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Sensing the direction of sounds gives animals clear evolution-
ary advantage. For large animals, with an ear-to-ear spacing 
that exceeds audible sound wavelengths, directional sens-
ing is simply accomplished by recognizing the intensity and 
time differences of a wave impinging on its two ears1. Recent 
research suggests that in smaller, subwavelength animals, 
angle sensing can instead rely on a coherent coupling of 
soundwaves between the two ears2–4. Inspired by this natural 
design, here we show a subwavelength photodetection pixel 
that can measure both the intensity and incident angle of 
light. It relies on an electrical isolation and optical coupling of 
two closely spaced Si nanowires that support optical Mie res-
onances5–7. When these resonators scatter light into the same 
free-space optical modes, a non-Hermitian coupling results 
that affords highly sensitive angle determination. By straight-
forward photocurrent measurements, we can independently 
quantify the stored optical energy in each nanowire and relate 
the difference in the stored energy between the wires to the 
incident angle of a light wave. We exploit this effect to fabri-
cate a subwavelength angle-sensitive pixel with angular sen-
sitivity, δ​θ = 0.32°.

The pixels in a conventional imaging chip detect only the inten-
sity of light, and all phase information is lost. While the intensity 
information alone is sufficient for traditional applications, such as 
photography, this limitation becomes apparent in advanced imag-
ing tasks. For example, a light field camera can use information 
from different incident angles to refocus an image even after it is 
taken8–10. A measurement of the incident angle is typically achieved 
by combining bulky optical components such as lenses or gratings 
with photodetecting pixels. These elements are expensive to assem-
ble, and only recently have angle-sensitive pixels successfully been 
integrated into a CMOS architecture11,12. Their minimum size was 
limited to several micrometres, as their operation relies on the use 
of multi-period gratings. With current scaling trends for imaging 
systems, the size of pixels is rapidly approaching the optical wave-
length λ0. This has prompted the intriguing question of whether 
angle-sensing pixels can be realized at this length scale or even 
below. Approaches based on conventional optical elements cannot 
be miniaturized indefinitely because diffraction results in a decrease 
in accuracy. Figure 1a illustrates this point for a lens-based system 
in which the incident angle θ is measured by focusing light from 
different directions to distinct spatial locations. The measurement 
accuracy is reduced by the diffraction-limited spot size in the focus, 
which scales inversely with the lens diameter d as Δ​θ ~ λ0/dcosθ 
(Supplementary Section 1). Consequently, when d falls below λ0, 

the accuracy degrades severely. This accuracy can be quantified in 
terms of a minimum detectable angle change δ​θ that is ultimately 
limited by the presence of noise.

The directional sensing of sounds for small animals with two 
independent ears is also fundamentally limited. The interaural time 
difference for the arrival of sound waves simply becomes too small 
to detect directly from the timing between neural spikes13, and the 
interaural intensity difference diminishes as the shadow of a sub-
wavelength body is blurred by wave diffraction. Instead, some ani-
mals rely on acoustic coupling of their ears to achieve directional 
hearing. For example, the gecko uses a tunnel through the head to 
acoustically couple its eardrums (Fig. 1b)14,15. Acoustic simulations 
suggest that this coupling greatly amplifies interaural differences16,17.

Our proposed optical analogue for the small animal auditory 
system consists of two closely spaced Si nanowires serving as optical 
resonators (Fig. 2a). We use coupled mode theory to model the sig-
nal amplitudes a1,2 initially assuming that each wire supports single 
resonant modes that are coupled to the free-space continuum as18–20
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 is the usual Hamiltonian for a 

pair of two independent resonators, with ω0 and γ being the reso-
nant frequency and the decay rate, respectively. The non-Hermitian 
Hamiltonian 
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c
 treats the far-field coupling of the resona

tors via the radiation continuum (that is open, leakage channels). 
The coupling strength is quantified by γc =​ γr +​ iγi, where γr and γi 
describe the real and imaginary part of the coupling strength. The 
magnitude of γr quantifies the exchange of virtual photons21, that is, 
energy that does not escape to the far-field or reactive power. The 
imaginary part γi quantifies the radiation leakage from the resona-
tors into the same optical mode(s) of the continuum for this open 
system22. This type of coupling is also at the origin of super- and 
sub-radiance seen for a collection of quantum emitters and con-
ceptually linked to constructive or destructive interference of the 
radiation from the emitters/resonators in the far-field23. This non-
Hermitian coupling makes it possible for the angle of the incident 
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light to manipulate the local energy storage in the resonators and 
at a deep subwavelength scale. It does so by pumping energy into 
the two resonators with a flux S(θ) and coupling rate κθ. The angle 
comes in as it controls the phase ∓ π θ

λ
i dsin( )  of the excitation wave at 

the locations of each resonator. When two resonators are far away 
from each other (d ≫​ λ0), there is no far-field coupling (γc =​ 0) and 
the phase of the excitation wave does not impact the energy dis-
tribution in the wires. As a results, the energies in the two reso-
nators are always the same—that is, ∣ ∣ = ∣ ∣a a1

2
2

2, regardless of the 
incident angle (black line in Fig. 2b). In contrast, when the reso-
nator spacing is reduced to d ≤​ λ0, there is a non-Hermitian cou-
pling γc ≠​ 0, resulting in a strong angular response to the incident 
light (red line in Fig. 2b). The ratio of the amplitudes in the two 
resonators provides an unambiguous way to determine the incident 
angle. The angular response is a result of coherent superposition of 
super- and sub-radiant modes, which is explained in more details 
in Supplementary Section 2. Without resonance, angle sensing does 
not work (Supplementary Section 3).

We implemented the direction-sensing pixel using two Si 
nanowires on a SiO2 substrate, as schematically shown in Fig. 2c. 
Both the width and height of the nanowires are 100 nm. Despite 
their subwavelength size, each wire supports several resonances 
in the visible spectral regime5,6,24,25. The field profiles for the trans-
verse magnetic (TM, with magnetic field transverse to the nanowire 
axis) and transverse electric (TE, with electric field transverse to 
the nanowire axis) resonances are shown in Supplementary Section 
5. Whereas the example above describes the simplified case where 
each nanowire supports a single mode at the illumination frequency, 
it is important to note that some modes can be doubly degenerate. 
In those cases, coupled mode theory needs to include four modes 
(Supplementary Section 6).

Using full-wave simulations of Maxwell’s equations, we exam-
ined how the light absorption in the nanowires changes with 
illumination direction. The local absorption in the nanowires is cal-
culated by computing σ ω ∣ ∣E( ) 2, where σ(ω) is the conductivity at 
the angular frequency ω and E is the electric field. The illumination 
wavelength is fixed at 550 nm, with the incident electric field polar-
ized along the nanowire, causing excitation of the doubly degener-
ate, second-order TM2 mode. We first set the spacing to be 100 nm, 
for which strong coupling is expected. Indeed, the absorption  

difference shows a strong angular dependence (red line in  
Fig. 2d). The maximum contrast ratio for the absorption is around 
3. Figure 3a shows the spatial distribution of the absorption for dif-
ferent incident angles. The bright red (dark blue) colour indicates 
strong (weak) absorption. Under normal incidence at θ =​ 0°, the 
two nanowires display identical absorption profiles. The flow of 
light changes to concentrate more light in one wire when the inci-
dent angle is tilted away from the normal. Figure 2c shows the cal-
culated flow lines of the Poynting vector (black lines) to illustrate 
the flow of light when light is incident from the left at a 45° angle. 
The resonator on the left effectively casts a shadow and reduces the 
absorption in the other wire. The extent of the shadow, quantified 
by the absorption cross-section, can often be much larger than the 
resonator’s geometrical size26. This mechanism of angle sensing is 
substantially different from that used in radiofrequency direction 
finding (for more discussion see Supplementary Section 7).

For a larger spacing (d =​ 2 μ​m), the coupling γc is eliminated and 
no absorption difference between the wires is observed at any inci-
dent angle (black line in Fig. 2d). Figure 3d show how the larger 
spacing results in the same absorption σ ω ∣ ∣E( ) 2 profile in each 
resonator, irrespective of the incident angle.

Figure 4a presents a schematic of a fabricated device. Gold elec-
trodes cover the ends of each nanowire to form two photodetectors. 
These photodetectors are electrically isolated from each other, but 
optically coupled. The difference in photocurrent from each wire is 
proportional to the difference in light absorption. Figure 4b shows 
a scanning electron microscope (SEM) image of the device. The 
inset shows a close-up view of the nanowires (see Supplementary 
Section 8 for nanowires with shorter length). Each nanowire 
forms a photoconductive detector whose resistance changes on 
illumination. The voltage–current relation shows good ohmic 
contacts (Supplementary Fig. 16). To characterize the optical reso-
nances supported by the wires, we measured responsivity spectra  
(Fig. 4c,d) using normally incident light and for TM and TE polar-
ization. The spectra show enhanced absorption near the TM2 and 
TE1 resonance wavelengths, where the subscripts label the order 
number of the resonance as determined by the number of field 
antinodes. The field distributions for these resonances are shown 
as insets. The responsivity of the nanowires is discussed further in 
Supplementary Section 9.

We measured the angular response at a wavelength of 550 nm. For 
TM polarization, the photocurrent ratio increases from 1 to 3 as the 
incident angle increases from 0° to 70° (Fig. 4e). For TE polarization, 
the photocurrent ratio increases monotonically up to 45° (Fig. 4f). 
In both cases, the experimental results agree well with the full-wave 
simulations (solid lines in Fig. 4e,f). The peak in Fig. 4f is created by 
the unique radiation profile of the TE superradiant eigenstate (for a 
detailed explanation see Supplementary Section 11). This detector 
can work for unpolarized light by confining the field of view (FOV) 
to ±​45°, which is sufficient for many applications.

