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Abstract: We present a computational framework for efficient optimization-based “inverse
design” of large-area “metasurfaces” (subwavelength-patterned surfaces) for applications such as
multi-wavelength/multi-angle optimizations, and demultiplexers. To optimize surfaces that can
be thousands of wavelengths in diameter, with thousands (or millions) of parameters, the key is a
fast approximate solver for the scattered field. We employ a “locally periodic” approximation in
which the scattering problem is approximated by a composition of periodic scattering problems
from each unit cell of the surface, and validate it against brute-force Maxwell solutions. This is
an extension of ideas in previous metasurface designs, but with greatly increased flexibility, e.g.
to automatically balance tradeoffs between multiple frequencies or to optimize a photonic device
given only partial information about the desired field. Our approach even extends beyond the
metasurface regime to non-subwavelength structures where additional diffracted orders must be
included (but the period is not large enough to apply scalar diffraction theory).

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction and motivation

In this paper, we present and validate a fast method for optimization-based “inverse design” of large
(hundreds of wavelengths λ) aperiodic metasurfaces for wavefront shaping [1–5], incorporating
both scattered amplitude and phase for multiple incident λ and angles. Previous methods either
optimized the full Maxwell equations [6–10] (which is infeasible for large surfaces), were
restricted to weakly coupled scatterers [11], or started with a desired scattered phase and tried to
design a corresponding metasurface unit cell [12–21] (but if attainable unit cells fail to exactly
match the desired λ-dependent phase there was no systematic way to choose the best compromise).
In contrast, our approach starts with a family of manufacturable unit cells and directly optimizes
an aperiodic composition for the desired field pattern by a fast approximate model, automatically
finding the best compromise for the given constraints. Whereas phase-design methods typically
assume that the desired scattered field is known everywhere [12–21], our approach allows
one to specify the field objective only in regions of interest. As outlined in Fig. 1, given
exact scattering calculations for small metasurface unit cells (Sec. 2.1 and Fig. 2), we build
an approximate convolutional model of an arbitrary metasurface (Sec. 2.2) that can then be
optimized (Sec. 3) rapidly (seconds to find the optimum for a 200-λ 2d aperiodic surface with
hundreds of parameters) using two different objective functions. We validate the optimized
design with a brute-force Maxwell solver (Sec. 3.1) and we find excellent quantitative agreement
(Fig. 4) even for rapidly varying aperiodic surfaces that challenge the assumptions of our model.
We present example designs (Sec. 4) for a multi-wavelength optimization (Fig. 5), a wavelength
demultiplexer (Fig. 6), and anmulti-angle optimization (Fig. 7). Our approach is not limited to true
“metasurfaces” whose features are small enough to mimic effective-impedance [22–30] surfaces:
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we show that it even works well for large-period microstructures that scatter multiple diffracted
beams. Indeed, our method is easily extensible to incorporate multiple diffraction coefficients,
multi-layer/multi-parameter unit cells, multiple polarizations, and other complications (Sec. 5
and Fig. 8).

Fig. 1. Schematic of our design method: exact Maxwell scattering solutions for a set of
periodic unit cells (top) are composed into an approximate solution for an arbitrary aperiodic
composition (right), and this approximation is then used for large-scale optimization to
determine the metasurface parameters to maximize a given objective (e.g. the focal intensity,
bottom). The performance of the final design can then be fed back into adjusting the design
of the unit cell (left).

2. Locally periodic approximation

The key to “metasurface” design is to be able to quickly calculate the transmitted/reflected field
for a large-area structure, possibly thousands of wavelengths in diameter—too large to solve the
full Maxwell equations without some simplifying assumption. Similar to [12–20], the central
approximation of our approach is to assume that the metasurface is locally periodic: the scattering
in any small region is almost the same as the scattering from a periodic surface. The use of periodic
calculations to compute the specular reflection phase only, typically discarding amplitudes and
additional diffracted orders, has sometimes been called a “local phase approximation” [31, 32].
(Contrast this with the regime of scalar diffraction theory [33,34], valid for periodΛ �wavelength
λ, in which the surface is treated as locally uniform, separately computing the transmission
coefficient at each point on the surface.) In a separate paper [35], we develop the rigorous
foundations and convergence rates of a related approximation, along with higher-order corrections,
but here (similar to previous authors [12–19]) we will simply perform brute-force Maxwell
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simulations at the end (Sec. 3) to validate our designs. (In fact, we will find in Fig. 4 that the
locally periodic approximation gives excellent agreement with full simulations even for surfaces
where the unit cell is rapidly varying in some regions.) Unlike previous authors who calculated
only the scattered phase and not the total scattered field [12–19], we employ both amplitude
and phase information to formulate a complete approximate solver (scattered field for any given
incident field) that can be used to optimize the metasurface for arbitrary “objective” functions
of the field. Not only does this approximate solver enable very general optimization, it also
allows us to evaluate the optimized metasurface for different (non-optimized) incident fields (e.g.
the wavelength sensitivity computed in Sec. 4 for the multi-wavelength lens). As discussed in
Sec. 5, our approach is also easily extensible to a "non-metasurface" regime in which there are
multiple diffracted beams from a large-period surface, as well as to computing near fields (via
the scattering coefficients of the evanescent waves). In this section, we explain in detail how the
locally periodic approximation allows us to compute the total scattered/reflected field (at any
point in space) for any incident wave.

