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Abstract

We propose a surface integral equation simulation scheme which incorporates the integral equation fast Fourier transform accelerative algo-
rithm and domain decomposition method. Such scheme provides efficient and accurate solutions for substrate-supported non-periodic plas-
monic array platforms with large number of building blocks and complex element geometry. The effect of array defects can be systematically
and successfully studied taking advantage of the considerable flexibility of the domain decomposition approach. The proposed model will be of
great advantage for fast and accurate characterization of graded-pattern plasmonic materials and metasurfaces.

Introduction
Surface plasmon polariton (SPP) provides a physical process to
enhance and confine electromagnetic fields in nanoscale re-
gions."" ! With the recent advancements in nanoscience and
nanotechnology, plasmonic arrays made of graded-pattern ele-
ments are of great interest for compact light manipulation. The
elements are usually in the subwavelength scale with gradient
change of dimensions. The challenge of modeling such struc-
ture lies in the large array size, small and fine feature sizes,
and the non-periodic configuration. In this context, an efficient
numerical scheme is proposed for characterizing such complex
structures to assist achieving optimized designs for electromag-
netic engineering. Among kinds of computational electromag-
netic algorithms, researchers have used some very popular
numerical methods, like finite-difference time-domain
method!® or finite-element method,!” to predict the optical re-
sponse from complex systems. These differential methods are
very flexible. However, to satisfy radiation conditions, special
attentions must be paid for truncating the computational
domain. Further those methods will suffer from inaccuracy in
modeling propagation latency, due to numerical dispersion ef-
fect. Integral equation (IE) methods!™ have received great at-
tention in the electrical and electromagnetic community due
to their accuracy in modeling wave problems since only the dis-
cretization of the scatterer is necessary and boundary conditions
are rigorously included in the calculations. Also, the interest in
IE methods has been boosted by the introduction of accelera-
tion techniques such as fast multipole methods, FFT-based ac-
celerators and H-matrix methods.”'"]

Despite the great progress achieved to date, the modeling of
large array non-periodic plasmonic systems is still a challeng-
ing task for conventional IE approaches. A major issue is the

large number of building blocks and the complexity of the ge-
ometry, which makes the obtained system-equations consider-
ably large. Adding to this complexity will be substrate,
frequency dispersion of plasmonic material, and complex pat-
terned configuration. A viable approach to address such issues
is the formulation of a recently developed domain decomposi-
tion method (DDM),!">""*! which employs a breakaway from
conventional IE approaches in order to address such a strenuous
challenge with a good degree of success. The DDM decompos-
es the original problem domain into smaller discrete sub-
domains, in which local sub-problems are to be solved. Each
subdomain is described by a closed surface and the continuities
of tangential fields on the touching interfaces between sub-
domains are enforced. Most importantly, coupling between
sub-domains can be accelerated via fast algorithms and precon-
ditioners. For the large nanostructures made of complex build-
ing blocks with millions of unknowns, we can decompose the
structure into thousands of subdomains. In each subdomain
there can be one to tens of building blocks with only thousands
of unknowns. Special attention must be given in DDM imple-
mentation for substrates and of plasmonic materials with nega-
tive permittivity. This is mainly due to the stronger couplings
between the domains leading one to consider more sub-
domains as one DDM block.