One immediate application of angular photodetectors is trian-
gulation. As a demonstration, we used two angle-sensing photode-
tectors to triangulate the position of a light-emitting diode (LED). 
A top-view photograph of the experimental set-up is shown in  
Fig. 5a. This shows the photodetectors and LED placed in the same 
horizontal plane. The LED light source has a centre wavelength of 
520 nm. A chopper is used together with a lock-in amplifier to mea-
sure the photocurrent. Two angle-sensing detectors are mounted on 
two chips separated by 50 mm. A top-view schematic is shown in 
Fig. 5b. All coordinates are in millimetres. Using triangulation, the 
location of the LED during movement, including both the lateral 
position x and depth y, can be obtained.

In the experiment, we first characterized the angular response of 
an individual angle-sensing photodetector under LED illumination 
up to angles of ±​30°. A monotonic angular profile was obtained (red 
line in Fig. 5c), in agreement with the full-wave simulation results 
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Fig. 1 | Angle sensing in optics using a lens and the internally coupled 
ears of a small animal. a, Concept of incident angle detection using 
a lens with a diameter d that produces a finite-sized spot in its focal 
plane with illumination with an off-axis, collimated beam. The angular 
spread Δ​θ resulting from diffraction limits the minimum detectable 
angle change given a limited signal-to-noise ratio (SNR) in a real 
optical measurement. b, Head structure of a gecko showing internal 
coupling between two eardrums. The distance d between two ears is 
typically 1–2 cm for most lizards and thus on a subwavelength scale with 
respect to audible sound wavelengths (8.5–34 cm)14. Credit: marima/
Shutterstock.com
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(black line in Fig. 5c) for unpolarized light. Using the experimental  
curve as the calibration, we measure the incident angles θ1,2 of the 
light and then used trigonometry to estimate the location of the 
LED (Supplementary Section 12). Black markers in Fig. 5b show the 
calculated LED positions, and red markers show the true locations. 
The triangulation provides an excellent measurement of the loca-
tion of the light source.

Compared to existing depth sensing methods based on time-of-
flight or stereo cameras27, angular photodetectors provide a much 
simpler solution to depth sensing. This can reach centimetre accu-
racy for a range up to 10 m (see Supplementary Section 13 for the 
calculation), which is comparable to leading commercial depth sen-
sors28. More importantly, it does not use any lenses or require time 
synchronization.

The minimum detectable angle change is determined by the  
contrast ratio for the photocurrent as well as the signal-to-noise  
ratio (SNR) of the photodetector. For near-normal incidence, the 
minimum detectable angle change can be calculated as θδ = θ

−R
2

SNR 1
max

max
 

assuming a linear angular dependence that has a dynamic range 
up to θmax and a maximum contrast ratio of Rmax (see derivation in 
Supplementary Section 14). In our measurement, we obtained a 
maximum SNR of 28 dB by using a lock-in amplifier and averaging 
over multiple measurements. This SNR leads to a δ​θ of 0.32°. Our 
detectors are photoconductors, which are known to have high noise 
levels. Future experiments could employ photodiodes together 
with integrated amplification circuits to greatly reduce noise. For 
example, using CMOS image sensing technology, a typical SNR of 
43.4 dB (as in ref. 29) can be reached and this leads to a δ​θ of 0.009°.

Because the geometry of the two nanowires is a faithful imita-
tion of the coupled ears of small animals, it also inherits the same 
limitations found in the biological world, including a limited opera-
tional bandwidth, lack of full azimuth and elevation angle capabil-
ity, and a difficulty in differentiating multiple incoming waves. The  

limitations of these natural designs can be overcome. For exam-
ple, by using two pairs of angle detectors orientated orthogonally, 
one can detect both azimuth and elevation angles (Supplementary 
Section 15). One can also use multiple (instead of two) resonant 
detectors to expand the bandwidth of operation and to differentiate 
multiple incident waves. When densely fabricated in arrays, these 
resonance-based angle sensors also need to be spaced by a mini-
mum distance to avoid inter-pixel coupling, an effect that is further 
discussed in Supplementary Section 16.

With this newly accessible information about the intrinsic prop-
erties of light, angle-sensing pixels can be created for imaging chips 
that enable a wide variety of new applications for advanced light 
sensing. For example, the angular information of light may provide 
better scene awareness for autonomous vehicles and in robotics. 
Furthermore, electrically isolated and optically coupled photode-
tectors could further be made to perform multimodal sensing for 
polarization and wavelength. These light sensors extract highly 
specific information from the environment and could become per-
vasive in next-generation smart optoelectronic and artificial intel-
ligence systems.
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Fig. 5 | Measurement set-up and experimental results for lens-less positioning. a, Two angle-sensing detectors mounted on two separate chips are 
placed 50 mm away from each other in the x direction. An LED light source embedded in a hemispherical glass lens with a diameter of 5.6 mm is placed 
100 mm away in the y direction from two angle-sensing detectors. A chopper and a lock-in amplifier is used to measure the photocurrent of nanowires in 
two angle-sensing detectors. Measurements are carried out at six different LED locations separated 1 cm equally from neighbouring locations. Grid paper 
with 1 cm squares is placed on the bottom as a scale. b, LED position uncertainty in the x and y directions for six discrete measurements in the 2D plane, 
where the red dots represent the true location of the LED light source. Error bars are generated using 50 measurements at each location with a propagation 
of uncertainty method. The LED is assumed to be a point source for calculations. c, Full-wave simulation and experimentally measured photocurrent ratio 
under unpolarized light. Error bars were generated based on 100 measurements in each location. The average length of the error bars is 0.006.
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Methods
For the fabrication of the subwavelength angle-sensing photodetector, a lightly 
n-doped poly-Si was deposited on a SiO2 substrate using low-pressure chemical 
vapour deposition (LPCVD). Electron beam lithography was used to define the 

nanowires followed by dry etch using a Cr mask to etch down the Si layer and 
create Si nanowires. Au contacts were made using electron-beam lithography to 
define the patterns followed by Au deposition using electron-beam physical vapour 
deposition.
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Section 1. The role of diffraction in reducing the accuracy of an angle 
measurement with a finite-sized lens  

When an aperture having a finite size is used to focus a beam, light will exhibit diffraction due to 
the finite size of the lens’ aperture. As a result, a focused beam will have a finite spot size that 
corresponds to a spread in angle (Δ𝜃ሻ as seen in Fig. S1.  

 
Fig. S1 Schematic of an incident-angle detection scheme using a lens. 𝑑 is the diameter of the lens and 
∆𝜃 is limited by the spot size of the focus. 

For a lens having a diameter d as in Fig. S1, there will be a spread in the wavenumber in the 
x-direction due to the finite size of the lens: 

Δ𝑘௫ ൌ
2𝜋
𝑑

                                                                      ሺS1ሻ 

𝑘௫ can be expressed using the free-space wavenumber 𝑘଴ and incident angle 𝜃 as: 

𝑘௫ ൌ 𝑘଴𝑠𝑖𝑛𝜃                                                                  ሺS2ሻ 

The differential form of Eq. S2 with respect to 𝜃 can be written as: 

Δ𝑘௫ ൌ 𝑘଴𝑐𝑜𝑠𝜃 Δ𝜃                                                              ሺS3ሻ 

Substituting Δ𝑘௫ in Eq. S1 into Δ𝑘௫ in Eq. S3 and replacing 𝑘଴ with 2𝜋/𝜆଴ gives: 

2𝜋
𝑑

ൌ
2𝜋
𝜆଴

𝑐𝑜𝑠𝜃 Δ𝜃                                                              ሺS4ሻ 

Thus, an angular spread  Δ𝜃 can be expressed as: 

Δ𝜃 ൌ
𝜆଴

𝑑𝑐𝑜𝑠𝜃
                                                                   ሺS5ሻ 

In a real optical measurement, the number of collected photons is limited and this results in a lack 
of contrast between closely-spaced focal spots produced by incident plane waves with incident 
angles that differ by Δ𝜃.  In other words, the angular resolution is limited. Similar arguments led 
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to the Rayleigh criterion, which states that a lens with an aperture size of d could not differentiate 
two plane waves if the incident angle difference is less than  

Δ𝜃 ൌ 1.22 ఒబ

ௗ
                                                            (S6) 

  

Section 2-a. Coupled mode theory describing two single mode resonators 

We start by modeling the simple case of two single-mode resonators coupled to the free-space 
continuum as [1-3]: 

𝑖 ௗ

ௗ௧
ቀ

𝑎ଵ
𝑎ଶ

ቁ ൌ 𝐻଴ ቀ
𝑎ଵ
𝑎ଶ

ቁ ൅ 𝐻௜ ቀ
𝑎ଵ
𝑎ଶ

ቁ ൅ 𝑖𝜅ఏ𝑆ሺ𝜃ሻ ൬
expሺെ𝑖𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑/𝜆ሻ
expሺ𝑖𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑/𝜆ሻ

൰  (S7) 

where ห𝑎ଵ,ଶห
ଶ

 is normalized to represent the stored energy in the resonators. 𝐻଴ ൌ

൬
𝜔଴ െ 𝑖𝛾 0

0 𝜔଴ െ 𝑖𝛾൰ is the usual Hamiltonian for a pair of two independent resonators with 𝜔଴ 

and 𝛾 being the resonant frequency and the decay rate, respectively. The incident light, whose flux 
is represented by 𝑆ሺ𝜃ሻ, pumps energy into two resonators with an effectiveness determined by a 

coupling rate 𝜅ఏ. It is important to note that the phases ∓ ௜గ ௦௜௡ሺఏሻௗ

ఒ
 of the excitation wave at the 

relevant location of each resonator are different because of their spatial separation. A similar 
coupled mode theory can be derived for coupled acoustic resonators [4] as shown in the SI section 
2-e. 

