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Abstract: In a planar optical cavity, the resonance frequencies increase as a function of in-

plane wavevector according to a standard textbook formula. This has well-known 

consequences in many different areas of optics, from the shifts of etalon peaks at non-normal 

angles, to the properties of transverse modes in laser diodes, to the effective mass of 

microcavity photons, and so on. However, this standard formula is valid only when the 

reflection phase of each cavity mirror is approximately independent of angle. There is a 

certain type of mirror—a subwavelength dielectric grating near a guided mode resonance—

with not only a strongly angle-dependent reflection phase, but also very high reflectance and 

low losses. Simulations show that by using such mirrors, high-quality-factor planar cavities 

can be designed that break all these textbook rules, leading to resonant modes that are slow, 

stopped or even backward-propagating in the in-plane direction. In particular, we demonstrate 

experimentally high-Q planar cavities whose resonance frequency is independent of in-plane 

wavevector—i.e., the resonant modes have zero in-plane group velocity, for one polarization 

but both in-plane directions. We discuss potential applications in various fields including 

lasers, quantum optics, and exciton-polariton condensation. 

©2016 Optical Society of America 
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1. Motivation and theory 

Two plane-parallel mirrors set up an optical cavity with a series of resonant frequencies, 

which generally shift when the in-mirror-plane wavevector is changed—for example, by 

sending light into the cavity at an angle tilted away from normal incidence. This shift in 

resonant frequency is quantified by the following simple argument, which can be found in 

basic optics textbooks [1]. Cavity resonances occur when the round-trip phase shift of light is 

an integer multiple of 2π. If the mirrors are in the x-y plane, the resonances satisfy 2nLkz = 

2πm + φ, where n is the refractive index inside the cavity, L is the cavity length, kz is the z-

component of the wavevector for the m’th cavity resonance, and φ is an offset related to 

reflection phase shifts. The important aspect of this formula is that a resonance’s kz does not 

(explicitly) depend on the other components of the wavevector kxy = (kx,ky). By combining 

this observation with the formula relating wavevector to frequency, ω
2
 = (c/n)

2
(kz

2
 + |kxy|

2
), 

we will have: 

      
1/2

2
2

res, res, res,k (0) k / 0 / cos ,m xy m xy mc n      
  

     (1) 

where c is the speed of light, ωres,m is the frequency of the m'th cavity resonance, θ = tan
1

(|kxy| 

/ kz) is the light propagation angle inside the cavity with respect to the normal, and ωres,m(0) is 

the resonant frequency for θ = |kxy| = 0, e.g. if light enters the cavity normal to the mirrors. 

This standard Eq. (1) has many manifestations from the widespread application of planar 

optical cavities. For Fabry-Pérot etalons, the rule says that transmission peaks should blue-

shift as the etalon is tilted away from normal. For laser diodes, it predicts that higher-order 

transverse modes (which are built out of larger kxy) should have higher frequency than the 

fundamental mode. For planar microcavities, it implies that the photon effective mass should 

be positive [2]. 

Despite the widespread use of this standard formula (1), it is not universally valid, as it is 

relies on the assumption that the reflection phase at the mirrors is independent of θ and ω. 

This is usually a very good approximation. For example, a metal mirror has a reflection phase 

shift π for any incidence angle, unless it is very lossy [3], but very lossy mirrors are not 

suitable for high-Q cavities. Similarly, interfaces between lossless dielectric materials have 

reflection phases of either 0 or π, except for the case of total internal reflection (TIR), but TIR 

does not occur for planar cavities near normal incidence. On the other hand, for certain kinds 

of reflectors, as discussed in the next section, the reflection phase can depend strongly on 

angle, and hence Eq. (1) will be violated. For example, when a cavity resonance ωres is 

independent of kxy, we can say this resonance has laterally-stopped light, since there is zero 

in-plane group velocity: ωres/kx = ωres/ky = 0. Similarly, when ωres decreases with |kxy|, we 

can say that the cavity resonance is laterally reverse-propagating (negative group velocity). 

We particularly focus on a planar vertical cavity with a high-Q (quality factor) laterally-

stopped-light resonance—where ωres is independent of kxy for at least one polarization—and 

which has a very large mirror surface area compared to the wavelength. Such a cavity would 

have a continuum of high-Q modes with different kxy, but they would all be degenerate in 

frequency. Therefore, any arbitrary complex superposition of those modes would also be a 

stable, high-Q cavity mode. In particular, as shown in Fig. 1(a), a localized mode would be a 

stable resonance—it would not spread out laterally, despite the lack of curved mirrors, index 

gradients, or any other traditional method of light confinement. This flat-band lateral 
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confinement effect [4–9] can be understood in at least two additional ways. First, the light 

does not spread because the in-plane group velocity ωres/kxy is zero. Second, Fig. 1(b) 

shows a ray-optics picture, in which the angle-dependent reflection phase at the top mirror 

creates a negative Goos–Hänchen shift s = φreflection/kxy, which cancels any lateral motion 

[4,10,11]. In Visualization 1, we show a simulated movie of this effect. (This discussion 

assumes linear optics; at higher intensity, nonlinearity may cause a richer variety of mode 

dynamics [12].) 

