime/ and 

/dime/ both match the observed orthographic features, “I-M-E”, but only /lime/ can additionally 

explain the specific combination “L-I-M-E”, with the presence of “L” and the absence of “D” in 

the input's first position, and so it will win the competition. Analogously, at the conceptual level, 

both {lemon} and {lime} can explain the observed semantic features, <sour>, <edible>, and 

<squeezable>, but only the conceptual representation {lime} can account for the specific 

combination of observed features, including the presence of <green> and the absence of 

<yellow>. 
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Figure 4. Schematic illustration of the state of one part of a comprehender’s internal generative model at 
approximately 400ms after observing the new bottom-up orthographic input, L-I-M-E, following the context, “At the 
restaurant, Anthony got his food. He squeezed the fresh…”.  
At the level of lexical items: Most belief is centered over the lexical item, /lime/, which (a) provides the best 
explanation for the full set of observed orthographic features, L-I-M-E, and (b) is best explained by the unique set of 
semantic features that is being inferred (or retrieved) at the level above. At this point, there is also some belief over 
/lemon/, which was the more likely prior lexical candidate before the bottom-up input was encountered, but belief in 
/lemon/ will continue to fall because it cannot explain all the observed orthographic features, L-I-M-E. Finally, at this 
point, there is some belief over /dime/, which is able to explain several of the observed orthographic features (“I-M-
E”). However, as belief continues to rise over /lime/, it will fall over this competing orthographic lexical neighbor, 
which is said to be “explained away”.  
At the level of semantic features: Belief is rising over the unique combination of semantic features (<sour> and 
<edible> and <squeezable> and <green>), which provides the best explanation of the most probable lexical candidate, 
/lime/, that is being inferred at the lexical level below. At this point in time, there is also some belief over the unique 
combination of semantic features associated with the concept, {lemon} (<yellow> and <sour> and <edible> and 
<squeezable>), which was the most probable concept before the bottom-up input was encountered. However, belief 
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over this particular combination will continue to fall because it does not provide the best explanation for the more 
probable lexical candidate, /lime/. Note that the probability of the individual semantic features that are shared by the 
conceptual representations of {lime} and {lemon}, i.e., <sour>, <edible>, and <squeezable>, will each remain high 
(at 100%); it is primarily the probability of the feature, <yellow>, that will fall. Therefore, at the level of semantic 
features, any change in belief induced by the bottom-up input (or, equivalently, the amount of “work” of retrieving or 
accessing these features from semantic memory) will be less than the change in belief that is induced either at the 
lexical level below or at the conceptual level above. Finally, at this point in time, there is also some belief over the 
particular set of semantic features that can explain /dime/, which as noted above, is being inferred with lower 
probability at the level below. However, the comprehender’s belief in this unique combination of semantic features 
will continue to fall (a) because it cannot explain the more probable lexical candidate, /lime/, that is being inferred at 
the level below, and (b) because it cannot be explained by the more probable unique concept, {lime}, that is being 
inferred at the level above.  
At the level of concepts: Most belief is centered over the concept, {lime} — the latent cause that (a) provides the best 
explanation of the most probable unique combination of semantic features (<sour> and <edible> and <squeezable> 
and <green>) that is being inferred at the level below, and (b) is also explained by the event structure that is being 
inferred at the level above. At this point, any belief over the concept {dime} is minimal because of the lack of both 
bottom-up and top-down support. Finally, at this point in time, there is some remaining belief over {lemon}, which 
was the more likely conceptual candidate before the bottom-up input was observed. However, as belief continues to 
rise over {lime}, it will fall over this competing conceptual candidate, which is said to be “explained away”.  
At the level of event structures: As belief rises over the concept, {lime}, it will increase over the specific event 
{Anthony squeezed the fresh lime}. Note, given the preceding context, the correct syntactic structure has already been 
inferred. Therefore, within this framework, the successful “access” of a word’s semantic features and its underlying 
conceptual representation by 500ms (at the end of the N400 time-window) will often equate to successful “lexical 
integration” — the integration of a word into its local event/proposition.  
At the level of the situation model: Note that integrating a word into its local event/proposition does not necessary 
equate to integrating the newly inferred event into the entire situation model. Updating the entire situation model may 
involve the additional inference (or retrieval) of new schema-relevant information. For example, in the present case, 
the reader is likely to have already inferred that Anthony is eating fish. In addition, as the reader becomes increasingly 
certain of the specific event, {Anthony squeezed the fresh lime}, she may additionally infer that Anthony is eating 
tacos, which may, in turn, lead her to retrieve more details about other items that he is eating (e.g. Mexican or Latin 
American cuisine). We suggest that this process of successfully updating belief at the level of the situation model by 
retrieving additional schema-relevant features may be linked to another ERP component that peaks at a later stage of 
processing — the late frontal positivity. 
 