We turn our focus to the non-Hermitian Hamiltonian 𝐻௜ ൌ ൬
0 𝛾௖
𝛾௖ 0 ൰ , which facilitates an 

angularly-dependent response. The coupling strength is quantified by γୡ ൌ γ௥ ൅ 𝑖γ௜, where γ௥ and 
γ௜ describe the real and the imaginary part of the coupling strength, respectively (see derivation of 
real and imaginary part of coupling coefficients in SI section 2-c). The real part 𝛾௥ is governed by 
the exchange of virtual photons [5], while the imaginary part 𝛾௜ arises when localized resonators 
couple to the same optical mode(s) in the continuum in an open system [6], a conceptually similar 
origin as the super and subradiance seen for a collection of quantum emitters [7-10]. This non-
Hermitian coupling allows the incident light to manipulate the local storage of resonant energy at 
a deep subwavelength scale. For example, Ref [6] shows the spectral resolving capability using 
non-Hermitian interaction. 

Next, we discuss how the imaginary part of the coupling gives rise to an angularly-dependent 
response. The mathematical framework that leads to Eq. S7 allows for a straightforward 
calculation of the energy storage in the individual nanowires, which is needed to predict the 
photocurrent generation in each wire. However, to understand the angle-dependence of the 
photoresponse, it is more insightful to describe the system in terms the superradiant and subradiant 
eigenstates supported by the optically-coupled pair of nanowires. We illustrate this point for two 
electric dipole resonators that oscillate in phase for the even, superradiant eigenstate and 180◦ out-
of-phase for the odd, subradiant eigenstate. The distinct symmetry of these eigenstates naturally 
gives rise to the different angular radiation patterns shown in Fig. S2. By reciprocity, when light 
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is incident from different angles, the excitation amplitudes of the super and subradiant are also 
different. For illumination at normal incidence, only the superradiant eigenstate is excited and thus 
the two resonators have equal amplitudes. When the incident light tilts away from the normal, the 
subradiant eigenstate can also be excited. When both even and odd eigenstate are excited 
simultaneously, their fields amplitude will add constructively in one wire and negate each other in 
the other wire. In other words, the energy is redistributed between the wires to make the 
photocurrent generation in one wire more effective. As the odd eigenstate is subradiant and 
features a higher radiation Q than the even, superradiant eigenstate, the energy storage in this state 
can become significant with minor tilting of the incident beam. Naively, it is expected that a 
smaller spacing will give rise to stronger 𝛾௜ and thus a greater angular response. However, 𝛾௥ also 
increases with smaller spacing and this coupling cannot be larger than the bandwidth of the 
resonators to avoid a detrimental splitting of the Eigen-frequencies of the super and subradiant 
eigenstates. On the other hand, the imaginary part of the coupling never splits the Eigen-frequency 
and can take any large value.  

 

Fig. S2 Example of the angular profile (blue curves) and the phase configuration of the radiation of 
the super and subradiant eigenstates for the case of electric dipole radiators. Here we assume the spacing 
between the two is much smaller (0.1 𝜆଴ሻ than wavelength. Red and blue are used to indicate a phase 
difference of 𝜋. 

 

Section 2-b. Working principle of an angular sensing capability in coupled 
resonators 

As we discussed in the main text, the non-Hermitian coupling between coupled resonators 
facilitates angular sensing. In this section, we will discuss the underlying principle in detail using 
coupled mode theory. 

Two resonators coupled to the free-space continuum can be modelled using coupled mode theory 
as [11-13]  

𝑖
𝑑
𝑑𝑡

ቀ
𝑎ଵ
𝑎ଶ

ቁ ൌ ൬
𝜔଴ െ 𝑖𝛾 0

0 𝜔଴ െ 𝑖𝛾൰ ቀ
𝑎ଵ
𝑎ଶ

ቁ ൅ ൬
0 𝛾௖
𝛾௖ 0 ൰ ቀ

𝑎ଵ
𝑎ଶ

ቁ 

൅𝑖𝜅ఏ𝑆ሺ𝜃ሻ ൬
expሺെ𝑖𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑/𝜆ሻ
expሺ𝑖𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑/𝜆ሻ

൰                                             ሺS8ሻ 
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where ห𝑎ଵ,ଶห
ଶ

 is normalized to represent the energy of the resonant modes. 𝜔଴  and 𝛾  are the 
resonant frequency and the decay rate, respectively. The non-Hermitian coupling strength is given 
by 𝛾௖ ൌ 𝛾௥ ൅ 𝑖𝛾௜, where 𝛾௥ and 𝛾௜ quantify the strength of the real and the imaginary parts of the 
coupling strength, respectively. The incident light, whose flux is represented by 𝑆ሺ𝜃ሻ, pumps 
energy into two resonators with an effectiveness determined by a coupling rate 𝜅ఏ . The 
phases∓𝑖𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑/𝜆  for the two resonators are different based on their spatial separation.  

Under a steady-state excitation with an angular frequency of 𝜔, we can elect to write the amplitude 
for each resonator mode as a superposition of the superradiant and subradiant eigenstates.  

ቀ
𝑎ଵ
𝑎ଶ

ቁ ൌ 𝛼ሺ𝜔, 𝜃ሻ ቀ1
1

ቁ ൅ 𝛽ሺ𝜔, 𝜃ሻ ቀെ1
1

ቁ                                             ሺS9ሻ 

where ቀ1
1

ቁ and ቀെ1
1

ቁ represent the in-phase superradiant and out-of-phase subradiant eigenstates, 

respectively. Here 𝛼ሺ𝜔, 𝜃ሻ  and 𝛽ሺ𝜔, 𝜃ሻ  are the amplitudes of the in-phase and out-of-phase 
eigenstates, respectively. They are given by: 

𝛼ሺ𝜔, 𝜃ሻ ൌ
𝑖𝜅ఏ𝑆ሺ𝜃ሻ𝑐𝑜𝑠ሺ𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑

𝜆 ሻ

𝜔 െ 𝜔଴ ൅ 𝑖𝛾 െ 𝛾௥ െ 𝑖𝛾௜
                                            ሺS10aሻ 

𝛽ሺ𝜔, 𝜃ሻ ൌ
െ𝜅ఏ𝑆ሺ𝜃ሻ sin ൬

𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑
𝜆 ൰

𝜔 െ 𝜔଴ ൅ 𝑖𝛾 ൅ 𝛾௥ ൅ 𝑖𝛾௜
                                            ሺS10bሻ 

The energy in the two resonators | 𝑎ଵ|ଶ and | 𝑎ଶ|ଶ can be written as: 

| 𝑎ଵ|ଶ ൌ |𝛼ሺ𝜔, 𝜃ሻ|ଶ ൅ |𝛽ሺ𝜔, 𝜃ሻ|ଶ െ 2|𝛼ሺ𝜔, 𝜃ሻ𝛽ሺ𝜔, 𝜃ሻ|cos ሺ∆𝜙ሻ               ሺS11aሻ 

| 𝑎ଶ|ଶ ൌ |𝛼ሺ𝜔, 𝜃ሻ|ଶ ൅ |𝛽ሺ𝜔, 𝜃ሻ|ଶ ൅ 2|𝛼ሺ𝜔, 𝜃ሻ𝛽ሺ𝜔, 𝜃ሻ|cos ሺ∆𝜙ሻ               ሺS11bሻ 

Here ∆𝜙  is the phase difference between 𝛼ሺ𝜔, 𝜃ሻ  and 𝛽ሺ𝜔, 𝜃ሻ .When the two resonators are 
completely decoupled, i.e. 𝛾௥ ൌ 0 and 𝛾௜ ൌ 0, the phase difference between the two eigenstates is 
always ∆𝜙 ൌ 𝜋/2, independent of the excitation frequency (dashed black line in Fig. S3a). This 
phase difference simply results from having even (cosine-like) and odd (sine-like) modes. Without 
any form of coupling, this value of ∆𝜙 is also independent of the incident angle. Since the energy 
difference between the resonators is given by 4|𝛼ሺ𝜔, 𝜃ሻ𝛽ሺ𝜔, 𝜃ሻ| cosሺ∆𝜙ሻ, the value of ∆𝜙 ൌ 𝜋/2 
results in equal stored energy in the two resonators. This is intuitively expected for identical 
resonators without any type of optical coupling. 

On the other hand, when the two resonators are coupled together, the phase difference generally 
deviates from 𝜋/2.  Generally, both real and imaginary parts of coupling are present. In Fig. S3a 
we show the case where 𝛾௥ ൌ െ0.5𝛾  and 𝛾௜ ൌ 0.5𝛾 . In contrast to the case without coupling 
(dashed line), we have a phase difference close to 𝜋 around the Eigen-frequency, resulting in very 
strong angular response (See Fig. S3b). 
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Fig. S3 Phase difference and contrast ratio of two resonators. (a) Phase difference for different amounts 
of frequency detuning from resonance (𝛥𝜔 ൌ 𝜔 െ 𝜔଴). Here 𝛾 is the intrinsic decay rate of an individual 
resonator. The dashed line indicates the case without coupling, i.e. 𝛾௜ ൌ 0 and 𝛾௥ ൌ 0. The solid line indicates 
a case with both non-zero real and imaginary parts of the coupling strength, i.e. 𝛾௜ ൌ െ0.5γ and 𝛾௥ ൌ 0.5γ. 
(b) Contrast ratio at the maximum phase difference, which is marked in (a) by the red dot. The coupling 
provides a way to unambiguously determine the incident angle of a light beam. 

Next, we elucidate the different ways in which the real and the imaginary parts of the coupling 
change our ability to determine the angle of an incident beam. This intimately linked to the way in 
which the coupling can modify the phase difference between the superradiant and subradiant 
eigenstates. In general, as the frequency of the excitation wave sweeps across an Eigen-frequency, 
the phase of the eigenstate incurs a 𝜋 phase swing, starting from 0 far below the Eigen-frequency, 
gradually increasing to 𝜋/2 at the Eigen-frequency, and then eventually to 𝜋 at frequencies far 
above the Eigen-frequency. As the frequency is increased, the amplitude also changes and reaches 
a maximum value at the resonance frequency. Figure S4a shows the characteristic phase evolution 
for the superradiant 𝛼ሺ𝜔, 𝜃ሻ  and subradiant 𝛽ሺ𝜔, 𝜃ሻ  Eigenstates if we assume no coupling 
between the resonators, i.e.   |𝛾௜| ൌ |𝛾௥| ൌ 0 . Here, we offset the phase 𝛼ሺ𝜔, 𝜃ሻ  by  𝜋/2  to 
emphasize that the phase of 𝛽ሺ𝜔, 𝜃ሻ progresses in exactly the same manner. This results in a 
constant phase difference between the two at all frequencies (Fig. S4d). This is expected as both 
Eigenstates have the same resonant frequency and the same bandwidth. As ∆𝜙 ൌ 𝜋/2 , each 
resonator features the same stored energy. 