In this paper, we will apply DDM to large array plasmonic
structures on substrate to break the computational domain into
small regions. Then we will implement IEs to solve the
Maxwell’s equation in each domain and apply proper boundary
conditions to connect the sub-domains. Array integral equation
fast Fourier transform (IE-FFT) is used to speed up matrix—
vector product. Core formulations are described in Section II.
In Section III, different plasmonic arrays are numerically
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modeled and solved successfully. In Section III.A, we consider
a crystal structure composed of assembly of highly coupled
dielectric and plasmonic spheres. An array made of 30 x 30
building blocks with and without defects are considered and
compared. This is to show the power of our technique in solv-
ing large array non-periodic where no substrate is involved. The
configurations can enable creation of electric modes and cou-
pled. Section III.B devotes to modeling substrate-based plas-
monic arrays by considering the structure of large-array SiC
nanorods on an SiC substrate. Such array may find applications
for various wave-front engineering by tailoring the aspect ratio
of the rod in a gradient way. In Section III.C, a more complicat-
ed problem is explored, which is an array of plasmonic patches
on a two-layer substrate. The substrate has inhomogeneous per-
mittivity changing from one element to another, which can be
achievable by gate-tunable or temperature-tunable materials.
Such configuration may provide large flexibility and dynamic
tunability for beam engineering.['®'”!

Theory and formulation
Surface IE
Figure 1(a) illustrates the partial view of a typical functional
plasmonic array structure. It is composed of complex building
blocks on a layered substrate. Different types of materials with
and without dispersion are involved. The array is large and not
periodic in general. To solve such substrate-supported plas-
monic array problem we consider the configuration as an arbi-
trary structure consists of many piecewise homogeneous
penetrable objects in a homogeneous medium. These piecewise
homogeneous regions are denoted by R;, i=1, ..., N, and excit-
ed by the time harmonic electromagnetic waves with time fac-
tor e/, as shown in Fig. 1(b). The material permittivity and
permeability parameters of each region are denoted by &; and ;.
In each region, the electric and magnetic current combined
field integral equation (JMCFIE)!'® is applied for these homo-
geneous penetrable objects. We denote S;; the interface between
regions R; and R;, the IMCFIE can specify the total field bal-
ance on this surface as

EFIE; + ;1 x MFIE; + EFIE; + m;fi;; x MFIE;, (1)
;l,‘j X EFIE,‘ + ‘)’]iMFIE,‘ + flﬁ X EFIEj + 1]~MFIEj, (2)

J

where the electric field integral equation (EFIE;) and the mag-
netic field integral equation (MFIE,) can be written as follows:

> Lia) — Ki(Mi))yg,

kEC;
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Figure 1. (a) A general model of substrate-supported plasmonic array,
different types of materials are distinguished with different colors. (b) An
electromagnetic model of arbitrary shaped substrate-supported plasmonic
array consists of N/ piecewise homogeneous penetrable objects, denoted
by R, i=1, ..., M. Syis the boundary surface of regions R;and R; f; is the
unit normal vector of Sj. J and M are the equivalent surface electric and
magnetic currents on the boundaries.

Here 7;; is the unit normal vector of Sj; pointing toward region
R;, n; denotes the wave impedance, and C; represents the collec-
tion of regions sharing common boundaries with R;. E}“C (r) and
H}“C(r) are the corresponding incident electric and magnetic
fields. The operators L; and K; in region R; are defined as

Li(X;) = jki in(l‘/)Gi(lﬁ r')ds’
K

| (5)
- VJ V' - X;(r)Gi(r, ¥)dS',
Jki

K,-(Xl») = PVJXI(I'/) X VG,'(I', r/)dS/, (6)

N

where X represents the unknown J and M, K; is the wave
number, and G; is the Green’s function in region R; with the
definition of,

e kilr=r'|
= 7
"4 — 1| 7

In a similar way, we can get EFIE; and MFIE; in region R;. For

the sources X;;(r') or X;(r') on the interface Sy, the boundary
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conditions enforce the continuity for the tangential components
of the fields and imply that X;(r') = —X;(r').

In this paper, we use curvilinear biquadratic quad elements
for the geometry discretization, which substantially reduce
number of unknowns in the problem.!"®! On these biquadratic
quad elements, surface basis functions of order p are defined
in the form of

X = |—;| <X,,(u, v)% + X, (u, v) %) ®)
where X, and X, are order p Legendre and integrated
Legendre polynomials, |J| is the determinant value of the
Jacobian matrix associated with space mapping between refer-
ence and physical elements. It is worth mentioning that the ro-
tated div-conforming basis functions are used in the Garlerkin’s
test, due to the presence of the 71 x terms in the JMCFIE in Egs.
(1) and (2). After testing we can get the final system equation
Ax=b, A is the impedance matrix, b is the excitation vector,
and x is the unknown coefficients vector to be solved.