To make it easier to understand our approach, it is helpful to consider a specific example of a
two-dimensional “metasurface” unit cell, based on [17]: TiO2 pillars on top of a silicon dioxide
substrate, as shown in Fig. 2. The height of the pillar is fixed to 600 nm, the period a is fixed to
235 nm, and the pillar width varies: p ∈ [50, a − 50] nm (imposing a minimum feature size of
50 nm for practical fabrication). One could easily add more parameters and/or constraints, as
discussed in Sec. 6. Given this unit cell, an aperiodic metasurface is formed by taking a group of
such unit cells with independent parameters and juxtaposing them next to each other.
Our goal is to compute the scattered (transmitted or reflected) field for such an aperiodic

surface, for any given incident wave (e.g. a planewave or gaussian beam), given only the exact
Maxwell solutions for scattering of planewaves by periodic surfaces of the different pillar widths.
In this paper, we consider only incident propagating (not evanescent) waves, but in another
paper [35] we show that a similar approach can be extended to evanescent fields as well. The
key “locally periodic” assumption is that the pillar width (the unit cell) changes sufficiently
slowly from one pillar to the next. (This assumption is rigorously quantified in [35], is validated
numerically in Sec. 4, and it turns out that we even obtain good accuracy when there are sudden
changes in pillar width at a few locations.) As mentioned above, this assumption is similar in
spirit to other metasurface work [12–19], where it was found to work well for a wide variety
of metasurface designs; the main contribution of this paper is to couple the locally periodic
approximation to general optimization tools and near-to-far-field transformations. Of course, this
approximation can break down for devices requiring extremely rapid surface variations such
as diffraction to nearly glancing angles [35, 36], although it can be generalized by including a
next-order correction [35], but this is not a problem for the moderate-NA lens-like applications
considered in this paper.

2.1. Periodic sub-problems

In Fig. 2(left) is shown the fundamental assumption of our approach. For each unit cell of the
aperiodic structure, we approximate the field in a plane/line just above the unit cell by the solution
for the equivalent periodic structure. Three examples are highlighted corresponding to three
different parameters of the unit cell. When the period of the unit cell is subwavelength, the zeroth
diffractive order is the only propagating wave [37]. Therefore, if we are interested only in the
far field, we can make an additional approximation: we replace the scattered field by its zeroth
Fourier component which is simply the average of the field on the plane just above the pillar.
Given this approximate field just above the surface, in Sec. 2.2 we construct an approximate field
everywhere above the surface. In Sec. 5, we go beyond the zeroth-order (specular) approximation
by including additional diffractive orders.
We will consider periodic structures with hundreds of different pillar widths (with a fixed
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Fig. 2. Left: an arbitrary aperiodic metasurface (top) is approximated by solving a set of
periodic scattering problems (bottom), one for each unit cell, to obtain the scattered field
just above the surface (horizontal line segments). Right: 0th diffracted-order amplitude
(top) and phase (bottom) of periodic subproblems as a function of the pillar width. This is
precomputed for several widths (markers) and interpolated as needed.