The coupling breaks this constant 𝜋/2 phase difference. In an open system, both the real and the 
imaginary parts of the coupling are generally non-zero, which makes the system non-Hermitian. 
To understand their different impact, we first look at the role of the imaginary part of the coupling 
𝛾௜ by choosing a case where |𝛾௜| ≫ |𝛾௥|. The imaginary part of the coupling does not break the 
energy degeneracy between the superradiant and subradiant Eigenstates. However, this coupling 
does change the bandwidth over which the π phase evolution occurs. The in-phase superradiant 
eigenstate decays more quickly at the rate  𝛾 െ 𝛾௜ and shows a faster phase evolution whereas the 
out-of-phase subradiant eigenstate decays more slowly at the rate  𝛾 ൅ 𝛾௜ and displays a slower 
phase evolution. Note 𝛾௜  is mostly negative for deep subwavelength spacing (see Fig. S8a for 
example). The resulting difference in the phase evolution (Fig. S4b) results in a spectral regime 
where the phase difference between the two Eigenstates can approach 𝜋, or 0 (Fig. S4e). Such 
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phase differences result in a redistribution of the energy between the resonators and produce an 
angular response.  

 

Fig. S4 Phase analysis of superradiant and subradiant Eigenstates. (a)-(c) Phases of the even and odd 
Eigenstates (a) without coupling, (b) when the imaginary part of coupling dominates, and (c) when the real 
part of coupling dominates. Note the phase of the in-phase eigenstate is always offset by 𝜋/2 for better 
visualization. Lines are the phase of superradiant Eigenstate while circles are for subradiant one. (d)-(f) Phase 
differences between the eigenstates (d) without coupling, (e) when the imaginary part of coupling is 
dominated, and (f) when the real part of coupling is dominated. Without coupling, the phase difference is 
always 𝜋/2. In great contrast, the couplings deviate the phase difference from 𝜋/2 by either changing the 
bandwidth (e) or shifting Eigen-frequency (f). 

Next, we look at the impact of the real part of the coupling by choosing a case with |𝛾௥| ≫ |𝛾௜|. 
The real part of the coupling lifts the energy degeneracy between superradiant and subradiant 
Eigenstates. The Eigen-frequency of the superradiant eigenstate becomes 𝜔଴ ൅ 𝛾௥, whereas that of 
the subradiant Eigenstate becomes 𝜔଴ െ 𝛾௥. These Eigen-frequencies are the centers of the phase 
swing as shown by the stars in Fig. S4c. The lifting of the degeneracy splits the two phase evolution 
curves and this also results in a spectral regime where the phase difference deviates significantly 
from 𝜋/2 (Fig. S4f). However, the real part of the coupling cannot be much stronger than the 
bandwidth of the resonators, in which case the two Eigenstates energies are split so far that 
interference effects become weak. 
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Section 2-c. Coupled mode theory: Calculation of the real and the imaginary 
parts of coupling coefficients 

In this section, we show the calculation of the real and the imaginary parts of coupling coefficients 
between two coupled resonant modes in detail.  

The imaginary part of coupling coefficient: The imaginary part of coupling measures the 
indirect interaction between the resonant modes, where photons radiated by one of the resonant 
modes coupled back to the other resonant modes through the continuum. This is often referred as 
real-photon interaction in quantum electrodynamics [14-15]. In the absence of excitation light and 
absorption loss, the coupled mode equation for two coupled resonant modes is:  

𝑖
𝑑
𝑑𝑡

ቀ
𝑎ଵ
𝑎ଶ

ቁ ൌ ൬
𝜔଴ െ 𝑖𝛾 0

0 𝜔଴ െ 𝑖𝛾൰ ቀ
𝑎ଵ
𝑎ଶ

ቁ ൅ ൬
0 𝛾௥ ൅ 𝑖𝛾௜

𝛾௥ ൅ 𝑖𝛾௜ 0 ൰ ቀ
𝑎ଵ
𝑎ଶ

ቁ          ሺS12ሻ 

Here a1 and a2 are the resonant amplitudes. ห𝑎ଵ,ଶห
ଶ
 is normalized to represent the energy of the 

resonant modes. 𝛾 is the radiative decay rate of the resonant modes. The amplitudes of a resonant 
mode decays into the continuum due to coupling to outgoing plane waves. The radiating field can 
be described by the superposition of many plane waves. The amplitude of the plane wave 
propagating in the 𝜃 direction is given by:  

𝑆௥௔ௗሺ𝜃ሻ ൌ 𝜅ఏ൫𝑒௜గ ௦௜௡ሺఏሻௗ
ఒ 𝑒ି௜గ ௦௜௡ሺఏሻௗ

ఒ ൯ ቀ
𝑎ଵ
𝑎ଶ

ቁ                            ሺS13ሻ 

where 𝜅ఏ is the coupling rate of the resonant amplitude due to radiation to the continuum and 
|𝑆௥௔ௗ|ଶ is the power. Each different multipolar mode will feature a different angular dependence 
for 𝜅ఏ. The units for 𝜅ఏ and |𝑆௥௔ௗ|ଶ are 1/sec and W, respectively. The total power radiated by the 
coupled resonator system can be calculated by integrating the power radiated by all the plane 
waves as: 

𝑃௥௔ௗ ൌ න 𝑑𝜃
గ

ିగ
𝑆௥௔ௗ

∗ ሺ𝜃ሻ𝑆௥௔ௗሺ𝜃ሻ 

ൌ ሺ𝑎ଵ
∗ 𝑎ଶ

∗ሻ

⎝

⎜
⎛

න 𝑑𝜃
గ

ିగ
𝜅ఏ

∗ 𝜅ఏ න 𝑑𝜃
గ

ିగ
𝜅ఏ

∗ 𝜅ఏ𝑒ି௜ଶగ ௦௜௡ሺఏሻௗ
ఒ

න 𝑑𝜃
గ

ିగ
𝜅ఏ

∗ 𝜅ఏ𝑒௜ଶగ ௦௜௡ሺఏሻௗ
ఒ න 𝑑𝜃

గ

ିగ
𝜅ఏ

∗ 𝜅ఏ
⎠

⎟
⎞

ቀ
𝑎ଵ
𝑎ଶ

ቁ 

ൌ ሺ𝑎ଵ
∗ 𝑎ଶ

∗ሻ

⎝

⎜
⎛

න 𝑑𝜃
గ

ିగ
𝜅ఏ

∗ 𝜅ఏ න 𝑑𝜃
గ

ିగ
𝜅ఏ

∗ 𝜅ఏ cos ቆ
2𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑

𝜆
ቇ

න 𝑑𝜃
గ

ିగ
𝜅ఏ

∗ 𝜅ఏ cos ቆ
2𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑

𝜆
ቇ න 𝑑𝜃

గ

ିగ
𝜅ఏ

∗ 𝜅ఏ
⎠

⎟
⎞

ቀ
𝑎ଵ
𝑎ଶ

ቁ     ሺS14ሻ 
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The diagonal term ׬ 𝑑𝜃
గ

ିగ 𝜅ఏ
∗ 𝜅ఏ indicates the radiative decay rate 𝛾 of the resonant mode. The off-

diagonal term ׬ 𝑑𝜃
గ

ିగ 𝜅ఏ
∗ 𝜅ఏ cos ቀଶగ ௦௜௡ሺఏሻௗ

ఒ
ቁ quantifies the degree of overlap between the far-field 

radiation patterns from the two neighboring resonators.  

On the other hand, the total radiation energy can also be calculated by examining the decay of 
energy in the resonators: 

𝑃௥௔ௗ ൌ െ
𝑑
𝑑𝑡

ቆሺ𝑎ଵ
∗ 𝑎ଶ

∗ሻ ቀ
𝑎ଵ
𝑎ଶ

ቁቇ ൌ െ ൭
𝑑
𝑑𝑡

ሺ𝑎ଵ
∗ 𝑎ଶ

∗ሻ൱ ቀ
𝑎ଵ
𝑎ଶ

ቁ െ ሺ𝑎ଵ
∗ 𝑎ଶ

∗ሻ
𝑑
𝑑𝑡

ቀ
𝑎ଵ
𝑎ଶ

ቁ 

ൌ െ𝑖ሺ𝑎ଵ
∗ 𝑎ଶ

∗ሻ ൬
𝜔଴ ൅ 𝑖𝛾∗ 𝛾௥ െ 𝑖𝛾௜

∗

𝛾௥ െ 𝑖𝛾௜
∗ 𝜔଴ ൅ 𝑖𝛾∗൰ ቀ

𝑎ଵ
𝑎ଶ

ቁ ൅ 𝑖ሺ𝑎ଵ
∗ 𝑎ଶ

∗ሻ ൬
𝜔଴ െ 𝑖𝛾 𝛾௥ ൅ 𝑖𝛾௜
𝛾௥ ൅ 𝑖𝛾௜ 𝜔଴ െ 𝑖𝛾൰ ቀ

𝑎ଵ
𝑎ଶ

ቁ 

ൌ ሺ𝑎ଵ
∗ 𝑎ଶ

∗ሻ ൬
𝛾 ൅ 𝛾∗ െ𝛾௜ െ 𝛾௜

∗

െ𝛾௜ െ 𝛾௜
∗ 𝛾 ൅ 𝛾∗ ൰ ቀ

𝑎ଵ
𝑎ଶ

ቁ  

ൌ ሺ𝑎ଵ
∗ 𝑎ଶ

∗ሻ ൬
2𝛾 െ2𝛾௜

െ2𝛾௜ 2𝛾 ൰ ቀ
𝑎ଵ
𝑎ଶ

ቁ                                           ሺS15ሻ 

By comparing Eq. S15 and Eq. S14, it’s straightforward to obtain: 