Domain decomposition method

The core idea of DDM is decomposing an original problem
into numbers of smaller subdomains, in which the
subdomains are solved independently by considering the cou-
pling between subdomains. The concept of DDM is shown in
Fig. 2, where the object is partitioned into two subdomains
for simplicity.

After the whole structure is divided into subdomains, new
cutting surfaces appear, and the new unknown electric and
magnetic currents should be taken into consideration.
Although these subdomains are solved independently, in
order to create a powerful transmission condition between ad-
jacent subdomains, the unknown sources Xj; (electric or mag-
netic current) on the interface of subdomains ; and Q; are
forced by the boundary equations X;; = —Xj;. This ensures
the continuity of the currents around the adjacent surfaces.!"”’
After applying the DDM, for an N-subdomains system the orig-
inal system equations Ax = b will be changed into the following
form:

M= M —= M.~
J — J,= Jq—‘
DDM (—— ™, | 3
> 1 ; J, f"L_‘ i
Q q l t/,

Figure 2. The illustration of DDM, the object is partitioned into two
subdomains for simplicity. After applying the DDM, new unknowns are
introduced on the cutting surface, the boundary condition X; = —X;; is
forced to create a powerful transmission condition between adjacent
subdomains.

Ay Ap - Ay xi by
Ay Ay oo Ay X2 by

x| . =/. [ O
Ayt Ayz - Aw Xy by

where A;; are subdomain impedance matrices. They are self-
subdomain interaction matrices for i =j, and the coupling inter-
action matrices between subdomains i and j for i #. x; and b;
are the unknown coefficients and excitations of subdomains
Q;, respectively.

Fast algorithms

In this work, an IE-FFT solver is applied to solve such DDM
matrix system.!'®] Most of the IE acceleration techniques, in-
cluding the IE-FFT method, have inherent assumptions that di-
vide the impedance matrix A into two parts, near-field (NF)
interactions and far-field interactions (FF). In metamaterial
array design, the building blocks are often required to be a frac-
tion of wavelength with deep-subwavelength features. Thus, a
significant part of the system interactions occurs in the NF re-
gion. In this paper, we define self-couplings of each building
blocks and couplings between the adjacent building blocks as
NF interactions. For each building block in a two-dimensional
(2D) array, there are at most 3> =9 near interactions. All the
near interaction matrices A;; in Eq. (9) are subject to the low-
frequency condition that allows for efficient compression
using hierarchical matrix compressed representation, which
can bring great reduction of computational time and memory
requirement.!" '8 The couplings between non-adjacent build-
ing blocks are defined as FF interactions. The FFT acceleration
is used to reduce the cost associated with handling of matrices
arising from IE methods.['”? A three-level Toeplitz matrix is
often used in the traditional FFT-based accelerative method.
However, the traditional IE-FFT method always has the accura-
cy loss problem for NF interaction. To overcome this problem,
a six-level Toeplitz matrix instead of the conventional three-
level Toeplitz matrix is used to improve the efficiency of
IE-FFT in this paper,'®! as the former one eliminates the
need for NF correction.