period), but we would like to avoid having to do hundreds of unit-cell calculations. We can take
advantage of the fact that the scattered fields are smooth functions of the pillar width [38, 39] by
solving the scattering function for a few widths and then interpolating to any other widths.
Given a smooth function f (p) of some parameter p1 ≤ p ≤ p2, Chebyshev methods evaluate

f (p) at a few special points p and construct a polynomial approximation f̃ (p) that can be used to
rapidly evaluate the f (p) with exponentially good accuracy. This can be extended to multiple
parameters using products of Chebyshev polynomials [40] or by more sophisticated methods such
as sparse grids [41]. In this way, we only need to solve the unit-cell Maxwell problem a few times
to obtain our polynomial approximant f̃ (p), which is then evaluated, along with its derivative,
many times during optimization. In particular Fig. 2(right) shows the real part, the imaginary
part, and the phase of the zeroth Fourier coefficient of the transmitted field versus the pillar width.
We evaluate this coefficient for 21 different widths (at Chebyshev points [40]), and can then
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interpolate to high accuracy using Chebyshev polynomials [40]. Multiple parameters per unit
cell could be interpolated using a product of Chebyshev polynomials [40] or, for more than 3–4
parameters, sparse-grid interpolation [41]. Here, we use the finite-difference frequency-domain
(FDFD) method [42, 43] with perfectly matched layer (PML) absorbing boundaries [44, 45], but
any other computational method for periodic Maxwell problems would work as well.

2.2. Green’s functions and the equivalence principle

Once the fields are known in a plane above the metasurface, we can obtain the fields everywhere
above the metasurface using the principle of equivalence [46,47], also known as a near-to-far-field
transformation [48]): the fields in the y = y0 plane can be treated as equivalent current sources
that generate the fields everywhere else. These equivalent electric (J) and magnetic (K) current
densities are defined by [47]: 

J

K

 = δ(y − y0)


n̂ ×H

−n̂ × E

 (1)

where n̂ = ŷ is the surface unit-normal vector and the delta function implies that these are surface
currents on the plane y = y0.
A further simplification is possible if we only care to compute the fields above the surface.

The currents (1) produce the desired scattered fields above the plane and zero fields below the
plane [46,47], and this means that the same fields above are produced if we add or subtract the
mirror-image currents (which produce fields below and zero above). Subtracting the mirror-image
sources, however, cancels the J term and leaves only the K current (a pseudovector under mirror
flips [49]). This allows us to use only n̂ × E sources arising from the electric field computed by
the locally periodic approximation in section 2.1. As explained in section 2.1, we can further
approximate the E field by its average in each unit-cell calculation for subwavelength periods,
since this gives the far-field diffracted order.

Given these equivalent currents, or their approximation by far-field locally periodic calculations,
the electric (or magnetic) fields at any point x above the surface can be computed by integrating
along with the Maxwell Green’s function (the field at x from a source at x′) [46]. For our
two-dimensional model problem (xy plane) with the Ez polarization, where we only have a
current Kx(x′) = −Ez(x′)δ(y − y0) and we let G(x, x′) denote the relevant component of the
Green’s tensor [Ez(x) from Kx(x′)], this integral takes the form

Ez(x) = −
∫

surface
G(x, x′)Ez(x′) dx′ (2)

where G is a Hankel function [50] G(x, x′) = − ik
4 H(1)1 (kr)n̂ · r

r , where k = 2π
λ , r = x − x′, and

r = |r|. For a finite metasurface with an infinite silica substrate, we use a standard “windowing”
method to truncate this integral accurately to a finite region [51–53].
This equivalent-currents formulation is exact if the true aperiodic Ez field is used for the Kx

source term, and in section 3 we find that it has excellent accuracy with the locally periodic
approximation for typical metasurface designs. (A related approximation is made in scalar
diffraction theory, where the locally uniform approximate scattered fields can be thought of as
sources producing fields everywhere else [33,34], further approximated in the far field by e.g.
the Fraunhofer diffraction theory [33].)

3. Metasurface inverse design methods

The previous section gives us a fast way to solve the forward problem for the scattered field
above a given metasurface. In this section, we see how we use it to solve the inverse problem,
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i.e. find the parameters of a metasurface to produce a desired scattered field. We solve it as an
optimization problem: we minimize or maximize an objective function of the unit cell parameters
subject to some constraints. Given an efficient way to compute any objective function and its
gradient, there are a wide-variety of well-known optimization methods that can be applied; we
use the “CCSA-MMA” algorithm [54] via a free-software implementation [55]. To avoid getting
trapped in poor local optima, we use a technique called successive refinement [56–58]: We
successively double the number of degrees of freedom, using the optimized coarser structures as
starting points for optimization of the finer structures. (The result was not very sensitive to the
starting parameter guess; we simply started each parameter in the middle of its allowed range.)
What objective function should we optimize? In Sec. 3.1 we consider an objective function
similar to previous work [15,21], which matches the field just above the metasurface with the
desired field. In Sec. 3.2 we optimize more general functions of the scattered field, e.g. the
intensity at a single focal point, which is more flexible when only partial information is known
about the desired field. In both cases, in this section we will design a simple lens structure that
we will validate using brute force simulations. In Sec. 4, we will consider more difficult design
problems. In Sec. 3.3 we generalize our approach to multiple frequencies and angles of incidence
via a maxmin formulation.

