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Abstract

We address the problem of learning the legitimacy of other agents in a multiagent network when an
unknown subset is comprised of malicious actors. We specifically derive results for the case of directed
graphs and where stochastic side information, or observations of trust, is available. We refer to this as
“learning trust” since agents must identify which neighbors in the network are reliable, and we derive
a protocol to achieve this. We also provide analytical results showing that under this protocol i) agents
can learn the legitimacy of all other agents almost surely, and that ii) the opinions of the agents converge
in mean to the true legitimacy of all other agents in the network. Lastly, we provide numerical studies
showing that our convergence results hold in practice for various network topologies and variations in
the number of malicious agents in the network.

Keywords: Multiagent systems, adversarial learning, directed graphs, networked systems

1 Introduction

Learning the network topology in multiagent systems, what edges exist and are reliable, is critical because
of the central role it plays in many multiagent collaboration tasks. This includes a wide range of tasks
from estimation, to control, to machine learning, optimization and beyond [16, 18, 21]. Many times both
the coordination protocols and achievable performance of the team is dictated by topology [2, 15, 17, 27].
Two aspects that can greatly complicate the learning however, are i) directed graphs, and ii) the presence of
untrustworthy data. Directed graphs are more common in practice due to heterogeneity in sensing and com-
munication capabilities in multiagent systems, but are often more difficult to analyze due to non-symmetric
information flow. On the other hand, the presence of malicious agents are an important real-world consider-
ation but lead to untrustworthy data in the system [6, 11, 23, 24]. Unfortunately, the compounded impact of
both of these challenges is a very complex problem with sparse theory to date. Our objective in this paper
is to develop a learning protocol and its related analysis, where agents learn over time the legitimacy of
their neighbors in the presence of malicious agents over directed graphs.

The class of problems over directed graphs pose a particular challenge to achieving resilience: many
distributed algorithms on directed graphs require agents to have some information about their out-neighbors,
but because of the asymmetric information flow, they cannot sense or obtain information directly from these
agents. This makes detection of malicious out-neighbors particularly difficult. For instance, the distributed
optimization algorithms presented in [13, 15, 20, 25, 26] and the distributed consensus algorithms [2, 4]
all require that the agents know the number of out-neighbors they have. This assumption can break if
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an agent designs the update rule considering an out-neighbor as legitimate, but that agent is malicious in
reality. Hence, agents need to have some information about the trustworthiness of their out-neighbors. An
interesting concept that has the potential to help this difficult problem is the use of“side information” or
data in cyberphysical systems [3,7–9,12,14,19,22,28]. Recent work has shown that by leveraging physical
channels of information in the system, agents can gain stochastic information about the trustworthiness of the
other agents [8,9,12, 28]. We call these “stochastic observations of trust.” It has been shown that exploiting
these observations leads to stronger results in resilience for multiagent systems [7, 14, 29]. Unfortunately
however, existing results do not immediately extend to the case of directed graphs.

In this work, we are interested in learning a trusted graph topology over a directed graph. Using stochas-
tic information about trustworthy neighbors, agents can decide how they should process information that
they receive from their in-neighbors, and with which out-neighbors they should share their information.
Since agents cannot necessarily observe their out-neighbors, it is natural to think that they need to get infor-
mation about their out-neighbors from the other agents. We investigate what sufficient information agents
can share and how they should process this information to learn the trustworthiness of the other agents in the
system in a robust way. This setup is particularly challenging since there might be malicious agents in the
system sharing misinformation during this learning process. We present a learning protocol to enable each
agent to learn the trustworthiness of all other agents in the system leveraging the opinion of their neighbors.
Agents develop opinions in two ways: For their in-neighbors they can obtain a trust observation, they then
use this information to form their own opinions. For the other agents, they use the opinions of their in-
neighbors they trust to update their opinions. Under the assumption that the subgraph of legitimate agents is
strongly connected and each malicious agent is observed by at least one legitimate agent, we show that all
legitimate agents can almost surely learn the trustworthiness of all other agents.

Our contributions can be summarized as follows: i) We present a novel learning protocol that enables
the legitimate agents in the system to learn the trustworthiness of the other agents where the underlying
communication network is a directed graph; ii) We prove that using our learning protocol, legitimate agents
can learn the identities of the other agents almost surely; iii) We show that opinions of the agents converge
in mean to the true identity of the agents; iv) We provide extensive numerical studies to show that the
convergence results hold in practice for various network topologies and the number of malicious agents.