 Moreover, as discussed by Lee and Mumford in their foundational paper describing 

hierarchical inference in the visual system, because belief flows dynamically up and down the 

hierarchical generative model, competitive inference over latent causes at higher levels of the 

hierarchy will continually influence competitive inference at lower-levels, and vice versa (Lee & 

Mumford, 2003, p. 1437). For example, as illustrated schematically in Figure 3, as belief rises 

over the lexical representation, /lime/, this will lead the comprehender to infer/retrieve its unique 

set of semantic features from long-term memory. The rise in belief over this unique set of 

semantic features will, in turn, provide new bottom-up evidence that leads the comprehender’s 

prior conceptual beliefs to shift from {lemon} to {lime}. This, in turn, will provide new top-
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down evidence that induces a further rise in belief over /lime/ (versus /dime/) as the most likely 

lexical hypothesis.13F

14 

 Critically, as belief rises over the correct latent conceptual and lexical representations 

({lime} and /lime/), it falls over their competing neighbors ({lemon} and /dime/). This 

phenomenon exemplifies a form of Bayesian reasoning known as “explaining away” in which a 

rise in belief over one latent cause results in a reduction in belief over competing latent causes 

that share overlapping outcomes/observations. “Explaining away” is classically illustrated by the 

sprinkler problem: if we see wet grass and then find out that the sprinkler was on, our belief in 

the more likely hidden cause –– that it was raining –– decreases (Pearl, 1988). As we discuss 

later, explaining away can be implemented in neural networks that approximate Bayesian 

inference, where it provides a more “natural” mechanism for competitive selection than lateral 

inhibition (see Smolensky, 1986; Gaskell & Marslen-Wilson, 1997). 

 These basic principles of probabilistic inference can explain two key aspects of the 

current findings. First, they can explain why, in the WithCompetitor contexts that constrained for 

upcoming words that were semantically related to one another, we found evidence of friendly but 

not competitive pre-activation. As explained above, in a Bayesian framework, multiple prior 

beliefs can be maintained in parallel. Thus, after reading the context, “At the restaurant, Anthony 

got his food. He squeezed the fresh....”, the conceptual/lexical representations of both 

                                                 
14 This has important implications for theories of language comprehension: It implies that “lexical access” (inferring 
the lexical item that best explains a set of form features) is inherently intertwined with, and inseparable from 
inferring its conceptual representation. Moreover, to the degree that a word’s conceptual representation (e.g. {lime} 
is part of an event, e.g. {Anthony squeezed the lime}, then this also implies that “lexical access” is inherently linked 
to “lexical integration”. However, we emphasize that integrating a single word into its local context to infer an event 
within a single proposition is not the same as updating a still-higher-level situation model, based on this newly 
inferred event. The latter process may additionally involve activating/retrieving new schema-relevant information 
from long-term memory. For example, inferring, {Anthony squeezed the lime} may lead the comprehender to 
update her situation model by increasing belief over (or, equivalently, retrieving) information related to Mexican or 
Latin American cuisine, see Figure 3. As discussed earlier, the successful update of the comprehender’s higher-level 
situation model may be linked to the late frontal positivity ERP component, rather than the N400. 
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{lemon}/lemon/ and {lime}/lime/ are pre-activated in parallel, without any pressure to select 

between them. Moreover, because these pre-activated representations share common semantic 

features (i.e. <sour>, <edible>, and <squeezable>), and because the prior probability of each of 

these shared features is 100%, the average prior probability of encountering the set of individual 

semantic features that correspond to “lime” will be greater than 30% (i.e. greater than the prior 

probability of the unique combination of these features). As a result, when this lower probability 

target, “lime” is encountered, and its lexical and conceptual representation is actually inferred, 

the total change in probability at the level of semantic features will be less than the change in 

belief at either the lexical or conceptual levels. 

 Crucially, behavioral measures of processing and the N400 are primarily sensitive to 

changes at the level of semantic features, rather than at the lexical or conceptual levels. This has 

important implications for using estimates of lexical probability, based either on cloze or large 

language models, to predict behavioral and ERP measures of processing: Given that so many of 

the words that we encounter in natural text have semantically related alternatives (Luke and 

Christianson, 2016), these measures are likely to systematically underestimate the probability of 

encountering their semantic features and therefore their processing difficulty. 