A validation example

In this subsection, a dielectric slab with the geometric size of
3x3x0.2 um’, respectively, along x, y, and z-directions is
considered to validate the efficiency of DDM, as shown in
Fig. 3(a). A normally incident plane wave with the x-axis polar-
ization at the frequency 100 THz is considered as the excita-
tion, the relative permittivity and permeability of dielectric
slab is £,=12.5 and u,=2.5 (to consider a general case).
When DDM is used, we divided this dielectric slab into nine
small dielectric slabs with same geometric size, as shown in
Fig. 3(b). These nine subdomains are distributed separately in
the figure for a better view of each subdomain. It can be ob-
served that the current distributions are the same for the solu-
tions with and without DDM. Also it should be mentioned
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Figure 3. Surface current distribution of a dielectric slab with the geometric size of 3 x 3 x 0.2 umS respectively along the x, y, and zdirections, illuminated by a
normally incident plane wave at the frequency of 100 THz, (a) without DDM, (b) DDM, the relative permittivity and permeability of dielectric slab is ;= 12.5 and

ur=2.5.

that 4 min and 1.5 Gb memory are required for the DDM solu-
tion, but 2 h and 3.7 Gb memory are required for a direct solu-
tion without DDM. This is a speed improvement by a factor of
30. These results are all computed on a personal computer with
AMD FX-8120 8-core CPU. Therefore, it can be concluded
that the DDM solution can bring a grate reduction both in
CPU time and memory requirement without lose any accuracy.

Numerical simulation for large
plasmonic arrays

In this section, we use surface integral equation (SIE) combined
with the IE-FFT accelerative algorithm and DDM to character-
ize some interesting large plasmonic array platforms. The
working scheme of DDM is detailed in the examples by exam-
ining the surface current at the subdomain boundaries, and the
strategy of dividing subdomains is discussed. The defects with
various forms in the large array is easily taken into account and
successfully modeled. We start from a geometry which is a
large and random hybrid crystal array without substrate, and
then we select a rod array with connected substrate to demon-
strate the effectiveness of DDM. The third example is a patch
antenna array, also with connected substrate, but the substrate
permittivity changes from one block to another, where DDM
is applied in both vertical and in-plane directions.

The code implementation of the proposed scheme is in C/C++,
also the OpenMP parallelization is used for speeding up the com-
putation. All the numerical results are computed on the NEU
Discovery cluster.?”? A Krylov subspace iterative method,
Generalized Conjugate Residual®'! with terminate is adopted
for the solution of Eq. (9). The iterations terminate upon arrival
at a relative residual of < 1 x 1072 and the subspace dimension
is assigned as 30.

Hybrid crystal array

Nanocrystal materials can offer interesting optical and electrical
features over nanoscales.”>**] They are large array and usually
made from building blocks of hybrid dielectric and plasmonic
elements. Due to fabrication tolerances in size, material and
location, the array will not be periodic when it comes to
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fabrication. Figure 4(a) shows a 30 x 30 crystal array with hex-
agonal lattice shape. The lattice constants @ and b are 30 nm in a
xoy —plane with the angle 120°. The building block is com-
posed of two dielectric spheres with diameter 12 nm and seven
gold spheres with diameter 7.2 nm, assembling in the shape of
hybrid AlB, and CaCus crystal, as shown in Fig. 4(b). Note
that the arrangement of the dielectric and plasmonic spheres de-
termines the plasmonic resonances and can be used to engineer
the light-matter interaction to our interest. This array is illumi-
nated by a 300 THz plane wave excitation along the minus
z-axis direction with the x-axis polarization. The relative per-
mittivity of dielectric and gold spheres at this frequency are
&q=4and g, = —44.2 — j3.02, respectively, where the relative
permittivity of gold is computed based on the Drude model.**!
In Fig. 4(a), the surface electric current densities J =7 x H
distribution is shown for the complete crystal array. A zoom
in view is given in Fig. 4(c). The high-order curvilinear meshes
are shown, in which the high-order basis functions based on
Legendre and integrated Legendre polynomials are defined. It
is a key of reducing computational cost. Even in single curvilin-
ear patch, we can find the obvious current variation implying
that applying high-order basis function brings the inherent ben-
efit of high accuracy. For a better view, the electric current den-
sities J and magnetic current densitiecs M = E x 72 of one
building block is shown in Figs. 4(d) and 4(e). We can observe
differences in electric and magnetic current densities and for plas-
monic and dielectric elements. Such structure provides enough de-
gree of freedom to successfully tailor unique properties by
changing the arrangement and the dimensions, for example to cre-
ate an artificial magnetic current creation, and further to engineer
the effective materials parameters.