Figure 1(c) shows this same cavity used as a Fabry-Pérot etalon. This has the narrow-band 

filtering and field-enhancing properties of a traditional etalon, but it works regardless of the 

shape of the incoming wavefront [13]. Figure 1(d) suggests one potential application in 

quantum optics. Quantum optics experiments often require a laborious procedure or trial-and-

error approach to place a quantum emitter (e.g. an atom) in the same location as a localized 

high-Q optical mode (e.g. a photonic crystal defect mode) [14]. However, in this planar 

cavity, an emitter at any location on the sheet has its own localized optical mode with Purcell-

enhanced light-matter coupling [15]. Thus there is no need to bring the emitter to a special 

location. This simplifies the experimental setup—particularly for quantum computing 

applications which might involve thousands of cavity-coupled quantum emitters. Finally, Fig. 

1(e) puts these cavities in the context of planar microcavity theory [2]. The variation of ωres 

with |kxy| is parametrized by a “photon effective mass”, which is positive in conventional 

cavities that follow Eq. (1). The cavities described in this work (see Figs. 3(a)-3(c) below) can 

have larger, or infinite, or negative photon effective mass. The ability to engineer the 

effective mass of a microcavity may help achieve exciton-polariton condensation [2,16,17], as 

the band structure directly impacts scattering rates, condensation temperature, the “polariton 

bottleneck”, and so on [2,18,19]. 

 

Fig. 1. (a) In a laser cavity with a laterally-stopped-light resonance (ωres independent of kxy, so 

the in-plane group velocity ωres/kx = ωres/ky = 0), there are a large number of degenerate 

modes, including localized modes. These localized modes do not spread out, despite the 
absence of curvature or any other in-plane light guiding. For example, with a localized pump, 

the system will lase on a localized mode that best overlaps the pump [4]. Visualization 1 shows 

a simulated movie of this effect. (b) An alternative way to understand the stable localized 
modes is as a result of negative Goos–Hänchen shifts. (c) Such a cavity also acts as a Fabry-

Pérot etalon that works for any incident wavefront. (d) If a quantum emitter such as a quantum 

dot is placed on such a cavity, it will have Purcell-enhanced light-matter coupling to a mode 
localized in its vicinity. (e) Microcavity theory parametrizes ωres(θ) via “photon effective 

mass”; we can make cavities where this parameter is positive, negative, or infinite. 

2. Reflector design 

Ordinary high-Q optical cavity mirrors have an approximately-fixed reflection phase 

regardless of incidence angle and frequency, leading to Eq. (1). What kind of reflector would 

violate this rule—and more specifically, violate it in such a way as to allow high-Q laterally-

                                                                                           Vol. 24, No. 16 | 8 Aug 2016 | OPTICS EXPRESS 18402 

https://www.osapublishing.org/oe/viewmedia.cfm?URI=oe-24-16-18399-1
https://www.osapublishing.org/oe/viewmedia.cfm?URI=oe-24-16-18399-1


stopped-light resonances? It turns out that there is a general requirement. If a plane wave 

with, say, kx>0 goes towards the reflector, somewhere in the structure there must be one or 

more layers in which the Poynting vector points in the opposite direction, Sx<0. In other 

words, Fig. 1(b) can be taken literally, with the dashed arrow indicating energy flow 

[4,11,20,21]. The rationale is as follows. For laterally-stopped light, the group velocity in the 

x-y plane (ωres/kxy) is zero. Therefore, if we construct a finite wave packet around a certain 

kxy, its envelope will not move in the x-y plane. This can only happen if there is zero net 

energy flow in the x-y plane. So, if there are normal dielectric layers with Sx>0, they must be 

counteracted by anomalous layers with Sx<0. (This logic works for high-Q modes only. If the 

cavity lifetime is short and the wave packet is large, there can be some lateral energy flow 

within the wave packet as the light is escaping.) 

Now one can see why conventional high-Q optical cavity mirrors are unsuitable for 

laterally-stopped-light cavity resonances: The situation where Sx<0 while kx>0 cannot occur in 

a Bragg mirror, or indeed in any planar dielectric multilayer film. Nor can it occur in a 

highly-reflective metal mirror, as negligible light enters the metal (S0). 