 Second, these probabilistic principles can explain why, in the WithCompetitor contexts 

that constrained for upcoming words that were semantically unrelated to each other, we also saw 

no evidence of costs due to competitive pre-activation; that is, why the process of inferring the 

correct lexical and conceptual representation of the target was no more difficult than if the same 

target had been encountered with the same probability in a NoCompetitor context. To illustrate 

why this was the case, imagine reading a context like “Gina was about to eat her fish and fries. 

She squeezed the…”. At this point, we may have a 70% prior belief in /ketchup/ and a 30% prior 

belief in /lemon/. As discussed earlier, in an IAC architecture, these two pre-activated unrelated 
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lexical representations would begin to compete before the bottom-up input is encountered. 

Moreover, once “lemon” is encountered, its pre-activated lexical representation, /lemon/, would 

continue to receive lateral inhibition from the more strongly pre-activated item, /ketchup/. For 

both these reasons, it will be harder to select the correct target, /lemon/, in this WithCompetitor 

context than if there had been no competing alternative. 

 In contrast, in a Bayesian framework, there is no prior pressure to select between the pre-

activated representations, /ketchup/ and /lemon/14F

15 until new bottom-up evidence, becomes 

available. Moreover, once the new target input is encountered, the total change in belief that it 

induces is determined primarily by its own prior probability. For example, in the above example, 

encountering the word “lemon” should induce an increase in belief of 70% over its lexical 

representation, i.e. a change from 30% to almost 100%. This will be accompanied by a fall in 

belief of 70% to nearly 0% over /ketchup/; that is, the total change of belief is 70% in both 

directions. Similarly, in a NoCompetitor context, observing “lemon” will induce a 70% increase 

in belief over /lemon/. Because within this framework, all lexical probabilities must add up to 1, 

this will be accompanied by a 70% decrease in belief over the full set of alternative lexical 

representations in the lexicon. 

 

Marr level 2: A neural network that approximates Bayesian inference: Predictive coding 

 Of course, principles that are specified at Marr's first level of analysis are not always 

applicable at Marr's second algorithmic level. However, there are some connectionist networks 

                                                 
15 Within this framework, the only time when a comprehender would “pre-select” upcoming candidates during the 
pre-activation phase is if the context constrains for representations that are mutually incompatible with one another. 
For example, the selection restrictions of a verb can constrain either for semantic features associated with animate or 
inanimate entities (see Wang, Wlotko, Alexander, Schoot, Kim, Warnke, & Kuperberg, 2020 for recent evidence for 
this type of distributed pre-activation). 
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and algorithms that can approximate Bayesian inference, and, in these cases, the fundamental 

probabilistic principles outlined above should also apply. Specifically, within these types of 

neural networks, one can think of each lexical representation as corresponding to a specific 

pattern or “blend” of activity (cf. Smolensky, 1986) over the particular set of connectionist units 

that encode its unique set of semantic features. On the assumptions that (a) comprehenders pre-

activate upcoming lexico-semantic information based on the full situation model they have 

constructed prior to encountering an incoming word, and (b) they allocate a fixed amount of 

resources for this pre-activation, each unique blend would be pre-activated in parallel, with a 

strength that mirrors its estimated prior probability.15F

16 Then, upon encountering new bottom-up 

input, activity would increase over the unique pattern that encodes the semantic features of the 

incoming word, while, at the same time decreasing over all other blends. Once again, however, if 

the incoming word’s semantic features are compatible with semantic features that have been pre-

activated as part of another word’s unique blend, then that word should still receive additional 

facilitation, evoking a smaller N400 than one would expect based only on its lexical probability 

(the probability of encountering its unique set of semantic features). 

 There are several types of neural networks and algorithms that can approximate Bayesian 

inference. For example, a recent modification of the original IAC model – the Multinomial 

Interactive Activation model – has been shown to implement optimum Bayesian inference 

through Gibbs’ sampling (McClelland, Mirman, Bolger & Khaitan, 2014). However, we believe 

                                                 
16 This proposal assumes fully incremental language comprehension in which the comprehender (a) continually 
updates her situation model based the prior context, and (b) uses this updated situation model to generate top-down 
predictions that reach lower levels of representation before new lexico-semantic information becomes available from 
the bottom-up input. This, however, will not always the case, and will depend on multiple factors, including the 
presence of discourse coherence markers that can influence updates to the situation model (e.g. Xiang & Kuperberg, 
2015), the comprehender’s goals (e.g. Brothers, Wlotko, Warnke, & Kuperberg, 2020), the broader communicative 
environment (e.g. Delaney-Busch, Morgan, Lau & Kuperberg, 2019), the presentation rate of the linguistic stimuli 
(e.g. Camblin, Ledoux, Boudewyn, Gordon, & Swaab, 2007, Wlotko & Federmeier, 2015), as well as the speed of 
information flow across the cortex, see Kuperberg & Jaeger, 2016, Section 3.4, pp. 42-45 for discussion. 