3.1. Optimizing the wavefront

Target phase

Realized phase

θ=5°

Fig. 3. Bottom: geometry of a metasurface designed for a 5-degree incident plane wave of
wavelength 532 nm and focal length 14.7 µm (numerical aperture of 0.3) using the wavefront
method. This design produces a field with the needed phase (middle). Top: |Ez |2 intensity
plot shows focusing to the target focal spot.
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Fig. 4. Left: |Ez |2 intensity plot of the scattered field of a metalens using our locally periodic
approximate solver showing good agreement with a brute force calculation (middle). Right:
the field sections computed by the two solvers show perfect agreement close to the focal
lines (top). This agreement starts to deteriorate the closer the section is to the metasurface
(bottom).

When the exact desired field is known everywhere above the metasurface, as in lens design [12–
21] and other wavefront shaping problems, by the equivalence principle [46] it is sufficient to
produce this field on a plane just above the surface. Since the approximate scattered fields s(p)
just above the surface (the Ez produced for a given metasurface parameter p) are given by the
locally periodic approximation in Sec. 2.1, we can directly minimize the difference between this
s and the desired field a(x)eiφ(x):

min
s0,φ0,p

∫
|s(p(x)) − s0a(x)eiφ(x)+iφ0 |2dx, (3)

where s0 and φ0 are an unknown overall amplitude/phase and p(x) describes the metasurface
parameters along the surface. This approach eliminates the need for any Green’s function integral
(Sec. 2.2) to obtain the field elsewhere.

For a lens application, typically a(x) = 1 and all of the information is in the desired phase
φ(x) [15]. A closely related approach was used for metalens design in several previous works
[12–19, 21]. There, since both a(x) and the locally periodic far-field |Ez | were approximately
constant, the amplitude was ignored and they simply attempted to match the desired phase. If
this phase can be matched exactly in a given unit cell by tuning its parameter p(x) (e.g. pillar
width), then no explicit optimization formulation is needed [12], but an optimization-based
approach is more flexible at balancing tradeoffs in cases where the desired aeiφ cannot be
exactly obtained, especially in multi-frequency problems (Sec. 4.1). A phase-based optimization
approach was directly employed in [21] for topology optimization of a small area (no locally
periodic approximation).
For example, in Fig. 3 we minimize equation (3) for a single-frequency λ = 532 nm lens

design problem: we focus an incident planewave at a 5-degree angle on a focal point 14.7 µm
from the surface, using the target phase φ(x) from [15]. We optimize over piecewise-constant
parameters, effectively one parameter per unit cell, with a standard optimization algorithm [54]
utilizing analytically computed gradients of the objective function with respect to the parameters.
Starting the optimization from a constant-p initial guess was sufficient to obtain a local minimum
with excellent performance shown in Fig. 3. (This 40 unit-cell optimization required < 100 ms
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on a laptop.) At the top is the |Ez |2 intensity plot computed with by our approximate solver
(Sec. 2.2). Below this is shown the 96% match between the desired and obtained fields (from the
locally periodic approximation) just above the metasurface. At the bottom is shown the optimized
metasurface geometry, which is mostly slowly varying but has sudden jumps in the pillar widths
when the desired phase passes through 2π.

In Fig. 4, the locally periodic approximate solver (left) is compared to a brute-force surface-
integral equation (SIE) Maxwell solver [51–53] for this optimized solution, showing good
quantitative agreement. More precisely, at right we compare the computed intensities |Ez(x, y)|2
for several separations y from the surface. On the focal line, the mean squared difference between
the solutions divided by the mean squared intensity is only 0.3%, validating our locally periodic
approximation. The errors increase as one approaches the surface because of effects that decay
with distance—scattered waves (intensity ∼ 1/y) from sudden jumps in the pillar width (which
violate the locally periodic approximation) along with evanescent fields that we neglected in
our far-field approximation—combined with the fact that small errors are more apparent in
low-intensity regions far from the focal point.