This reverse energy flow can occur in metals or other materials with negative permittivity, 

negative permeability, or both; and this allows laterally-stopped-light resonances to occur 

[15,22–26]. The original example was a metal-insulator-metal plasmonic cavity, which can be 

designed in such a way that the resonant frequency is independent of incidence angle, all the 

way from normal incidence to 90°—a so-called “omnidirectional resonance” [15,22,26]. 

However, these designs require substantial optical power to be flowing in the metal or 

negative-index material, contributing to the absorption loss. Hence these cavities have low Q, 

typically Q10, making them generally unsuitable for lasers, quantum optics, exciton-

polariton microcavities, or the other application areas discussed in this work. 

 

Fig. 2. (a) Our planar cavity has two mirrors. The bottom is a normal metal mirror. The top 
mirror is a resonant grating filter, i.e. a high-index grating that both supports in-plane guided 

modes and enables them to couple out. (b) At the guided mode resonance feature, the grating 

reflectance approaches 100%. (c) The two mirrors together form a cavity with a narrow cavity 
resonance, which sits within the broader guided mode resonance [4,27]. 

To gain complete control over the flow of energy in a cavity without introducing losses, 

we propose to use resonant grating filters [4,28,29] (Fig. 2). These filters are built from two 

required ingredients, although a single dielectric grating layer often provides both ingredients 

at once. The first ingredient is a dielectric waveguide, which supports guided modes 

propagating in the x-y plane. The second ingredient is a periodic grating structure, also in the 

x-y plane, with a small enough period that it has only a 0 (trivial) diffraction order 

propagating into the air and substrate, but a large enough period that it can couple the 

waveguide’s guided modes into free space. The guided modes thus become leaky, and there is 

a resonance where the incoming light has just the right angle and frequency to couple into a 
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guided mode. There is a rapid variation in reflectance at this resonance, often with a peak 

reflectance value of ~100% at the center of the resonance [30,31]. In addition, the resonance 

is associated with a rapid change in reflection phase, by up to 2π [29,31]. This resonant 

grating filter effect is closely related to the classic Wood's Anomaly of metal diffraction 

gratings, in which diffraction efficiencies change dramatically when the grating couples light 

to surface plasmon polaritons [32]. 

A resonant grating filter satisfies all our requirements for the cavity mirror. In addition to 

the high reflectance (>99%) and negligible absorption losses, it can have the reverse in-plane 

energy flow mentioned above [4,20]. The latter arises from coupling incoming light with in-

plane wavevector kxy,inc to guided modes with wavevector kxy,guided = kxy,inc + G, where G is a 

grating reciprocal lattice vector. As shown in Fig. 2(a), it is quite possible for kx,inc > 0 yet 

kx,guided < 0. Relatedly, these structures can show strong negative Goos–Hänchen shifts 

[20,33–35]. Another advantageous feature of resonant grating filter mirrors is that, since the 

reflection phase need not be 0 or π, the cavity can be thinner than λ/2n [36], as indeed we will 

see in the examples below. (Low mode volume is helpful for quantum optics.) Finally, using 

these mirrors leads to several practical benefits compared to some earlier related work [37–

39], including a vertical-cavity design (for easy in- and out-coupling), simple monolithic 

growth and patterning, and absence of extra diffraction orders. 

In a resonant grating filter, the resonance linewidth depends on the leakage of the guided 

mode. Small leakage results in a narrow reflectance peak (useful for telecommunications 

filtering [28]), whereas high leakage creates a broad high-reflectance feature (the basis for 

“high-contrast grating” reflectors [40,41]). Our application falls between these extreme cases: 

The grating resonance should be broad enough to create high reflectance over a reasonable 

range of angles and frequencies—and certainly much broader than our high-Q cavity 

resonance (Figs. 2(b)-2(c))—but narrow enough to get a sufficiently sharp variation in 

reflection phase as a function of angle. 

 

Fig. 3. (a)-(c) For three different cavities we designed (see Table 1 for parameters), we send in 

a CW plane-wave from the substrate (through the thin gold) at a given wavelength and angle. 