 
 

60 

that a particularly promising approach for understanding both language comprehension, and the 

functional role of the N400, is predictive coding – a biologically plausible neural architecture 

and algorithm that has been proposed to approximate Bayesian inference in the brain (Mumford, 

1992; Rao & Ballard, 1999; Rao & Ballard, 1997; Friston, 2005; Spratling, 2016a, 2016b). 

 In predictive coding, probabilistic inference is approximated by a particular dual-unit 

connectionist architecture that implements a particular optimization algorithm. Specifically, at 

each level of the representational hierarchy, “state units” actively generate top-down predictions 

that attempt to explain (or reconstruct) information that is observed at the level below. Any 

observed information at the lower level that fails to match these top-down predictions (residual 

information) produces activity within lower-level “error units”, which is termed, “prediction 

error”. This prediction error is then passed back up to the higher level where it is used to update 

the representations encoded within the state units. These updated state units will therefore 

produce more accurate predictions/reconstructions on the next iteration of the algorithm. This 

process repeats over multiple iterations and proceeds in parallel at multiple levels of the 

hierarchy until prediction error is minimized. At this point, the brain will have converged on the 

representations that best explain the bottom-up input. 

 In recent work, we have developed and implemented a predictive coding model of lexico-

semantic processing in which we directly link the N400 component to the summed activity 

produced by lexical and semantic error units (i.e. the magnitude of lexico-semantic prediction 

error) as the model infers the conceptual and lexical representation from bottom-up orthographic 

inputs (Nour Eddine, Brothers, Wang, Spratling & Kuperberg, 2023; Nour Eddine, Brothers, & 

Kuperberg, 2022). 

 As in Chen and Mirman's (2012) IAC model, in our predictive coding model, each lexical 

unit is linked to a unique set of distributed semantic features. However, in contrast to this IAC 
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architecture, there are no lateral inhibitory connections between state units within the lexical 

layer. Therefore, there are no competitive interactions between pre-activated conceptual or 

lexical representations. Instead, the selection of the correct lexical and conceptual representation 

begins only after the bottom-up input is observed. And, at this point, instead of competing 

through mutual lateral inhibition within any single layer of the network, the correct 

representation is selected through the type of global competition described above, in which all 

possible combinations of features at multiple levels of the hierarchy are considered and 

competing lexical and conceptual neighbors are explained away. 

 In predictive coding, explaining away occurs because state units at each level of 

representation suppress prediction error at the level below, thereby depriving their competing 

neighbors of their own inputs (see Spratling, De Meyer, & Kompass, 2009; Spratling, 2016a for 

discussion). For example, at the lexical level, /lime/ generates top-down predictions that suppress 

orthographic prediction error, thereby depriving potential lexical competitors (orthographic 

neighbors, e.g. /dime/) of their initial source of bottom-up activation, while at the conceptual 

representation (e.g. {lime}) generates semantic predictions that suppress semantic prediction 

error, thereby depriving potential conceptual neighbors (semantic competitors, e.g. {lemon}) of 

activity. 

 Our predictive coding model is able to simulate the time course of the N400, as well its 

sensitivity to multiple lexical and contextual variables. Notably, consistent with the empirical 

data, the magnitude of lexico-semantic prediction error is highly sensitive to an incoming word’s 

contextual probability, but not the constraint of the prior context (the probability of the most 

likely lexical candidate). Also consistent with the present findings, prediction error is smaller to 

unexpected words that share semantic features with a predicted alternative (Nour Eddine, 

Brothers, Wang, Spratling & Kuperberg, under review; Nour Eddine, Brothers, & Kuperberg, 
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2022). This correspondence suggests that predictive coding may provide a promising theoretical 

account of the neural computations that support lexico-semantic processing and give rise to the 

N400 response. 

Conclusion 

To sum up, we find no evidence that, in contexts that constrain for more than one 

continuation, competitive interactions between pre-activated parallel graded predictions reduces 

lexico-semantic processing of incoming words, as indexed by the N400. We also find no 

evidence that competition from a higher probability candidate induces costs in processing a 

lower probability candidate at a later stage of processing, as indexed by the late frontal positivity. 

Instead, readers show processing benefits when they encounter lower-probability incoming 

words that are semantically related to a higher-probability alternative. These findings have 

important theoretical implications for informing models of predictive language processing, 

suggesting that routine top-down prediction does not rely on precisely the same mechanisms as 

those employed in language production. Finally, our results are consistent with hierarchical 

accounts of language comprehension based on probabilistic inference, such as predictive coding. 
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