2 Problem Formulation

We consider a distributed multi-agent system where agents need to collaborate in order to achieve a common
task such as solving an optimization problem. We represent the communication graph among agents with a
directed graph G = (V,E) where the set V represents the set of agents communicating over G with a set E
of directed links. Moreover, we let N = |V | be the number of agents. If there is an edge (i, j) ∈ E, then
agent i can send information to j, and we say that j is an out-neighbor of i and i is an in-neighbor of j. We
assume each agent i has a self-loop (i, i) ∈ E. Moreover, for an agent i ∈ V , we define its in-neighborhood
N in

i = {j ∈ V | (j, i) ∈ E} and out-neighborhoodN out
i = {j ∈ V | (i, j) ∈ E}. We assume that agents in

the system communicate at every time step t. Moreover, we assume that there might be a setM ( V , called
malicious agents, of non-cooperative agents in the system that are either adversarial or malfunctioning. We
assume that malicious agents can act arbitrarily. We call the set of cooperative agents, that is, the set of
agents outside the setM, legitimate agents, denoted by L. We have L ∩M = ∅ and L ∪M = V . We
say that malicious agents are untrustworthy and legitimate agents are trustworthy. We assume that the set
of malicious agentsM is unknown. We wish to learn the trustworthiness of agents in the network. We are
interested in the problems where every agent receives a stochastic observation of trust from an agent that
sends information during each communication round. We note that stochastic observations of trust have
been developed in previous works [8, 29] and we use a similar definition here:
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(a) (b) (c)

Figure 1: This schematic shows our problem setup with one malicious agent shown as a red node. Various
stages of learning are depicted: (a) initial state (b) agents use their direct observations to learn the trustwor-
thiness of other agents (c) agents indirectly learn the trustworthiness of the entire network by propagating
their opinions.

Definition 1 (Stochastic Observation of Trust αij) We denote stochastic observations of trust with αij(t)
if agent j sends information to agent i at time t, and we assume that αij(t) ∈ [0, 1]. Here, αij(t) represents
the stochastic value of trust of agent j as observed by agent i.

Agents can develop opinions about trustworthiness of their in-neighbors using these stochastic trust
observations over time. However, it is not straightforward how they can develop opinions about their out-
neighbors since they have no direct observations of their trustworthiness. Next, we formalize the notion of
opinion and then we discuss how to construct opinions of agents.

Definition 2 (Opinion of Trust) We denote agent i’s opinion of trust about agent j at time t with pij(t) ∈
[0, 1]. We say agent i trusts agent j if pij(t) ≥ 1/2 and does not trust agent j otherwise.

We want to find a learning protocol to enable the legitimate agents to develop accurate opinions pij(t)
about their neighbors in directed graphs, including their out-neighbors. An example case is shown in Figure
1. Next, we state our assumptions under which we develop our protocol.

Assumption 1 (Connectivity of Network) 1. Sufficiently connected graph: The subgraph GL induced by
the legitimate agents is strongly connected.

2. Observation of malicious agents: For any malicious agent j ∈ M, there exists some legitimate agent
i ∈ L that observes j, i.e., j ∈ N in

i for some i ∈ L.

Assumption 2 (Trust Observations) Suppose that the following hold:

1. Homogeneity of trust variables: The expectation of the variables αij(t) are constant for the case of
malicious transmissions and legitimate transmissions, respectively, i.e., for some scalars c, d with
c < 0 and d > 0, c = E[αij(t)]− 1/2 for all i ∈ L, j ∈ N in

i ∩M, and d = E[αij(t)]− 1/2 for all
i ∈ L, j ∈ N in

i ∩ L.

2. Independence of trust observations: The observations αij(t) are independent for all t and all pairs of
agents i and j, with i ∈ L, j ∈ N in

i . Moreover, for any i ∈ L and j ∈ N in
i , the observation sequence

{αij(t)}t∈N is identically distributed.
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Note that stochastic observations of trust satisfying Assumption 2.1 were derived in [8]. Additionally, we
make the same Assumptions 1.1, 2.1, and 2.2 as in the work [29], except for the first assumption, where
we require the graph to be strongly connected instead of connected since we deal with directed graphs.
Assumption 1.2 is new and necessary since it is not possible to learn the legitimacy of an agent if no other
agent is observing that agent. This requirement shows up in the analysis later on. We formalize the problem
that we are aiming to solve in this paper as follows:

Problem 1 Let i be a legitimate agent and let q be an arbitrary agent in the system. Assume that stochastic
observations of trust are available and Assumption 1 and Assumption 2 hold. We want to find a learning
protocol such that for all legitimate agent i ∈ L and for all agents q ∈ V , pij(t) converges to 1 if q ∈ L and
0 if q ∈M almost surely.