3.2. Optimizing arbitrary functions of the field

Alternatively, since Sec. 2.2 allows us to compute the approximate field anywhere above a
metasurface, we can optimize any function of this field. This is especially useful if the desired
field is only partially known: perhaps one cares about the field in some regions but not others,
or is interested in amplitude but not phase. In particular, here we approach the lens-design
problem by directly maximizing the intensity |Ez(x)|2 at a single focal point |x|, which can be
rapidly computed by a single integral (2) of the locally periodic surface fields. As in the previous
sections, we used standard optimization techniques [54] with an analytically computed gradient
(essentially via an adjoint method [59]), and the optimized structure for 40 unit cells was found
in < 1 s on a laptop (whereas our brute-force solver was about 105 times slower). A comparison
of the two methods when the period is not sub-wavelength appears in Sec. 5.

3.3. Max–min multi-objective optimization

Many design problems involve a combination of multiple objectives: maximizing performance at
different wavelengths, angles, and/or focal spots, for example. One common way to do this is a
max–min formulation: we optimize the worst objective:

max
parameters

[
min

λ∈wavelengths
objective(parameters, λ)

]
.

(For example, in Sec. 4.1, the “objective” function for an RGB lens is the intensity at the focal
spot, and max–min optimization means that we try to maximize the lowest intensity across
the three design wavelengths.) Although the expression [· · · ] being maximized is no longer
differentiable, which would make the most efficient high-dimensional optimization methods
inapplicable, it can be transformed into an equivalent differentiable problem [60]

max
t,parameters

t

subject to t ≤ objective(parameters, λ) for λ ∈ wavelengths.

where t ∈ R is a new “dummy” optimization parameter. Assuming that the original objective
function is differentiable, we can now use a standard nonlinear constrained-optimization algo-
rithm [54]. In particular, the CCSA-MMA algorithm [54] only requires us to supply the functions
t and t − objective(parameters, λ) and their gradients (with respect to t and the parameters) in
order to solve the local-optimization problem. Efficient gradient formulas for our cost functions
from Sec. 3.1 and Sec. 3.2 are given in the Appendix.
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We will show examples of such optimization problems in Sec. 4, where we will use max–min
to optimize for multiple frequencies (Fig. 5 and Fig. 6) or angles (Fig. 7).

4. Applications: RGB lens, demultiplexer, and angle-insensitive lens

In this section, we show some larger and more interesting design problems that can be solved by
our methods from the previous section. We still use the same TiO2 pillar unit cells as in Sec. 2,
but now we consider metasurfaces consisting of 1000 unit cells, combining multiple frequencies
and/or angles, and we could solve the resulting optimization problems in a few minutes on a
laptop. In particular, we consider three applications: a lens which has the same focal spot for
RGB (red, green, blue) wavelengths, a demultiplexer that focuses RGB wavelengths at three
different focal spots, and a lens that focuses four incident angles at the same wavelength to the
same focal spot. We will also show that our methods are suitable for sensitivity analyses with
respect to wavelengths or angles, by evaluating designs at non-optimized inputs using our fast
(locally periodic) solver.

4.1. Max–min RGB (red, green, blue) focusing

Here, we use the max–min method of Sec. 3.3 to focus normally incident plane waves of three
different wavelengths—480 nm (blue), 530 nm (green), and 650 nm (red)—on a single focal
spot, by maximizing the minimum (worst) intensity at that spot for all three wavelengths. The
diameter of the lens is 235 microns (1000 unit cells), and the focal length is 350.6 microns, which
corresponds to a numerical aperture of 0.3.
At the bottom of Fig. 5 is shown the intensity on the focal line for all three wavelengths,

demonstrating nearly diffraction-limited focusing (RGB half-maximum widths of 975, 997, and
850 nm, respectively). In Fig. 5(middle), we evaluate our optimized design along the focal axis
(a fixed x = 0) versus distance y from the surface and versus wavelength across the visible
spectrum, in order to show the wavelength sensitivity of our RGB design. This plot reveals that
the optimized design is actually producing three different focal spots (local intensity maxima)
on the focal axis for every wavelength, and at each of the RGB wavelengths a different spot is
brought to the 350.6 µm target. At this target focal spot, the intensity |Ez |2 is plotted versus
wavelength in Fig. 5(top), showing the narrowband nature of the RGB focus. The ability of
our approximate solver to rapidly evaluate the performance of the design with many different
(non-optimized) inputs (< 100 ms each) is a powerful tool for characterizing and understanding
the metasurface.