The plot shows the energy stored in the cavity, so a bright band occurs at the cavity resonance. 
These three cavities (a-c) show some of the possibilities, where the light in the cavity is (a) 

stopped, (b) reversed, or (c) slowed in the plane of the cavity. The white dashed curve is the 
curve we would expect from ordinary planar cavities, Eq. (1). See Fig. 5 for other polarizations 

and directions. (d) Schematic of our cavities, which use a conventional gold mirror on one 

side, and a hexagonal array of dielectric cylinders on the other side. For cavity (a), with 1.5µm 
light incident 5° from normal, we show (e) the Poynting vector, and (f) the electric field 

amplitude profile (both averaged over the y-coordinate pointing into the page). Although the 

incident light tilts rightward, the energy flows leftward in the cylinder array, giving an overall 
average energy flow of zero, as we expect. (g) Reflection phase and amplitude of just the 

cylinder array (i.e., leaving out the gold) for the structure (a). 
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Our reflector, constructed along these lines, consists of a hexagonal array of dielectric 

cylinders, with subwavelength spacing (Fig. 3(d)). This special reflector sits on one side of 

our planar optical cavity, with a metal mirror on the other side. In the design, we had four 

main adjustable parameters: dielectric cylinder height, radius, and spacing, and cavity 

thickness. We select the parameters so that the grating reflector has both high reflectance and 

the appropriate angle-vs-reflection-phase profile to create the desired cavity resonance 

effects, using a numerical search of the parameter space. We examined a ± 15° range of 

angles around normal incidence. Three example simulation results are shown in Figs. 3(a)-

3(c). (The corresponding geometries are in Table 1, rows A-C respectively.) Our simulations 

show that full control over the energy flow is realized by these designs, including laterally-

stopped light (Fig. 3(a), Q680-790), laterally-reversed (negative group velocity) light (Fig. 

3(b), Q820-1000), and laterally-slow light (Fig. 3(c), Q450-600). All simulations were 

performed using Rigorous Coupled-Wave Analysis (S
4
 software [42]). We checked some 

results with the Finite Difference Time Domain method (Lumerical, Inc.), which was also 

used for making a movie—Visualization 1—that demonstrates the fact that light in the 

stopped-light cavity of Fig. 3(a) tends not to spread out in the plane as discussed earlier. 

Because of the symmetry of the hexagonal lattice, the results shown in Figs. 3(a)-3(c) are 

essentially independent of azimuthal angle—i.e., they depend on the magnitude of kxy, but not 

on its direction in the x-y plane. This is shown in the Appendix, Fig. 5. In particular, in the 

structure of Fig. 3(a), ωres is independent of both kx and ky, enabling full 3D confinement of 

the modes, unlike earlier proposals involving 1D gratings [4,17]. Note however that these 

results apply to the TE (s-polarized) cavity modes only. The TM mode behavior is also shown 

in Fig. 5, and has a laterally-reverse-propagating resonance in all cases, i.e. ωres decreasing 

with |kxy|. 

Although these cavities were designed to have high Q-factor within ± 15° of normal 

incidence, the phenomena discussed above (Fig. 1) are not qualitatively affected by this 

restriction. For example, we can consider a cavity mode with complex amplitude E(x,y) 

(neglecting polarization for simplicity). For this to be a high-quality-factor mode, its Fourier 

transform Ẽ(kxy) should be consist exclusively of kxy vectors corresponding to modes which 

all have the same resonant frequency and which all have a high quality factor. The uncertainty 

principle says that if we want E(x,y) to be tightly confined in real space, we need to draw 

from a large spread of kxy. If we can only use kxy within 15° of normal incidence, we can still 

build localized modes—but they will not be quite as sharply localized as if we did not have 

that restriction. 

To verify this theory, we experimentally demonstrated an anomalous resonant-frequency-

vs-angle curve indicative of laterally-stopped light. 

 

Fig. 4. (a) Scanning electron micrograph of the cavity, showing the array of amorphous silicon 

pillars. The experiments (b) and corresponding simulations (c) show a transmission peak 

which is almost angle-independent, but slightly decreases in frequency away from normal 
(opposite of conventional cavities). The indicated angle is the angle of light in air, relative to 

the wafer normal. The simulation parameters were based on SEM measurements of the 
structure, see Table 1. The inset of (b) shows the wavelength at the maximum of each curve, 

compared to the textbook relation (Eq. (1), dashed curve). Transmission is in arbitrary units in 

(b), and fraction transmitted in (c). 
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The fabrication begins with the deposition of 5 nm titanium and 60 nm gold by electron 

beam evaporation on a fused silica substrate. Then, a 570 nm thick layer of silicon dioxide is 

deposited using plasma-enhanced chemical vapor deposition (PECVD) followed by 300 nm 

thick layer of amorphous silicon (a-Si). Next, PMMA 950-A2 is spin coated at a speed of 