However, the practical fabrication process of the crystal usu-
ally leads to imperfections, such as element vacancy, center shift,
and deformation. We need to evaluate how these undesired fac-
tors may influence the array performance and what is the toler-
ance of the geometric defects. Thus, it is necessary to take
these defects directly into the full-wave simulation. Here 100
building blocks are randomly chosen and changed, in which
35 building blocks have a center shift along the z-axis with
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Figure 4. (a) A 30 x 30 crystal array with lattice constant a= b=30 nm in a xoy —plane, the angle between aand b is 120°, (b) one building block, consisted of two
dielectric spheres with diameter 12 nm and seven gold spheres with diameter 7.2 nm, curvilinear meshes are also shown. (c) A zoom in view of the surface electric
current densities J = i1 x H, illuminated by a 300 THz plane wave along the minus z-axis direction with the x-axis polarization, also depicting the high-order curvilinear
meshes, (d) electric current densities J = /1 x H of one building block, and (e) magnetic current densities M = E x /1 of one building block.

2 nm, 30 building blocks miss parts of the spheres, 20 building
blocks are of different sphere radius size and 15 building blocks
are completely moved, as shown in Fig. 5. In this paper, we call it
perturbed case for the array with defects and perfect case without
defects. Figure 6 shows the NF of the perfect and perturbed cases
10 nm away from the top of crystal in a xoy —plane. The compar-
ison in Fig. 6 indicates that the field is obviously changed near
the defected building blocks. Strong fields are observed at the va-
cant lattices due to the cavity-like defect configuration. This in-
formation is helpful for designing properly according to the
fabrication imperfections.

The total number of unknowns for the perfect and perturbed
crystal array is about 10 and 9.7 million, respectively. Some
building blocks are removed or changed in the perturbed

case, which explains the different unknown numbers for the
two cases. For the perfect case, the total memory and computa-
tional time are 36.6 Gb and 2.8 h, respectively, whereas 41.5
Gb and 5.8 h are consumed for the perturbed cases. It is inter-
esting to note that for the perturbed case simulation, though
number of unknowns is a little bit less than for the perfect
case, the computational cost is actually higher. This is because
all the building blocks are the same in the perfect case, an
immediate result is that the self-subdomain interaction matrices
A;; of Eq. (9) are all the same for each subdomain when DDM is
applied and more duplicate information can be used during the
matrix setup and solving process. However, comparing with
perfect case, more information needs to be computed and stored
and this results in higher computational cost for perturbed case.

MRS COMMUNICATIONS - www.mrs.org/mrc M 5
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Figure 5. (a) A perturbed 30 x 30 crystal array, 100 building blocks are
randomly chosen and changed, in which 30 building blocks miss parts of the
spheres (c), 35 building blocks have a center shift along the z-axis with 2 nm
(d), 20 building blocks are of different sphere radius sizes (e), and 15
building blocks are moved, the blank in (b).

Note that as illustrated with an example in Fig. 3 using a
non-DDM for modeling such complex non-periodic configura-
tion will be extremely time-consuming.

Rods array on substrate

The SiC nanorods can offer surface phonon polaritons with pi-
coseconds lifetime, which is orders of magnitude longer than
the scattering time of free carriers in the SPP mode of metals
and doped semiconductors.*>! Figure 7 shows the structure
of the second example, SiC nanorod array on top of SiC sub-
strate. Such array may find applications for various wave-front
engineering by tailoring the aspect ratio of the rod in a gradient
way. The modeling can be challenging as the rods are sitting on
a plasmonic substrate, where strong field coupling may happen
(and considering the array may not be periodic). Hence, a so-
phisticated model is needed to solve such large non-periodic
highly coupled phenomena.

