

Contextual Facilitation in Language Processing: Insights from a Predictive Coding Framework

Samer Nour Eddine¹, Trevor Brothers^{1,3}, Lin Wang^{1,2}, & Gina R. Kuperberg^{1,2}

¹ Tufts University; ² Massachusetts General Hospital, Harvard Medical School; ³ North Carolina Agricultural and Technical State University

Introduction

- A wealth of behavioral and neural experimental data shows that contextual information facilitates the mapping of form to meaning.
- When processing predicted words, both sentence contexts and single-word contexts lead to:
 - Faster behavioral responses (many studies!)
 - Reduced neural activity 300-500 ms (N400) [1]
- Challenges for explaining these effects in connectionist models:
 - Faster behavioral responses require more activity in the model
 - Reduced neural activity requires less activity in the model
- Predictive coding:
 - Overarching theoretical framework in neuroscience [2]
 - Naturally accounts for both behavioral and neural contextual effects with its dual-unit architecture [3]
 - Dynamics of algorithm serve to minimize prediction error (encoded within error units) via convergence on correct states (encoded in state units)

Methods: Architecture & Algorithm

- Each level: two populations of units:
- State units: encode the internal representations being inferred by the model
- Error units: encode the difference in information encoded in state units at that level and predictions generated by the level above.
- Semantically related units (e.g. sour, lime) shared 8 semantic features; unrelated units (ball, lime) shared no semantic features
- At each iteration *n*, (1) state units updated; (2) prediction error computed; (3) top-down predictions generated

Predictive coding model architecture. [4,5]

Predictive coding algorithm.

Methods: Simulations

- Priming simulations:
 - Prime: Bottom-up input for 20 iterations
 - Blank input for 2 iterations
 - Target: Bottom-up input for 20 iterations
- Contextual simulations:
 - Top-down pre-activation of conceptual layer for 20 iterations
 - -Target: Bottom-up input for 20 iterations

Simulated Effects

Semantic priming (SOUR → LIME)

Repetition priming (LIME → LIME)

Contextual predictability effect.

Null effect of contextual constraint for unexpected inputs.

Anticipatory semantic overlap effect.

They wanted to make the hotel look more like a tropical resort. So along the driveway they planted rows of...

- tulips

---- pines

—— palms

Discussion

- Predictive coding shows that when suitable contextual information is available, encoding units quickly accumulate enough activity to cross a decision threshold (leading to faster RTs) against a background of reduced total activity (leading to attenuation of N400).
- •Unlike other models:
 - Prediction error plays an integral role in inference [4]
 - Cognitively plausible (faster decisions despite reduced total activity)
 - Neurally plausible (clear linking function between model activity and evoked N400 response)
- Future directions:
 - Model predicts that certain manipulations may dissociate the N400 amplitude from response times (e.g. form priming)

REFERENCES

[1] Kutas M. & Federmeier K. (2011); [2] Friston (2005) [3] Rao, R. P., & Ballard, D. H. (1999); [4] Nour Eddine, S., Brothers, T., & Kuperberg, G. (2022); [5] Nour Eddine, S., Brothers, T., Wang, L., Spratling, M., & Kuperberg, G. (bioRxiv)

ACKNOWLEDGMENTS

This work was funded by the NICHD (R01 HD082527) to G.R.K

CONTACT

snoure01@tufts.edu