3 Learning Protocol

In this section we introduce our learning protocol. Let each agent i store a vector of trust pi(t) at time t,
where pi(t) is an N × 1 column vector. Let pij(t) denote the jth component of pi(t). The value pij(t)
represents agent i’s opinion about the node j where a higher pij(t) indicates that agent i trusts agent j more.
Let βij(t) represent an aggregate trust value for the link (j, i) at time t. Following [29], we define βij(t) as

βij(t) =
t∑

k=0

(αij(k)− 1/2) (1)

for all j ∈ N in
i and we define βii(t) = 1 for all t. Using the aggregated stochastic trust value βij(t),

a legitimate agent i decides on its trusted in-neighbor set by defining N in
i (t) = {j ∈ N in

i | βij(t) ≥ 0}.
In our learning protocol, an agent i shares pi(t) with its out-neighbors. A legitimate agent i determines its
vector of pi(t) after receiving pj(t−1) from all of its in-neighbors j ∈ N in

i using the following update rule:

piq(t) =


1 if q ∈ N in

i and βiq(t) ≥ 0

0 if q ∈ N in
i and βiq(t) < 0.∑

j∈N in
i (t)

pjq(t−1)
|N in

i (t)| if q /∈ N in
i

(2)

Every legitimate agent i initializes its opinion vector with vector pi(0) with all ones, meaning that in the
beginning, they trust everyone in the network. However, this choice of initialization is arbitrary and as it
does not affect our results. A legitimate agent i decides on its trusted out-neighbor set by definingN out

i (t) =
{j ∈ N out

i | pij(t) ≥ 1/2}.
Notice that the trust vector pi(t) is in [0, 1]N by definition. We assume that malicious agents can decide

its trust vector pi(t) arbitrarily. With this protocol, legitimate agents use only the stochastic observations
of trust αij to determine the legitimacy of their in-neighbors. For the other nodes, they use the opinions of
their trusted in-neighbors to form their opinion.

4 Analysis

Recall that agents either directly observe an agent and develop their own opinions using their observations,
or they use the opinions of others to generate an opinion about an agent. In our analysis, we first show that all
legitimate agents learn their in-neighbors such that their trusted in-neighbors are the same as their legitimate
in-neighbors. Learning in-neighbors allow agents to propagate this information to others and also stop the
inflow of information from any malicious agent. Then, we analyze the propagation of information after
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legitimate agents learned their in-neighbors. To do this, we write the update rule of trustworthiness about an
agent in matrix form, and show that the effect of the error introduced by malicious agents is asymptotically
eliminated. More precisely, we show that estimated trust values converge in mean and almost surely to true
trust values (1 for legitimate, 0 for malicious agents).

4.1 Notation

Let |S| denote the cardinality of set S. Let [W ]ij denote entry in row i and column j of matrix W . For some
agent j and set S, define the indicator function 1{j∈S} as:

1{j∈S} =

{
1 if j ∈ S
0 otherwise

.

We also use the same notation for indicator vectors when the size of the vector is clear from the context.

4.2 Learning Trustworthiness

Since agents use their trusted in neighbors in their updates, we start by showing that agents learn the le-
gitimacy of their in-neighbors. This will be useful later to show that the protocol converges to the desired
state.

Lemma 1 There exists a random finite time Tf such that the following holds almost surely

βij(t) ≥ 0 for all t ≥ Tf and i ∈ L, j ∈ N in
i ∩ L (3)

βij(t) < 0 for all t ≥ Tf and i ∈ L, j ∈ N in
i ∩M

Proof: Follows directly from [29, Proposition 1] �

Corollary 1 There exists a random finite time Tf such that for all t ≥ Tf and for all legitimate agents i,
trusted in-neighbor set consist of all legitimate neighbors of the agent i, that is:

N in
i (t) = N in

i ∩ L.

Proof: Follows directly from Lemma 1 and the update rule of the learning protocol given by (2). � Notice
that corollary 1 shows that every legitimate agent can learn its in-neighbors correctly. Now, let q ∈ V be a
an arbitrary but fixed agent in the network. Our goal is to show that all legitimate agents learn the identity
of q. This process requires information to propagate from agents receiving trust information directly from q
to other agents in the network, which motivates the following definitions:

DefineDq ⊆ L to be the subset of legitimate agents directly observing q, i.e. Dq , N out
q ∩L. Similarly,

define Cq ⊆ L be the subset of legitimate agents not observing q, i.e. Cq , L\Dq. These sets are illustrated
in Fig. 2.