4.2. Demultiplexer

Here, we design a demultiplexer that focuses normally incident plane waves of three different
wavelengths (RGB again) at three different points, which are sixty microns laterally (x) apart
from each other on the same focal plane (again 350.6 µm from the surface, a numerical aperture
of 0.3). As above, we use the max–min formulation from Sec. 3.3 to maximize the worst case
intensity at the focal spots.

In Fig. 6(top), we show the field intensities in the vicinity of the three focal spots for the RGB
wavelengths, and in Fig. 6(bottom) we plot the corresponding intensities along the focal line
y = 350.6 µm. The focal spots for the two side focal points are tilted outward from the focal
axis, which makes sense because they required off-axis focusing relative to the center of the
metasurface. As in Sec. 4.1, we attain nearly diffraction-limited RGB foci half widths of 825,
785, and 795 nm, respectively.
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Fig. 5. Bottom: the focal line of the scattered field for the three target wavelengths (blue,
green, and red) show a clear focusing on the target focal axis. Middle: sensitivity plot for the
focal length with respect to the wavelength show chromatic aberration, and each wavelength
objective creates a “spurious focus” (local maximum along along the focal axis) on the focal
axis at other wavelengths. The red spots represent the foci for each wavelength, and we
clearly see chromatic aberration. Top: intensity at the target spot vs. wavelength.

4.3. Max–min multi-angle focus

Our last application is a metasurface focusing incident plane waves coming at four different
angles of incidence (normal 0◦, 3◦, 6◦, and 9◦) at the same focal point for the wavelength 532 nm,
inspired by earlier topology-optimization work [21]. As in the previous sections, we target a
focal length of 350.6 µm (numerical aperture 0.3), and use the max–min formulation of Sec. 3.3
to maximize the worst-case focal-point intensity.
Fig. 7(right) shows the field intensities in the vicinity of the target focal spot for the four

angles, exhibiting an unsurprising “tilt” proportional to the angle of incidence. As in the previous
sections, the spots are nearly diffraction limited (half widths of 787, 787, 807, and 724 nm).
Fig. 7(left) shows the corresponding intensities on the focal plane y = 350.6 µm versus x. This
plot shows that, in addition to a peak at the target point x = 0, the metasurface produces three
auxiliary side peaks. (Preliminary work indicates that, similar to [21], these auxiliary peaks can
be mostly eliminated by redesigning the unit cell via additional parameters; we will address this
in a future manuscript.) That is, much like in Fig. 5, the metasurface is creating four focal spots,
such that at each angle of incidence a different focal spot is brought to the x = 0 target point. The
complex surface design and resulting transmitted field here would be very difficult to reproduce
without large-scale optimization.

5. Beyond subwavelength periods

The term “metasurface” should strictly apply only to deeply subwavelength structures that can
be accurately described by an effective surface impedance/admittance or similar [22–30], and

                                                                 Vol. 26, No. 26 | 24 Dec 2018 | OPTICS EXPRESS 33741 



- 62 - 60 - 58 - 56 - 54
345.0

347.5

350.0

352.5

355.0

x (µm)

y 
(µ

m
)

- 5.0 - 2.5 0.0 2.5 5.0

Focal spots

x (µm)
54 56 58 60 62

x (µm)

- 100 - 50 0 50 100

10
20
30
40
50
60 Focal line

Position x (µm)

In
te

ns
ity

 (a
. u

.)

λ=470 nm λ=530 nm λ=650 nm

Fig. 6. Bottom: focal lines for the three target wavelengths (blue, green and red) focus on
points sixty microns apart. Top: the field produced by our design focuses on the desired
foci, the high-intensity regions for blue (left) and red (right) are tilted because their foci are
off-axis.

- 100 - 50 0 50 100

10

20

30

40

50

Position on metasurface (µm)

In
te

ns
ity

 (a
. u

.)

- 7.5 7.5

342.5

357.5

x (µm)
y 

(µ
m

)

- 100 - 50 0 50 100

10

20

30

40

50

In
te

ns
ity

 (a
. u

.)

- 7.5 7.5

342.5

357.5

x (µm)

y 
(µ

m
)

- 100 - 50 0 50 100

10

20

30

40

50

In
te

ns
ity

 (a
. u

.)

- 7.5 7.5

342.5

357.5

x (µm)

y 
(µ

m
)

- 100 - 50 0 50 100

10

20

30

40

50

In
te

ns
ity

 (a
. u

.)