𝛾 ൌ
1
2

න 𝑑𝜃
గ

ିగ
𝜅ఏ

∗ 𝜅ఏ                                                              ሺS16aሻ 

𝛾௜ ൌ െ
1
2

න 𝑑𝜃
గ

ିగ
𝜅ఏ

∗ 𝜅ఏ cos ቆ
2𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑

𝜆
ቇ                                       ሺS16bሻ 

In order to calculate the imaginary part of coupling coefficients, it’s necessary to obtain the far-
field radiation pattern and the radiative decay rate 𝛾 of the resonant modes. As an example, we 
consider a pair of parallel nanowires as in the main text. The cross-sectional dimensions of the 
nanowires are 100 nm by 100 nm and the gap between them is also 100 nm. To make the discussion 
more concise, the refractive indices of the nanowires are fixed at 4 ൅ 𝑗0.025 and we assume they 
are embedded in free space. Each nanowire supports two degenerate TM modes at the same 
wavelength of 610 nm, i.e. the |𝐴௫⟩ and |𝐴௬ൿ modes. As shown in Fig. S5a, the |𝐴௫⟩ mode is a 
magnetic dipole along the x axis, which can be clearly seen by its field profile (top panel). Its far-
field ration pattern has a cosଶ𝜃 shape (bottom panel). The radiative decay rate 𝛾 is obtained by 
measuring the full width at half maximum (FWHM) of the absorption spectrum. We excited the 
|𝐴௫⟩ mode by putting line current sources in a single nanowire and calculating the spectrum of the 
absorbed power from FDFD simulation. The line current sources are carefully distributed 

according to the mode profile. The radiative decay rate 𝛾 then is obtained as 𝛾 ൌ ଵ

ଶ
𝐹𝑊𝐻𝑀 െ 𝛾௔, 

where the absorption rate  𝛾௔ can be calculated by integrating 𝜎ሺ𝜔ሻ|𝐸|ଶ in the structures where 
𝜎ሺ𝜔ሻ is the conductivity at the angular frequency 𝜔 and 𝐸 is the electric field. 

The decay rate 𝜅ఏ௫ for the |𝐴௫⟩ mode then is given by 𝜅ఏ௫ ൌ ටଶఊ

గ
cos 𝜃. The imaginary part of 

coupling coefficient for the |𝐴௫⟩ mode in our structures then can be calculated as:  
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𝛾௜௫ ൌ െ
1
2

න 𝑑𝜃
గ

ିగ
𝜅ఏ௫

∗ 𝜅ఏ௫ cos ቆ
2𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑

𝜆
ቇ 

          ൌ െ
𝛾
𝜋

න 𝑑𝜃
గ

ିగ
cosଶ 𝜃 cos ቆ

2𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑
𝜆

ቇ                                    ሺS17ሻ 

On the other hand, the |𝐴௬ൿ mode is a magnetic dipole along the y axis, which can also be clearly 

seen by its field profile in Fig. S5b. Its far-field radiation pattern has a sinଶ𝜃 shape and its decay 

rate 𝜅ఏ௬ is given by 𝜅ఏ௬ ൌ ටଶఊ

గ
sin 𝜃. Similarly, the imaginary part of coupling coefficient for the 

|𝐴௬ൿ mode in our structures can be calculated as: 

𝛾௜௬ ൌ െ
1
2

න 𝑑𝜃
గ

ିగ
𝜅ఏ௬

∗ 𝜅ఏ௬ cos ቆ
2𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑

𝜆
ቇ 

          ൌ െ
𝛾
𝜋

න 𝑑𝜃
గ

ିగ
sinଶ 𝜃 cos ቆ

2𝜋 𝑠𝑖𝑛ሺ𝜃ሻ 𝑑
𝜆

ቇ                                     ሺS18ሻ 

Note the imaginary part of coupling between the |𝐴௫⟩  mode and the |𝐴௬ൿ  mode in different 

nanowires is zero, which can be directly shown as ׬ 𝑑𝜃
గ

ିగ sin 𝜃 cos 𝜃 cos ቀଶగ ௦௜௡ሺఏሻௗ

ఒ
ቁ ൌ 0. 

 

Fig. S5 Far-field radiation patterns for the |𝑨𝒙⟩ and |𝑨𝒚ൿ modes. (a) The |𝐴௫⟩ mode is a magnetic dipole 
in the x direction (gray arrow), whose electric field distribution is shown in the upper panel. Its far-field 
emission profile has a 𝑐𝑜𝑠ଶ𝜃 shape, which can be seen by comparing the analytic curve (black solid line) and 
FDFD simulation (red circles) in the lower panel. (b) The |𝐴௬ൿ mode is a magnetic dipole in the y direction 
(gray arrow), which has a 𝑠𝑖𝑛ଶ𝜃 shape far-field radiation profile. 
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The real part of coupling coefficient: The real part of coupling measures the direct interaction 
between the resonant modes, where the two resonant modes interact through virtual photons [14]. 
The real part of coupling coefficient between two coupled modes can be directly calculated from 
the overlapping of the resonant field distribution, which is given by the following equation [16] 

𝛾௥ ൌ
𝜔଴

4
׬ ׬ 𝑑𝑥௔𝑑𝑦௔ 𝜖௔ሺ𝑥, 𝑦ሻ𝑬𝒂

∗ ሺ𝑥, 𝑦ሻ ∙ 𝑬𝒃ሺ𝑥, 𝑦ሻ

׬ ׬ 𝑑𝑥𝑑𝑦
ஶ

ିஶ
ஶ

ିஶ
|𝑬𝒂ሺ𝑥, 𝑦ሻ|ଶ

                              ሺS19ሻ 

Here 𝑬𝒂ሺ𝑥, 𝑦ሻ and 𝑬𝒃ሺ𝑥, 𝑦ሻ are the resonant electric field from wire a and b, respectively. 𝜖ሺ𝑥, 𝑦ሻ 
is the relative dielectric function with only wire a in the space. The integral in the numerator is 
performed within the volume of wire a.  

 

Fig. S6 Resonant electric field distributions for the modes near each wire. We plot the |𝐴௫⟩ mode as an 
example. 

The real part of coupling coefficient can be quantified by using Finite-Difference Frequency-
Domain simulations of electric fields for the relevant resonant modes. These modes are excited by 
putting line current sources inside the nanowires (Fig. S6), where the line current sources are 
carefully distributed according to the mode profile. Then we perform the integral numerically to 
calculate the real part of coupling coefficients.  

 

Section 2-d. Coupled mode theory: derivation of the energy in coupled 
resonators in free space. 

We will solve the coupled-mode equation described by Eq. S7 to obtain the energy in resonators 
under illumination from different incident angles. Under steady-state excitation with an angular 
frequency 𝜔, Eq. S7 can be written as: 

൬
𝜔 െ 𝜔଴ ൅ 𝑖𝛾 െ𝛾௥ െ 𝑖𝛾௜

െ𝛾௥ െ 𝑖𝛾௜ 𝜔 െ 𝜔଴ ൅ 𝑖𝛾൰ ቀ
𝑎ଵ
𝑎ଶ

ቁ ൌ 𝑖𝜅ఏ𝑆ሺ𝜃ሻ ൭𝑒ି௜గ ௦௜௡ሺఏሻௗ
ఒ

𝑒௜గ ௦௜௡ሺఏሻௗ
ఒ

൱                 ሺS20ሻ 
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Therefore, we can get the resonance amplitude of the resonators as: 

ቀ
𝑎ଵ
𝑎ଶ

ቁ ൌ 𝑖𝜅ఏ𝑆ሺ𝜃ሻ ൬
𝜔 െ 𝜔଴ ൅ 𝑖𝛾 െ𝛾௥ െ 𝑖𝛾௜

െ𝛾௥ െ 𝑖𝛾௜ 𝜔 െ 𝜔଴ ൅ 𝑖𝛾൰
ିଵ

൬𝑒ି௜ఝ

𝑒௜ఝ ൰ 

ൌ
𝑖𝜅ఏ𝑆ሺ𝜃ሻ

ሺ𝜔 െ 𝜔଴ ൅ 𝑖𝛾ሻଶ ൅ ሺ𝛾௥ ൅ 𝑖𝛾௜ሻଶ ൬
𝜔 െ 𝜔଴ ൅ 𝑖𝛾 𝛾௥ ൅ 𝑖𝛾௜

𝛾௥ ൅ 𝑖𝛾௜ 𝜔 െ 𝜔଴ ൅ 𝑖𝛾൰ ൬𝑒ି௜ఝ

𝑒௜ఝ ൰ 

ൌ
𝑖𝜅ఏ𝑆ሺ𝜃ሻ

ሺ𝜔 െ 𝜔଴ ൅ 𝑖𝛾ሻଶ ൅ ሺ𝛾௥ ൅ 𝑖𝛾௜ሻଶ ቆ
ሺ𝜔 െ 𝜔଴ ൅ 𝑖𝛾ሻ𝑒ି௜ఝ ൅ ሺ𝛾௥ െ 𝑖𝛾௜ሻ𝑒௜ఝ

ሺ𝜔 െ 𝜔଴ ൅ 𝑖𝛾ሻ𝑒௜ఝ ൅ ሺ𝛾௥ െ 𝑖𝛾௜ሻ𝑒ି௜ఝቇ          ሺS21ሻ 

Here we define 𝜑 ൌ గ ௦௜௡ሺఏሻௗ

ఒ
 for simplification. The ratio between the resonator’s energies then is: 

ฬ
𝑎ଶ

𝑎ଵ
ฬ

ଶ

ൌ
ሺ𝜔 െ 𝜔଴ ൅ 𝛾௜ sin 2𝜑 ൅ 𝛾௥ cos 2𝜑ሻଶ ൅ ሺ𝛾 ൅ 𝛾௜ cos 2𝜑 െ 𝛾௥ sin 2𝜑ሻଶ

ሺ𝜔 െ 𝜔଴ െ 𝛾௜ sin 2𝜑 ൅ 𝛾௥ cos 2𝜑ሻଶ ൅ ሺ𝛾 ൅ 𝛾௜ cos 2𝜑 ൅ 𝛾௥ sin 2𝜑ሻଶ             ሺS22ሻ 

It’s straightforward to see that the ratio is always 1 if there is no coupling between the resonators, 
i.e. 𝛾௜ ൌ 0 and 𝛾௥ ൌ 0.  