Before simulating the large non-periodic rod array, we
would like to show some DDM features for modeling such
substrated array structures. An SiC rod array with 30 building
blocks along the x-axis direction is taken into consideration,
which is illuminated by a plane wave with 6 directional polar-
ization from the direction of 6= 155°, ¢ =90° at the frequency
27 THz, as shown in Fig. 7. A rod of 800 nm tall and 250 nm
diameter on a 400 nm square substrate with the thickness 300
nm is assigned as the building block for this array. Both the rod
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and the substrate is SiC with the relative permittivity &,=
—5.14 —j0.08. As mentioned in the previous DDM section,
the object can be theoretically divided into any number of sub-
domains. Next we discuss the DDM features for modeling such
structure. Three different strategies are used to decompose the
30 building blocks array by putting one, two, and three building
blocks in each subdomain, respectively. Thus there are 30, 20,
and 10 subdomains for each case. The iterative behaviors of the
three different decomposition strategies are summarized in
Fig. 8, which imply that the more subdomains we have, the
slower the iterative process will be. This means there may be
convergence problem for very large-size array if we divide
array into too many subdomains. However, the computational
statistics in Table I shows that the less memory will be needed
if we have more subdomains. This special phenomenon means
trade-off relation between iterative steps and memory cost.
Therefore some balance between the time and memory cost
should be chosen in the DDM design, this is usually determined
by the specific simulated structures and hardware computation
platforms. It should be mentioned that the substrate has a
negative permittivity value and it can support strong NFs, a
larger subdomain allows a better performance in DDM.
Therefore we put 3 x 3 =9 building blocks in one subdomain
during our following 30 % 30 rod array simulation both consid-
ering the computational efficiency and hardware platform
limitation.

To quickly find the resonance frequency points of the large-
scale SiC rod array in the interested band, we compute the ex-
tinction cross-section response (ECS) of one SiC rod in the
band from 20 to 30 THz in Fig. 9(a). Three resonance frequen-
cy points 25.235, 27.185, and 28.476 THz are found. The inci-
dent information is the same as the previous case. The
dominant resonance happens at 25.235 THz, where the ECS
value is very large. The surface electric current density distribu-
tions at three resonant frequencies are shown in Fig. 9(b), where
strong field coupling is observed at the junctions of the rod and
the substrate at the first resonant frequency. This further high-
light the capability of the scheme in dealing with highly cou-
pled structures.

We next perform the defect analysis for the large non-
periodic rod array with 30 x 30 building blocks with the similar
operation for the hybrid crystal array example. Imagine in the
fabrication 50 building blocks have defects and are randomly
distributed, among which 30 rods have different heights and ra-
dius as shown in Fig. 10(b), the other 20 rods are moved as
shown in Fig. 10(c). This is the perturbed case for rod array.
Figure 11 shows the NF of the perfect and perturbed cases
100 nm away from the top of rod array in a xoy —plane, in
which the fields are obviously changed near the defected build-
ing blocks. Due to the randomly changed building blocks, the
electric field distribution are not symmetric anymore, also the
field intensity have been enhanced in some places.

To closely check how DDM works for large substrate-
supported array, the black square area in Fig. 10(a) was taken
into consideration. We decomposed this area along the dashed
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Figure 6. Near electric field distribution 10 nm away from the top of crystal in a xoy —plane, (a, c) the perfect case, (b, d) the perturbed cases, (c, d) are the
zoom in view of (a, b) both with the x- and y-coordinate positions between 0 and 300 nm.

square area into two parts, as shown in Fig. 12(a). New cutting same. This is benefited from the force boundary condition in
surfaces would appear, on which the new electric and magnetic DDM, also currents are continues on interfaces.

currents emerge. A torn view is shown in Fig. 12(b), where the The total number of unknowns for the perfect and perturbed
surface current intensities on the touching surface are the rod array is about 4.2 and 4.1 million, respectively. For the