- 7.5 7.5

342.5

357.5

x (µm)

y 
(µ

m
)

0
 d

e
g

re
e
s

3
 d

e
g

re
e
s

6
 d

e
g

re
e
s

9
 d

e
g

re
e
s

Fig. 7. Left: the focal lines for 0-degrees, 3-degrees, 6-degrees, and 9-degrees angles of
incidence show four foci with the maximum intensity at the target focal spot (at x = 0), the
other three peaks correspond to the other three target angles. Right: corresponding produced
field around the foci, the focal spot becomes more tilted as the angle of incidence increases.

most previous work operated in a subwavelength regime [12–19]. Conversely, when the period is
larger than the wavelength, additional diffracted waves appear in the far field [37] that cannot
be described by a uniform effective medium or by a single Fourier coefficient. Nevertheless,
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if the unit cells are mostly slowly varying it should still be valid to describe the surface by a
locally periodic approximation (analogous to the adiabatic theorem for propagation through
nearly periodic media [61]) to approximate the field just above the surface and hence the field
everywhere as in Sec. 2. When we solve the local periodic problems in non-subwavelength
structures we can no longer retain only the 0th order Fourier coefficient, but instead we must
retain either the full Ez field on the surface or, for far-field calculations, the Fourier coefficients
corresponding to all of the non-evanescent diffracted orders [37].
In Fig. 8 we show a single-wavelength (λ = 532 nm) lens design for a period of 800 nm > λ,

so that even a periodic surface produces two additional diffracted orders ±1 in addition to the
0th-order “specular” transmission. (Other than the period, the structure is the same TiO2 pillar
geometry considered in the previous sections, we use normal incidence, and design for a focal
length of 48.6 µm with 40 unit cells similar to Sec. 2.) We considered both the wavefront and
the intensity optimization approaches, and validated against a brute-force Maxwell solution as
in Sec. 3. Since the additional diffracted orders propagate at oblique angles, they have little
influence on the focal intensity if the lens is designed to focus the 0th-order (specular) transmitted
wave sufficiently far from the surface, so we carry out the inverse design using only the 0th-order
term in the approximate model.

The results in Fig. 8 show that the intensity method still produces an excellent (near diffraction-
limited) focal spot with high intensity that agrees well with the brute-force validation, whereas
the wavefront optimization produces a much weaker focus that agrees poorly with the validation.
In both cases, the brute-force calculation and the approximate solver (which includes also the
diffractive orders ±1) clearly show the additional diffracted orders scattering to oblique angles
that have low amplitude at the focal spot. One major problem with the wavefront approach in
this geometry is that varying the pillar width in this case changes the amplitude from 1 to 0.2,
very different from the constant amplitude ≈ 1 in the subwavelength case. The best phase match
corresponds to a weak efficiency, whereas the intensity method can compensate by utilizing both
amplitude and phase variations. The resulting lens designs shown in Fig. 8(left) correspondingly
have an average amplitude twice bigger for the intensity approach than for the wavefront approach
(0.8 vs 0.4). Another challenge of non-subwavelength structures, which would become more acute
for larger-aperture lenses, is that large-period gratings with only a small number of parameters
per unit cell cannot easily implement the rapid variations in phase that are called for by large
lenses. There are too few parameters to fit the complex intra-cell phase variation.

6. Concluding remarks

We believe that our locally periodic inverse-design approach represents a powerful extension to the
ideas in previous work, allowing one to balance competing tradeoffs in wavefront design, optimize
arbitrary functions of the scattered field (e.g. intensity in selected regions), evaluate parameter
sensitivity, design for robustness to uncertainties, and to go beyond the regime of subwavelength
structures and far-field designs. A similar max–min formulation can be used to implement a
standard robust optimization method to account for manufacturing uncertainty [56, 62]. Our
approximate solver remains orders of magnitude faster than optimization methods based on full
Maxwell solvers, allowing it to scale to aperiodic structures hundreds or thousands of wavelengths
in diameter while retaining acceptable accuracy for typical designs. We find that complex
behaviors can be designed even from very simple unit cells without plasmonic resonances, and
without operating in deeply subwavelength regimes.