 

Section 2-e. Coupled mode theory for acoustic resonators 

In this section, we show that coupled acoustic resonators also follow the same coupled mode theory. 
We follow the notation used in Ref [17]. Considering two identical acoustic resonators that are 
coupled to N scattering channels, the effective Hamiltonian is given by  

𝑯௘௙௙ ൌ ൬
𝐸଴ 0
0 𝐸଴

൰ െ 𝑖𝜋 ෍ ൬
𝑉௡
𝑉௡

൰

ே

௡ୀଵ

ሺ𝑉௡
∗ 𝑉௡

∗ሻ                                        ሺS23ሻ 

where 𝐸଴ is the eigenenergy of the resonator. 𝑉ଵ,௡ and 𝑉ଶ,௡ are the coupling coefficients of the 1st 
and 2nd resonator to the nth scattering channel, respectively.  

The general solution to the effective Hamiltonian can be written as: 

𝜓 ൌ 𝜒ଵ𝜙ଵ ൅ 𝜒ଶ𝜙ଶ ൅ ෍ 𝑓௡

ே

௡ୀଵ

                                                  ሺS24ሻ 

Here 𝜙ଵ and 𝜙ଶ are the eigenfunctions in the 1st and 2nd resonators, respectively. 𝜒ଵ and 𝜒ଶ are 
resonance amplitudes, respectively. The general solution of waves in each scattering channel is 
written as a superposition of incoming and outgoing waves [17]: 

𝑓௡ ൌ 𝑝௡𝑢௡ሺ𝜉ሻ𝑒௜௞೙క ൅ 𝑞௡𝑢௡ሺ𝜉ሻ𝑒ି௜௞೙క                                           ሺS25ሻ 

where 𝑝௡ and 𝑞௡ are the amplitudes of the incoming and outgoing waves, respectively. 𝑢௡ሺ𝜉ሻ is 
the eigen wavefunction in the nth scattering channel.  
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In order to find the resonance amplitudes 𝜒ଵ  and 𝜒ଶ , we can evaluate the scalar 
productsൻ𝜙௠ห𝑯௘௙௙ െ 𝐸ห𝜓ൿ ൌ 0, where m = 1, 2.  The scalar products lead us to a simple coupled 

mode equation for the resonance amplitudes 𝜒ଵ  and 𝜒ଶ . For the general case of two coupled 
acoustic resonators, it can be written in the matrix form as:   

൬
𝐸଴ െ 𝐸 െ 𝑖𝜋𝑔 0

0 𝐸଴ െ 𝐸 െ 𝑖𝜋𝑔൰ ቀ
𝜒ଵ
𝜒ଶ

ቁ െ  𝑖𝜋 ൬
0 𝑔௖

𝑔௖ 0 ൰ ቀ
𝜒ଵ
𝜒ଶ

ቁ 

ൌ െ𝑖2𝜋 ቆ
𝑉௜௡௖𝑝௜௡௖𝑒௜ఝభ

𝑉௜௡௖𝑝௜௡௖𝑒௜ఝమ
ቇ                                                      ሺS26ሻ 

where 𝑔 ൌ ∑ 𝑉௡
ே
௡ୀଵ 𝑉௡

∗ describes the total decay rate of the resonance to the scattering channels, 
and 𝑔௖ ൌ ∑ 𝑉௡

ே
௡ୀଵ 𝑉௡

∗𝑒௜ሺఝభିఝమሻ describes the indirect interaction between the resonators through 
the scattering channels. 𝜑ଵ and 𝜑ଶ are the incident phase at the 1st and 2nd resonators, respectively. 
The interaction between coupled acoustic resonators is governed by an non-Hermitian Hamiltonian. 
This above equation shows that the wave coupling dynamics is the same for acoustic resonators 
and for optical waves (Eq. S7).  

Section 3. Resonance is crucial to angle detection in a subwavelength space.  

Resonance plays a critical role in determining the performance of an angle-sensing photodetector. 
Here, we show that the performance decreases as the resonance diminishes. We replace Si 
nanowires with a material having low refractive index, for example, n = 1.5 + i0.1. The same 
structure is used as in Fig. 2c, the resonant frequency is shifted away since visible light cannot be 
sufficiently confined in such nanowires due to its low index value. Under this circumstance, the 
absorption cross section ratio between two nanowires is extremely low for both polarizations over 
entire range of incident angles (Fig. S7).  The resonator is critical as it can effectively create a 
shadow larger than its own geometric size, i.e. significantly reduced the absorption cross section 
of an adjacent resonator. A large shadow makes it easier to create a large contrast between two 
nanowires.  

 

Fig. S7 Absorption cross section ratio of angle-sensing photodetector having two nanowires with 
complex refractive index n = 1.5 + i0.1. Physical structure is the same as in Fig. 2c with d=100 nm. 
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Section 4. Effect of spacing 𝒅 and optical absorption 𝜸𝒂  

The coupling strength generally is determined by the geometry and material of the resonators and 
the spacing d between them. In this section, we discuss how the contrast ratio is affected by the 
spacing and the material loss. In general, both the imaginary and the real part of coupling increase 
as the spacing d decreases. Figure S8a shows the relation between the imaginary part of coupling 
and the spacing d for resonators with isotropic radiation patterns, i.e. coupling rate 𝜅ఏ being the 
same for all incident angles. As the spacing decreases, the coupling generally gets stronger. At the 
same time, the contrast ratio for the stored energy in the resonators is increased. Figure S8b show 
a polar plot of the contrast ratio for different spacing. As the spacing decreases, the overall angular 
response gets stronger, i.e. larger energy storage ratios are achieved. Typically, when two 
resonators are 0.01 𝜆଴ away, their energy ratio can exceed 30 dB. The dashed lines on the left-
hand side indicate negative dB values. In these plots, we did not consider the effect of the real part 
of couplings, which could enhance or suppress the maximum ration depending on specific 
configuration. The detailed calculation can be always done by Eq. S22 given specific near-field 
distribution of the resonator. 

 
Fig. S8 Effect of spacing 𝒅 between two resonators. (a) The relation between the imaginary part of 
coupling and the spacing. (b) Polar plot of energy ratio vs incident angle for different distances between two 
optical resonators. As the distance between two resonators get smaller, higher energy ratio is achieved. 
Energy ratio of dashed lines on the left-hand side indicate negative dB values. 𝛾 ൌ 0.01𝜔଴ and 𝛾௔ ൌ 0 are 
used for calculation. 

The material loss is characterized by a dissipation rate 𝛾௔, which can be straightforwardly included 
in the total decay rate 𝛾 in Eq. S7. In general, it will reduce the maximum contrast ratio as the 
quality factor of the resonator decreases. Figure S9 shows the decrease in the maximum contrast 
ratio as the optical absorption increases.  
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 Fig. S9 Polar plot of energy ratio vs incident angle for various optical absorption. d =0.1 𝜆଴ and 𝛾 ൌ
0.01𝜔଴ is used for the calculation. Energy ratio of dashed lines on the left hand side indicate negative dB 
values. 

 

Section 5. Modal profiles and spectral response of resonant Si nanowires 

Figure S10 shows the absorption cross section spectrum and field profiles of a single nanowire 
with a 100 nm width and height on top of a SiO2 substrate for normal incident light. The finite 
difference frequency domain (FDFD) method was used for the calculations. Figure S10a shows 
the spectrum for TE polarized light and the field profiles of |𝐻௭|ଶ at each of the resonance peaks 
are shown. The lowest resonant mode for TE polarized light appears around a 590 nm wavelength 
and higher order modes are seen around 450 nm and 390 nm. Figure S10b shows the spectrum for 
TM polarized light and the field profiles of |𝐸௭|ଶ at each of the resonance peaks are shown. The 
fundamental mode for TM polarized light is located beyond 1 m wavelength and is not shown. 
Higher-order modes are seen around wavelengths of 600 nm, 440 nm, and 400 nm.  

 

Fig. S10 Absorption cross section spectrum. (a) Absorption cross section spectrum and its |𝐻௭|ଶ field 
profiles on resonance peaks for a Si nanowire on top of a SiO2 substrate with TE polarization. Width and 
height of Si nanowire are 100 nm. (b) Absorption cross section spectrum and its |𝐸௭|ଶ field profile of Si 
nanowire for TM polarization. 
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Section 6. Coupled mode theory for nanowires with two degenerate modes 

Our nanowire supports both the fundamental TE mode and the second-order TM mode around 600 
nm wavelength. The TE mode is singly degenerate mode and the coupling coefficients are always 
the same for all the incident angles. However, the TM mode is doubly degenerate and two distinct 
modes can be identified for which light oscillates in either the horizontal or vertical direction.  This 
degeneracy results in a resonant electric field distribution that is incident-angle dependent. As a 
result, the real part of coupling between two closely-spaced nanowires also appears to be incident-
angle dependent. Obviously, this case requires careful consideration. Here, we discuss how the 
apparent angle dependence can be removed by using all degenerate modes in the coupled mode 
theory. 