These sets are defined for the sake of analysis and are not assumed to be known in practice. Notice that
the set Dq of observing agents is non-empty. This follows directly from Assumption 1.2, since there exists
at least one legitimate agent i ∈ N out

q . On the other hand, the set Cq can be empty if all agents are directly
observing q. In that case, all legitimate agents will eventually learn the identity of q by Corollary 1.

Now, we analyze the evolution of piq(t) by writing the evolution of opinions about agent q in matrix
form. Let uq = |Cq|, i.e. the number of agents not observing q. Without loss of generality, reorder the
indices of agents such that Cq = {1, 2, . . . , uq}, and Dq = {uq + 1, . . . , |L|}. We denote the vector of trust

5



(a) Example network (b) q = 2 (c) q = 5

Figure 2: (a) Network with four legitimate and one malicious nodes. Legitimate nodes are black and the
malicious node is red. (b) Learning dynamics for agent q = 2: Both agents 2 and 3 directly observe agent
2, so 2, 3 ∈ Dq. 1 and 4 are in the set Cq since they do not directly observe agent 2. (c) Learning dynamics
for agent q = 5: Both agents 1 and 2 directly observe agent 5, so 1, 2 ∈ Dq. 3 and 4 are in Cq since they do
not observe 5.

estimates of legitimate agents about the agent q by pCq(t) =
[
p1,q(t) . . . puq ,q(t)

]T for the agents in the

set Cq and pDq(t) =
[
puq+1,q(t) . . . p|L|,q(t)

]T for the agents in the setDq. Finally, we denote the vector

of trust estimates of malicious agents about the agent q by pM,q(t) =
[
p|L|+1,q(t) . . . pN,q(t)

]T . Take
an arbitrary agent i ∈ Cq. Using these reordered indices, we can rewrite the learning protocol as:

piq(t) =
∑

j∈N in
i (t)

pjq(t− 1)

|N in
i (t)|

(4)

=
∑
j∈Cq

[Wq(t)]ijpjq(t− 1) +
∑
j∈Dq

[Wq(t)]ijpjq(t− 1) +
∑
j∈M

[Wq(t)]ijpjq(t− 1), (5)

where [Wq(t)]ij = 1
|N in

i (t)| if j ∈ N in
i (t) and [Wq(t)]ij = 0 otherwise. Here, Wq(t) is a row-stochastic

matrix with size uq × N . Then, we can divide Wq(t) into three parts based on the sets Cq, Dq, M as
Wq(t) = [WCq(t) WDq(t) WMq(t)] where the matrices WCq(t), WDq(t), WMq(t) have sizes uq × uq,
uq × |Dq|, and uq × |M| respectively. With this representation, we can express the update rule (4) in the
matrix form as:

pCq(t) =
[
WCq(t) WDq(t) WMq(t)

]  pCq(t− 1)
pDq(t− 1)
pMq(t− 1)

 , (6)

Recall that there exists some random finite time Tf such that all legitimate agents learn their in-neighbors
correctly. Until the system reaches time Tf , malicious agents can affect the learning dynamics. Nevertheless,
we will show that the legitimate agents can recover from that effect after reaching time Tf . Now, we focus
our analysis on the system dynamics after time Tf .

Lemma 2 For t ≥ Tf , the following hold almost surely:
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L2.1 The matrix representing the contribution of malicious agents WMq(t) = 0

L2.2 WCq(t) = W Cq for some constant matrix W Cq

L2.3 WDq(t) = WDq for some constant matrix WDq

L2.4 pDq(t− 1) = 1{q∈L}.

Proof: Assuming that t ≥ Tf , by Corollary 1, we have that N in
i (t) ∩M = ∅ for i ∈ L. Therefore, if

i ∈ Cq and j is a malicious agent, then j 6∈ N in
i (t). By the definition of Wq, we have [Wq(t)]ij = 0 for

all malicious j as desired. Similarly, N in
i (t) = N in

i ∩ L, so the update matrices WCq(t) and WDq(t) are
constant for t ≥ Tf . Finally, L2.4 follows directly from Lemma 1. �

Remark 1 The matrix [W Cq WDq ] is row stochastic.