. 5.35x 107°

4.01 %107

I2_38x10-3

1.34 x 1073

I3.97 x 1078

Figure 7. Electric current distribution on the surface of an SiC array with 30 building blocks, illuminated by a 8-polarized plane wave from 6= 155°, ¢ = 90° at
the frequency 27 THz.
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Figure 8. The iterative behavior of three different decomposition strategies.

perfect case, the total memory and computational time are
155.6 Gb and 26.4 h, respectively, whereas 228.2 Gb and
54.5 h are consumed for the perturbed cases. We can find the
same behavior that the computational cost is higher for per-
turbed case, although the number of unknowns are almost the
same or even less. This special behavior has already been ana-
lyzed for the crystal array in the last section. It is because more
duplicate information is used for the perfect case. Another in-
teresting behavior is that when we compare the computational
cost for crystal and rod array, both the computational time
and memory requirement for rod array are much higher than
for the crystal array, though the number of unknowns is less.
This is mainly caused by two factors. The first factor is caused
by different decomposition strategies. Both the two arrays have
900 building blocks, but a large subdomain with nine building
blocks is employed for the rod array. This results in more sub-
domains for the crystal arrays and we already get the conclusion
that the less memory will be needed if there are more subdo-
mains during the DDM feature testing in the previous section.
The other important factor is that the building blocks in the rod
array are all touched, so the source and observation elements
are not so “well separated”. The efficiency of the hierarchical
matrix method strongly relies on low rank compression of ma-
trix blocks associated with simulations.!'""'®] If the source and
observation elements are not “well separated”, the compression
ratio won’t be high, which will increase both CPU time and
memory requirement during the computation.

Table I. Computational statistics for three different decomposition strategies.

Mormalized ECS (dBsm)

20 22 24 26 28 30
(a) Frequency (THz)

27.185 THz

25,235 THz

28.476 THz

(b)

Figure 9. (a) The normalized ECS of a single rod with the substrate in the
frequency band from 20 to 30 THz, three resonance frequency points 25.235,
27.185, and 28.476 THz are found, (b) surface electric current densities
distribution at three deferent frequency points.

Two-layered substrate patch antenna

A third example we study is the array of gold antennas on the
two-layer substrate composed of indium tin oxide (ITO) and
SiO, slabs, where the permittivity of ITO changes from one
block to another. This can be achieved by voltage control of
the substrate with proper biasing network.['®!”) This is a prom-
ising design idea for application in the area of dynamically tun-
able array antennas and metasurfaces. Compared with previous
structures, the computational difficulty of this design stays in
the inhomogeneous permittivity pattern (in a plane). When
the DDM is used to model array structures, the whole structure

Memory (Gb) Time (min.) Iterative steps
30 subdomains 5.7 51 100 (6.7 x1073)
15 subdomains 9.9 45 50 (8.7x107%)
10 subdomains 15.6 56 30 (8.1x107%)
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Il.aﬁx 1072

1.40 x 1072

'mem—\"
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414 %107

Figure 10. (a) The surface current distribution on a 30 x 30 rod array
(perturbed case), illuminated by a 6-polarized plan wave from 6=155°, ¢ =
90° at the frequency 25.235 THz, (b, c) surface current distribution on part of
the structure, a zoom in view.

will be divided into many subdomain problems and each
domain are solved independently, as shown in Eq. (9), the
whole matrix equation is decomposed into numbers of subma-
trix equations. Therefore for the array with inhomogeneous per-
mittivity pattern, DDM can be applied both for the vertical and
in-plane directions, and we can make the permittivity constant
in each subdomain. This inherent merit of DDM will greatly re-
duce the difficulties brought by inhomogeneity.