This paper presented a proof of concept and validation of the approach, and opens up many
future possibilities. We are currently working on extension to the design of 3d surfaces and
vector fields, and believe such problems to be tractable with a few hours of computation (rather
than the few minutes required here for 2d inverse problems). We can easily extend our inverse
design from a single parameter per unit cell to multiple parameters per cell. With a few (. 10)
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Fig. 8. Bottom: the geometry (left) from intensity optimization shows big variations in the
width of the pillar, and produce good focusing when simulated with a brute force simulation
(right), or our locally periodic solver (middle) which includes the diffractive orders ±1. Top:
the geometry (left) from wavefront optimization shows poor focusing both using our locally
periodic solver (middle) or a brute force calculation (right). All the intensity plots have the
same color scale.

parameters, one can use a similar library-based approach via multidimensional interpolation,
for which the main limitation is the number N of unit-cell calculations that need to be solved
beforehand in order to build the interpolation library. The simplest method is a tensor product of
Chebyshev polynomials [40], which is practical for at most 2–3 parameters because N grows
exponentially with the number of parameters. Polynomial scaling of N can be achieved by
sparse-grid methods [41] or neural networks [63, 64]. To handle hundreds or thousands of
parameters per unit cell for topology optimization [6–10,21,65], the library approach must be
abandoned in favor of directly solving Maxwell’s equations in every metasurface unit cell for
each optimization iteration (still via the locally periodic approximation). In this case, the cost is
essentially independent of the number of parameters and scales linearly with the number of unit
cells, which can be solved in parallel; we have successfully optimized metasurfaces with > 1000
parameters per unit cell in this way and are currently preparing a manuscript on those results.
Multiple parameters per unit cell could describe more complicated surface patterns (e.g. the
V-shaped antennas of [4]), but also includes the possibility of multi-layer patterns (e.g. stacked
gratings). Additional degrees of freedom could prove crucial for obtaining truly wide-bandwidth
devices, coupling multiple polarizations, minimizing unwanted reflections, and so on.
The ability to design non-subwavelength surface patterns (but still far from the� λ regime

of scalar diffraction theory [33, 34]) could prove useful for a variety of applications, starting
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with designs for short wavelengths (e.g. near UV) where subwavelength fabrication is difficult.
The additional diffracted orders of large-period structures may also become useful for near-field
focusing and related design problems or for focusing a single incident beam at multiple spots.

Another interesting direction to explore would be further development of the theory of nearly
periodic structures and locally periodic approximations. In a companion work [35], we develop
a rigorous theory of slowly varying (nearly uniform) structures, and show that the analogous
“locally uniform” approximation appears as the 0th-order term in a convergent series of integral
corrections. A corresponding rigorous theory of higher-order corrections to the locally periodic
approximation, analogous to coupled-mode expansions for propagation through nearly periodic
media [61], along with efficient numerical methods to obtain corrections, is an important goal for
the theory of metasurfaces. A closely related problem is coupling radiation to and from guided
modes by nearly-periodic surfaces, a version of which is solved in [35]. In another paper [35],
we have recently shown that similar local approximations can indeed be used to compute both
near fields and coupling to guided waves.

Appendix

To use standard high-dimensional optimization algorithms, one needs to provide an efficient
computation of both the objective (cost) function and its gradient. There is a well-known
technique called an adjoint method [59] that can be used to efficiently compute the gradient for
any number of parameters with a cost comparable to evaluating the objective function at most
twice, which is commonly used in topology optimization [6–10,21,65]. In the case of the two
objectives presented in Sec. 3.1 and Sec. 3.2, the gradient is especially simple to evaluate as
described in this Appendix.
In Sec. 3.1, f (p, s0, φ0) =

∫
|s(p(x)) − s0a(x)eiφ(x)+iφ0 |2dx, so the gradient is:

∂ f
∂p

= 2<
(∫ (

s(p(x)) − s0a(x)eiφ(x)+iφ0
)∗

s′(p(x))dx
)

∂ f
∂s0

= −2<
(∫ (

s(p(x)) − s0a(x)eiφ(x)+iφ0
)∗

a(x)eiφ(x)+iφ0 dx
)

∂ f
∂φ0

= −2<
(∫ (

s(p(x)) − s0a(x)eiφ(x)+iφ0
)∗

is0a(x)eiφ(x)+iφ0 dx
)
,

where ∂ f /∂p denotes the functional derivative [66] with respect to the parameter function p(x)
and ∗ denotes complex conjugation. Notice that the computation of the gradient requires only
the evaluation of a few simple integrals, comparable to the cost of evaluating f . Similarly, in
Sec. 3.2, g(p, x) = |Ez(x)|2 = |

∫
y=y0

G(x, (x ′, 0))s(p(x ′)) dx ′ |2, and so its gradient is:

∂ f
∂p

= 2<
((∫

y=y0

G(x, (x ′, 0))s(p(x ′)) dx ′
)∗ ∫

y=y0

G(x, (x ′, 0))s′(p(x ′))dx ′
)
.
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