Figure S11 shows the electric field distributions around a pair of nanowires in which the doubly 
degenerate second-order TM mode is excited by a plane wave incident from different directions. 
The dimensions and the spacing between of the nanowire are the same as in our experiments, but 
the substrate is removed for educational purposes. The incident wavelength is 550 nm, which is 
also the same with our experiment. The index of the nanowires at this wavelength is 4 ൅ 𝑗0.025. 
For different incident angles, different magnetic dipole moments (gray arrows) are induced. The 
near-field distribution is different when comparing Fig. S11a and S11b. As a result, the real part 
of coupling as calculated from the field overlap would be different as well. Next, we will show 
how one could use all four modes in this system to remove the apparent dependence of the real 
part of coupling on the incident angle.   

 
Fig. S11 Electric field distribution of doubly degenerate second-order TM mode. (a)-(b) Electric field 
profile for TM mode with 15°(a) and 60°(b) incident angle. Grey arrow represents the direction of the 
magnetic dipole. The dimensions of the nanowire are 100 nm by 100 nm and the gap between the nanowires 
is 100 nm, which are the same with the nanowires in our experiment except without the substrate. The incident 
wavelength is 550 nm, which is also the same with our experiment.  

Each nanowire supports two degenerate modes |𝐴௫⟩ and |𝐴௬ൿ, which are shown in Fig. S12a.  
Under the illumination of a particular incident angle, the excited mode can always be written as 
the linear combination of two modes |𝑎⟩ ൌ 𝑎௫|𝐴௫⟩ ൅ 𝑎௬|𝐴௬ൿ as shown in Fig. S12b. 
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Fig. S12 Mode profiles of degenerate mode. (a) Mode profiles for two degenerate states in TM mode. (b) 
With incident light from 45° angle, a linear combination of the states in (a) is excited 

When we consider the case shown in the coupled nanowires in Fig. S11, we need to consider all 4 
modes, i.e. |𝐴௫⟩, |𝐴௬ൿ for the left nanowire, and  |𝐵௫⟩, |𝐵௬ൿ for the right nanowires. The coupled 
mode equation for these modes is given by:  
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                                                ሺS27ሻ 

Here 𝜅ఏ௫ and 𝜅ఏ௬ are the coupling coefficients to the incident waves with an incident angle 𝜃. The 

amplitudes of |𝐴௫⟩, |𝐴௬ൿ, |𝐵௫⟩ and |𝐵௬ൿ modes in the nanowires are given by 𝑎௫, 𝑎௬, 𝑏௫ and 𝑏௬, 

respectively. The real part of coupling coefficients 𝛾௥௫/௥௬  and the imaginary part of coupling 

coefficients 𝛾௜௫/௜௬ are calculated and listed in Table. S1. The coupling between the |𝐴௬ൿ and |𝐵௬ൿ 

and that between  |𝐴௫⟩ and |𝐵௬ൿ modes is extremely low and negligible. For ideal dipoles, because 
of the symmetry, it will be exactly zero despite the spatial displacement [18]. 
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Table S1.  Coupling coefficients for different modes. 

 

In this 4-mode model, the real part of coupling coefficients are angle-independent. Their values 
are calculated and shown in Table 1. We can then solve the coupled mode equation with these 

fixed coupling coefficients, and calculate the absorption ratio for the two nanowires 
|௔ೣ|మା ห௔೤ห

మ

|௕ೣ|మା ห௕೤ห
మ for 

different incident angles. The results are plotted in Fig. S13 as black solid line. Compared to 
numerical simulation results (red circles), which are obtained by solving the Maxwell’s equations 
using finite-difference method in the frequency domain (FDFD), the analytic results agree with 
FDFD simulation very well. The imaginary part of coupling strength between the |𝐴௬ൿ and |𝐵௬ൿ 
modes is increased as compared to our experiment. As a result, the absorption ratio is increased. 
The mismatch between CMT and FDFD method in Fig. S13 is due to the fact that CMT is built 
upon the assumption of ideal dipoles while the FDFD method considers the actual dimensions of 
nanowires.  
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Fig. S13 Absorption ratio as a function of incident angle. 

 

Section 7. Phased array and direction finding in the radio frequency regime 

Angle-sensing has a wide range of applications in the radio frequency (RF) regime, including most 
prominently for direction finding. This includes a recent work on employing subwavelength 
antennas [19].  RF direction finding is relatively straightforward because the phase information of 
RF signals are easily preserved in the detection process. As a result, most RF methods rely on 
coherently combining multiple signals received at different locations or rely on antennas that are 
much larger than the operating wavelength. 

 

Fig. S14 Schematic of a direction finding system using two antennas. Two antennas are connected through 
a transmission line. Voltage induced at the two antennas by an incident wave are compared at the output of 
the transmission line. 

Here we briefly discuss the mechanism of direction finding developed in the microwave regime. 
As an example, direction finding can be implemented using an Adcock antenna [20-21]. Figure 
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S14 shows a pair of antennas that are used in an Adcock antenna. When two antennas are spaced 
by a distance 𝑑, there will be a phase difference between the signals that the two antennas receive. 
Assuming the center of the two antennas as the reference point, the voltage induced at Antenna E 

and Antenna W by an incident wave having an incident angle 𝜃 can be expressed as 𝑉ா ൌ 𝑒௝ഏ೏
ഊ

௦௜௡ఏ 

and 𝑉ௐ ൌ 𝑒ି௝ഏ೏
ഊ

௦௜௡ఏ , respectively. Comparing these two coherent signals, we can get the 
difference:  

𝑉ாௐ ൌ 𝑉ா െ 𝑉ௐ ൌ 𝑗2𝑠𝑖𝑛 ൬
𝜋𝑑
𝜆

𝑠𝑖𝑛𝜃൰                                         ሺS28ሻ 

These methods rely on coherent manipulation of the signals received by antennas, which is not 
readily available in the optical regime. 

Phased array functions very well even without coupling. They operate by leveraging far-field 
interference. Most phased arrays are much larger than wavelength size, and the mutual coupling 
between elements is a perturbation that one need to be aware of when designing a system with 
optimal directionality. In contrast, the mutual (anti-Hermitian) coupling is the enabling mechanism 
in our angle detectors. Without the coupling, the proposed angle detector will fail completely. One 
noteworth effect of coupling-enable angle resolution is that its performance actually increases as 
the inter-resonator distance d decreases, as shown in Fig. S8b. In contrast, phased arrays, which 
primarily relying on far-field interference, exhibit degraded angle directivity as sizes decrease 
which can be seen from Eq. S28. It shares the same drawbacks as the ears used by large animals: 
the interaural difference diminishes when the head size decreases far below the wavelength. 

 

Section 8. Simulation of short nanowires for angle sensing. 

The length of the nanowires shown in Fig. 4b is 10 𝜇𝑚, which is used to avoid light scattering 
from the large electrodes. The length of the nanowires can be reduced down to a subwavelength 
length and yet an angle –sensing pixel can maintain its angular response. We show the angular 
response for nanowires that are only 300 nm long. Figure S15a shows the schematic of two parallel 
Si nanowires that are 300 nm long and placed on top of a SiO2 substrate. The gap between the two 
nanowires are 100 nm and the nanowires feature a 100 nm ൈ 100 nm cross-sectional area. The 
angular response of these angle sensing pixel is shown in Fig. S15b. The energy ratio between the 
two nanowires is 1 at normal incidence (𝜃 ൌ 0°) and maintains a monotonically increasing angular 
response up to  𝜃 ൌ 40° under illumination with unpolarized light. 
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Fig. S15 Schematic of short Si nanowires and its energy ratio. (a) Two parallel Si nanowires are placed 
on top of SiO2 substrate. Length of the nanowires are 300 nm. The width and the height are 100 nm and the 
distance between the two nanowires is 100 nm, i.e. a=100nm. (b) The energy ratio vs incident angle for two 
nanowires shown in (a). Illumination with unpolarized light is assumed for the calculations. 

 

Section 9. Experimental Voltage-current relation and Responsivity 

 

Fig. S16 Voltage-current measurement of two Si nanowires. Both nanowires show a resistor-like 
behavior. 

Figure. S16 shows the voltage-current relationship of both nanowires without incident light i.e. 
dark current. A DC power supply is used to apply the voltage and measure the current. Both 
nanowires show an Ohmic contact. As a result, the photodetection device is a photoconductor-type 
detector. 

The responsivity of two nanowires at 550 nm wavelength are 0.52 A/W and 0.34 A/W for TE 
mode and 0.5 A/W and 0.31 A/W for TM mode. It is calculated by considering the geometrical 
area of the nanowire and the incident power density, which is estimated to be around 60 W/m2. 
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We note that nanowires increase the absorption cross sections, which often exceed the geometric 
cross sections. Near-unity absorption can be realized in nanowire arrays in Ref [22]. 

 

Fig. S17 The spectra of the measured photocurrent and calculated responsivity of two nanowires under 
illumination of TE and TM light.  

The two nanowires have different responsivity. They differ by a factor of 1.53, which could be 
attributed to fabrication variation. This responsivity difference is factored in when we calculate 
the ratio of the two photocurrents in the manuscript.  

 

Section 10. Different size nanowires for angle sensing. 

The difference in photocurrent responsivity does not affect the angle sensing capability because 
the photocurrent of each nanowire is normalized by its own maximum photocurrent. The 
fabrication variation could lead to a small change in the observed resonant frequencies. But this 
does not significantly affect the angle sensing capability because the resonance has a broader 
bandwidth than the variation of the resonant frequency. Figure S18 shows energy ratio vs incident 
angle (𝜃) when the nanowire size is detuned by േ5% and for TM illumination.  It can be seen that 
even when the two nanowires have different sizes, the ratio can still be used to resolve the incident 
angle. 
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Fig. S18 Energy ratio of two nanowires as a function of incident angle (𝜽) for TM polarization and 550 
nm incident light. Black solid line is for two identical nanowires.  Red solid (dashed) line is when the 
nanowire’s widths are different by 5%. The same type of monotonic relation between the energy ratio and 
incident angle is obtained. After a proper calibration, they are essentially equally effective in angle sensing. 