In this section, the plasmonic patch antenna array with the
two-layered substrate is considered, one element is shown in
Fig. 13, which consists of three different materials denoted as
1, 2, and 3, for the SiO, substrate, thin-layer ITO with tunable
permittivity, and gold antenna. The geometry size of three cu-
boids are 400 x 400 x 200 nm’, 400 x 400 x 30 nm’, and 160 x
160 x 40 nm>, respectively, along the x, y, and z-directions.
A normally incident plane wave with the x-axis polarization
at the frequency 167.7 THz (relative permittivity for ITO is
—2 —j1.34) is considered as the excitation, the relative permit-
tivity of gold and SiO, is g, = —149 —j15.8 and £,4=3.8. A
10 x 10 plasmonic patch antenna array is simulated, shown in
Fig. 14. The relative permittivity of the ITO substrate in each
building block is different, varying from .= -2 —;1.34 to
&£.=—0.19 —;0.77, which can be managed for instance with
a bias. The number of unknowns in the plasmonic patch anten-
na array is about 1 million. The total memory and computation-
al time is of 33 Gb and 2.5 h, respectively. One can see despite
of the normal incident plane wave the performance of the array
is changing from one element to another due to different mate-
rial substrates. As said earlier our goal here mainly has been to
show the power of DDM in solving a in-plane inhomogeneous
material, rather than designing a functional system taking all
practical aspects into it. It is an obvious extension of this

Y (nm)

0 2000 4000 6000 8000 10,000 12,000
(a) X (nm)

Perturbed

Y (nm)

0 2000 4000 6000 8000 10,000 12,000
(b) X (nm)

Figure 11. Near electric field distribution 100 nm away from the top of rod
array in a xoy —plane, (a) the perfect case and (b) the perturbed case.

model and to apply to dynamically tunable metasurfaces and
antennas,?®! which will be the focus of future works.

Conclusion

Despite the great advances achieved to date for the physical
concept of efficient wave manipulation in metamaterials and
graded plasmonic array systems, it is still a challenging task
to model the large plasmonic array platforms without periodic-
ity. In this paper, we proposed a SIE combined with the IE-FFT
accelerative algorithm and DDM for solving large substrate-
supported plasmonic array problems. Without any periodicity
assumptions, results of the surface currents and NF intensity
for arrays with hundreds of building blocks and complex ele-
ment geometry can be computed using the proposed scheme.
Three different examples are considered here to show the abil-
ity of the model. Large arrays of crystal structure and SiC nano-
rods on a substrate are numerically modeled. Different types of
random defects are introduced based on the fabrication sce-
nario. Without any periodicity assumption, results of the

MRS COMMUNICATIONS - www.mrs.org/mrc 1 9
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Figure 12. (a) A zoom in view of black square part of in Fig. 10(a), meshes
are shown, (b) a torn view when (a) was decomposed along the dashed
square area into two parts, new electric and magnetic currents emerged on
the cutting surfaces.

surface currents and NF intensity for large arrays with and with-
out defects are calculated and compared, which can provide
valuable guidance for practical fabrication and measurement.
Also a plasmonic patch antenna array with a two-layer substrate
are designed and presented. Benefited from the features of
DDM, we can model the substrate layer with inhomogeneous

Figure 13. One plasmonic patch antenna with the two-layer substrate,
material 1, 2, and 3 are Si0,, ITO, and gold, respectively. The geometry size
of three cuboids are 400 x 400 x 200 nm®, 400 x 400 x 30 nm®, and 160 x
160 x 40 nm®, respectively, along the x, y, and zdirections.
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Figure 14. The surface current distribution on a 10 x 10 plasmonic patch
antenna array, normally illuminated by an x-axis polarized plane wave at the
frequency 167.7 THz.

permittivity distribution changing among subdomains, which
can be further implemented by tunable materials. It should be
mentioned that all the three structures solved in this paper
have large area with millions of unknowns, and such large-size
structures can be widely used in practical applications and
difficult-time consuming to be modeled with current computa-
tional methods. The proposed computational scheme will be of
great advantage for fast and accurate modeling of future plas-
monic materials and metasystems.
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