6000 rpm and baked on a hotplate at 180°C for 5 minutes. Electron beam lithography is 

performed using an Elionix ELS-F125 system operating at 125 kV. The resist is then 

developed in a mixture of methyl isobutyl ketone and isopropyl alcohol (MIBK:IPA 1:3) at 

room temperature for 30 s, dipped in IPA for 30 s, and blown dry by nitrogen. Aluminum (Al) 

is deposited as a mask by thermal evaporation to a thickness of 20 nm. Lift-off is 

accomplished by soaking the sample in a solvent stripper (Remover PG from Microchem) 

overnight. Inductively coupled plasma-reactive ion etching (ICP-RIE) is used to etch the a-Si 

cylinders. In the latter, a gas mixture of SF6 and CF4 is used, resulting in highly anisotropic 

etching of a-Si [43]. Finally the Al mask is removed. Figure 4(a) shows a scanning electron 

micrograph of a fabricated structure. 

Figure 4(b) shows the angle-dependent transmission response. We measure this using a 

supercontinuum laser (NKT “SuperK”) as a tunable light source with a fiber output. The other 

end of the fiber is connected to an achromatic fiber-coupled collimator, forming a beam with 

size of 4 mm × 4 mm. The beam then passes through a linear polarizer which is adjusted for s 

polarization, passed through the sample on a rotation stage, and finally imaged onto a cooled 

InGaAs camera (Raptor Photonics OW1.7-VS-CL-640). 

As we see in Fig. 4(b), the resonant frequency of the cavity shifts by a very small amount 

as the angle of the incident light changes. It is notable that the shift of the transmission peak is 

20 times smaller than the normal expectation from Eq. (1), and with the opposite sign. The 

shift was not quite zero because of imperfections in the fabrication—see Table 1. (Line “D” 

in Table 1 corresponds to our measured fabrication results, whereas “A” was our target.) 

Based on the peak widths, we infer a Q-factor 100, instrumentally limited. Asymmetry is 

evident in both the theoretical and experimental lineshape, indicative of the coupling between 

the narrow cavity resonance and the relatively broad guided mode resonance [34]. 

Table 1. Geometric Parameters for Simulations Hereina 

Structure Ref. 
Cyl. height 

[nm] 

Cyl. diam. 

[nm] 

Cyl. center-to-

center spacing [nm] 

Cavity 

thickness [nm] 

A 
Figures 

3(a,e,f,g); 

Visualization 1 

300 490 870 570 

B Figure 3(b) 290 485 965 585 

C Figure 3(c) 510 445 750 360 

D Figure 4(c) 240 495 870 565 
aAdditionally: The gold thickness was 60nm; the SiO2 refractive index was set to 1.46; the refractive 

index of amorphous silicon index was based on ellipsometric measurements; and native oxide layers 

were ignored. 

3. Conclusions and future work 

We have argued that the phenomena of slow-light or stopped-light waveguides can be 

mapped into the domain of high-Q planar cavities, thus creating a fascinating platform for 

physics and engineering. In this preliminary investigation, we have shown that it is possible to 

create these types of cavities, and given a qualitative overview of the phenomena that result. 

While the Q-factors shown here, in the 10
2
-10

3
 range, are orders of magnitude higher than 

what has been shown in prior literature [15,22–26], we believe that this approach can be 

pushed to far higher quality factors in the future, most simply by replacing the metal mirror 

(which currently limits Q) with a better Bragg reflector [27]. 

There are many further areas to explore in the future, which are beyond the scope of the 

present work. They include a proper treatment of laser physics, quantum optics, etc., in the 

context of a laterally-stopped-light resonance; cavity designs for other frequency ranges such 
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as far-infrared [44]; and cavity designs with ωres independent of kxy for both TE and TM 

modes simultaneously (which would enable more compact modes). 

Finally, in the future, a rich area to explore is the addition of lateral variation (non-

periodicities) to these types of cavities, bringing them into the realm of metasurfaces. A 

metasurface [45,46] refers generically to a surface in which subwavelength-scale antennas—

such as dielectric resonator antennas—alters the phase of light as it passes through the 

surface. Because most previous work has used weakly-coupled antennas, each emitting 

mainly dipole radiation, these structures have had phase variation as a function of position, 

but no appreciable phase variation as a function of angle. The dielectric structure here is the 

opposite: The reflection phase varies as a function of angle but not of position. A wide variety 

of new functionalities will be possible by engineering both angle-dependent and position-

dependent phase simultaneously. 

Appendix 

 

Fig. 5. (a-c) represent the cavities of Fig. 3(a-c) respectively. For each of these, (i) and (ii) are 

s-polarization light, and (iii) an (iv) are p-polarization, tilted in the two non-equivalent planes 
of mirror symmetry of the hexagonal lattice. 
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