 

Section 11. The non-monotonicity of photocurrent ratio for the TE polarization 

In our experiment, the photocurrent ratio between the nanowires for the TE polarized illumination 
increases monotonically up to 45o (Fig. 4f). This non-monotonicity is the direct result of the 
radiation patterns of the superradiant and subradiant eigenstates. Here we will discuss it in detail. 

The radiation patterns of the superradiant and subradiant eigenstates are determined by the spacing 
between the nanowires. The radiation pattern shown in Fig. S2 only applies when the spacing is 
much smaller than wavelength. As the spacing increases, the radiation pattern becomes more 
complex with multiple peaks in a number of directions. For the case considered in Fig. 4f of the 
main text, we plot the radiation patterns of the eigenstates in Fig. S19 for the structure used in our 
experiment. The gap between the nanowires is 100 nm and the operation wavelength is 550 nm.  

The angular response is monotonic up to 45o. As can be seen in Fig. S19a, the excitation amplitude 
of the superradiant eigenstate decrease quickly beyond 45o. Only the subradiant eigenstate is 
excited. As a result, the contrast ratio between the wires, created by the interference between the 
superradiant and subradiant eigenstates, decreases as the incident angle increases beyond 45o.  
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Fig. S19 Radiation pattern of eigenstates. (a)-(b) Angular profile (blue curve) and the phase configuration 
of the radiation of the superradiant eigenstate (a) and subradiant eigenstate (b) for the case of TE modes in 
our experiment. The gap between the nanowires (100 nm) is comparable to the operation wavelength (550 
nm).  

 

Section 12. The experimental error bars of triangulation.  

 
Fig. S20 Standard deviation in x- (𝝈𝒙) and y-direction (𝝈𝒚) for 6 different LED position measurements 
using a setup as shown in Fig. 5a. 𝜎௫ and 𝜎௬ corresponds to the length of error bars in Fig. 5b. 

 

Using triangulation, the location of the LED during movement in Fig. 5b, including both the lateral 
position x and the depth y can be obtained from the measured incident angles  Θଵ,ଶ for the LED 
light falling onto the two angle sensors:  

ሺ𝑥, 𝑦ሻ ൌ ቀ
ሺ௧௔௡Θభሻ௫భିሺ௧௔௡Θమሻ௫మ

௧௔௡Θభି௧௔௡Θమ
,   ௧௔௡Θభ∙௧௔௡Θమ

௧௔௡Θభି௧௔௡Θమ
∙ ሺ𝑥ଵ െ 𝑥ଶሻቁ                          (S29) 

where 𝑥ଵ,ଶ  are the coordinates of the two detectors. Θ  in Eq. S29 is defined with respect to 
horizontal plane i.e. Θ ൌ 90° for normal incidence. 
In the experiment, we moved the position of the LED from (-25, 100) to (25, 100) in a 10 mm 
increment along the x-direction, corresponding to 6 different LED positions. Fifty measurement 
samples were collected on each angle-sensing photodetector for each LED position. Propagation 
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of uncertainty [23] was used to calculate the uncertainty i.e. standard deviation in the x- and y-
direction as shown in Fig. S20 which corresponds to the length of error bars in Fig. 5b. The 
uncertainty in the x-direction (𝜎௫) remains less than 1 mm for the entire measurement whereas in 
the y-direction, 𝜎௬ is higher than in the x-direction. The lateral accuracy is better than the depth. 
In order to focus the LED light through the chopper, we placed a small reflector behind LED that 
caused anisotropic radiation, which has resulted in a relatively high 𝜎௬ when the LED was on the 
left side. Nevertheless, our angle-sensing photodetector has an accuracy in the mm range for a 
light source located 10 cm away and can precisely perform a lens-less positioning. 

 

Section 13. Measurement resolution for angle and depth sensing 

Assuming a photodetector operating with 43.4 dB signal-to-noise ratio (SNR) as in Ref [24], here 
we calculate the accuracy for depth sensing around the direction of the substrate normal.  

 
Fig. S21 Schematic of depth sensing using two angle-sensing detectors. The distance between two 
detectors is 2𝑥. L is the distance from the object to the center point between the two detectors. Δ𝐿 is the depth 
resolution. 

If we define the distance between the object and the center point between two detectors as L, and 
the distance between two detectors as 2𝑥, depth resolution Δ𝐿 can be expressed as 

Δ𝐿 ൌ 𝑥𝑠𝑒𝑐ଶ𝜃 Δ𝜃                                                            ሺS30ሻ 

where 𝜃 ൌ atan ቀ௅

௫
ቁ. For instance, when 𝐿=10 m and 𝑥=10 cm, Δ𝐿 is only 15.7 cm which quite 

accurate relative to the distance. Here, we used Δ𝜃 ൌ 0.009° which is acquired from Eq. S36. 
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Section 14. Derivation of the minimum detectable angle change 𝛅𝜽.  

 
Fig. S22 An example of a contrast ratio of photocurrent having a linear response up to D degree. 

The angular accuracy for the two-wire detector system δ𝜃 can be expressed as: 

δ𝜃 ൌ Δ𝑅 ∙
𝑑𝜃
𝑑𝑅

                                                               ሺS31ሻ 

where 𝑅 is the contrast ratio. Assuming a linear angular dependence as in Fig. S22, 𝑑𝜃/𝑑𝑅 can 
be expressed as 

𝑑𝜃
𝑑𝑅

ൌ
𝐷

𝑅௠௔௫ െ 1
                                                             ሺS32ሻ 

where 𝐷 is the dynamic range of the incident angle and 𝑅௠௔௫ is the maximum contrast ratio at 𝐷 
degree.  

Now we calculate the accuracy for incident light around normal direction. Since 𝑅 ൌ 𝐼ଵ/𝐼ଶ where 
𝐼ଵ and 𝐼ଶ are the photocurrent in two nanowires, Δ𝑅 can be expressed as: 

Δ𝑅 ൌ ฬ
𝑑𝑅
𝑑𝐼ଵ

ฬ Δ𝐼ଵ ൅ ฬ
𝑑𝑅
𝑑𝐼ଶ

ฬ Δ𝐼ଶ ൌ ฬ
1
𝐼ଶ

ฬ Δ𝐼ଵ ൅ ቤ
𝐼ଵ

𝐼ଶ
ଶቤ Δ𝐼ଶ                               ሺS33ሻ 

 

Since 𝐼ଵ ൎ 𝐼ଶ for normal incident direction, the equation above can be simplified as 
 

Δ𝑅 ൌ ฬ
1
𝐼ଵ

ฬ Δ𝐼ଵ ൅ ฬ
1
𝐼ଶ

ฬ Δ𝐼ଶ ൌ
2

𝑆𝑁𝑅
                                            ሺS34ሻ 

 
Thus, substituting Eq. S32 and S34 into Eq. S31, we get  

δ𝜃 ൌ
2

𝑆𝑁𝑅
∙

𝐷
𝑅௠௔௫ െ 1

                                                   ሺS35ሻ 

Assuming 𝑆𝑁𝑅 ൌ 43.4𝑑𝐵  and using 𝑅௠௔௫ ൌ 1.3  and 𝐷 ൌ 30°  which is based on our 
experimental results in Fig. 5c, δ𝜃 can be calculated as  
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δ𝜃 ൌ
2

10ସ.ଷସ ∙
30°

1.3 െ 1
ൎ 0.009°                                           ሺS36ሻ 

 

Section 15. 3D angle sensing analysis. 

A single angle-sensing detector can only detect the incident angle of light in 2D space. In 3D space, 
single detector cannot be used to detect the incident angle of light since both polar 𝜃 and azimuthal 
𝜙 angles need to be determined. For example, let us assume incident angle 𝜃 ൌ 𝜙 ൌ 45°. Light 
with this incident angle will generate a well-defined photocurrent ratio. However, there are 
multiple incident angles that can generate the same photocurrent ratio. This is shown in Fig. S23a 
where all the directions that generate the same photocurrent ratio as 𝜃 ൌ 𝜙 ൌ 45° are lighted up 
with yellow color. Here, the purple spherical grid with a 5 degree mesh resolution is used to 
visualize the 3D space surrounding the angle sensor. We can place another detector next to the 
original detector but rotating 90°. This second detector will also have a photocurrent ratio and there 
will be multiple directions that generate the same amount of photocurrent ratio which is shown in 
Fig. S23b. Thus, the true incident angle of light can be determined (limiting the detection region 
to either top or bottom hemisphere) by overlapping the yellow regions in Fig. S23a and Fig. S23b.  

 

Fig. S23 3D angle sensing of unpolarized light with 550 nm wavelength using two detectors. (a) Purple 
grid with 5 degree mesh resolution is used to represent the 3D space. Yellow regions indicate the possible 
incident angle directions since the same photocurrent ratio as 𝜃 ൌ 𝜙 ൌ 45° is obtained. (b) Similar to (a) but 
with the detector that is rotated 90 degrees. (c) By overlapping yellow regions in (a) and (b), the true incident 
angle can be determined. Two detectors do not actually overlap. It is only for drawing purpose. They are 
placed next to each other in real world. 

 

Section 16. The limit of the spacing between nearby angle sensing pixels. 

The optical cross section of the nanowires can be very large due to the optical resonances supported 
the wires. Therefore, when angle sensing pixels are densely packed on a chip, there is a minimal 
spacing between pixels for the most optimal operation. When the spacing is smaller than then the 
illumination wavelength, neighboring pixels can no longer be considered as being by themselves 
and the interaction between nearby pixels can reduce the accessible range for the angle sensing. 
Figure S24a shows an example of 300 nm spaced pixels, which has reduced dynamic range up to 
25 degrees as shown in Fig. S24b. When the distance increases to 500 nm, the coupling effect 
become negligible.  
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Fig. S24 Array of angle-sensing detectors. (a) Schematic of three detectors placed next to each other with 
300nm gap. (b) Energy ratio of two nanowires in single pixel under incident light having 580 nm wavelength. 
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