This follows from the fact thatWq(t) is a row-stochastic matrix and thatWMq(t) is zero. Since agents inDq

have already learned the trust of agent q after time Tf , we now focus on the agents in Cq. For all t ≥ Tf + 1,
we can describe the evolution of pCq(t) as follows:

pCq(t) = W CqpCq(t− 1) +WDqpDq(t− 1) (7)

We want pCq(t) = 1{q∈L}, i.e., pCq(t) should be equal to a vector of ones if q ∈ L and a vector of zeros
if q ∈ M. We can define the error in the estimation of legitimate agents in Cq(t) about the identity of the
agent q at time t as:

∆Cq(t) = pCq(t)− 1{q∈L} (8)

We want to show that ‖∆Cq(t)‖ → 0 as t goes to infinity. Using (7) we can represent ∆Cq(t) as

∆Cq(t) = W CqpCq(t− 1) +WDqpDq(t− 1)− 1{q∈L}
(a)
= W CqpCq(t− 1) +WDqpDq(t− 1)− (W Cq1{q∈L} +WDq1{q∈L})

= W Cq(pCq(t− 1)− 1{q∈L}) +WDq(pDq(t− 1)− 1{q∈L})

(b)
= W Cq(pCq(t− 1)− 1{q∈L})

= W Cq∆Cq(t− 1), (9)

where (a) follows from the fact that [W Cq WDq ] is row stochastic and (b) follows from pDq(t−1) = 1{q∈L}.
By using (9) recursively, we obtain

∆Cq(t) = W
t−Tf

Cq ∆Cq(Tf ) (10)

Now, we can bound the error norm:

‖∆Cq(t)‖ ≤ ‖W t−Tf

Cq ‖‖∆Cq(Tf )‖. (11)

Here, ‖∆Cq(Tf )‖ includes the error introduced by malicious agents before all agents learn their in-neighbors.
Since the convergence of the error term ‖∆Cq(t)‖ depends on the convergence ofW Cq , we analyze the matrix
W Cq next.
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(a) ĉonW = 3 (b) ĉonW = 2 (c) ĉonW =∞

Figure 3: Three matrices with different contraction indices and the corresponding graphs. The path achiev-
ing the contraction index is given in yellow. (a) The only row that sums to less than one is row 1. Therefore,
the path with the maximum length from agent 1 to another agent has a length of 3. (b) Row 2 also sums to
less than one. Therefore, the longest path is the one from agent 2 to 4. (c) The only row that sums to less
than one is row 1. Since there is no path from agent 1 to agent 3 or 4, the index of contraction is∞.

4.3 Convergence of Weakly Chained Substochastic Matrices

Now, we aim to show that W Cq is convergent, i.e. ‖W t
Cq‖ → 0 as t → ∞. In this part, we will show that

W Cq belongs to a family of convergent substochastic matrices called weakly chained substochastic matrices.
This will conclude that the error term goes to 0. First, we give some definitions.

Definition 3 Digraph of matrix: Let the square matrixW ∈ Rn×n be non-negative, i.e. Wij ≥ 0 for all i, j.
Hence, the graph of W , denoted by G(W ) = (V (W ), E(W )) is the graph such that V (W ) = {1, . . . , n}
and for all i, j ∈ {1, . . . , n}, (i, j) ∈ E(W ) if and only if Wij > 0.

To analyze the convergence properties of W Cq , we define the index of contraction following [1]

Definition 4 Index of contraction: Let the matrix W ∈ Rn×n be substochastic. Define the set Ĵ(W ) ,
{1 ≤ i ≤ n :

∑n
j=1Wij < 1}, and let the set K̂i(W ) be the set of all paths1 in the digraph of W from i to

all j ∈ Ĵ(W ). The index of contraction ĉonW associated with matrix W is defined as:

ĉonW , max

{
0, sup

i 6∈Ĵ(W )

{
inf

ω∈K̂i(W )
{|ω|}

}}
, (12)

where |ω| denotes the length of the path ω. Also, we follow the conventions that inf ∅ =∞ and sup ∅ = −∞.
Here, if all rows of W sum to less than one, we have |Ĵ(W )| = n. This implies that the supremum over
i 6∈ Ĵ(W ) is −∞, therefore, ĉonW = 0. Similarly, ĉonW is infinite if K̂i(W ) is empty, meaning there is
no path from some row i 6∈ Ĵ(W ) to a that sums to less than one.

[1, Corollary 2.6] shows that a square substochastic matrix W is convergent if and only if ĉonW is finite.
We show example matrices with different contraction indices in Figure 3. We call a substochastic matrix
with finite contraction index weakly chained substochastic matrix.

Remark 2 Matrix W is a weakly chained substochastic matrix if and only if for all rows i that are not in
the set Ĵ(W ), set K̂i(W ) is non-empty, i.e there is a path i → i1 → · · · → ij in G(W ) such that row ij
sums to less than one. Moreover, a weakly chained substochastic matrix is convergent.

1We use path instead of walk in contrast to [1] in our definition, however these definitions are equivalent.
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This remark follows directly from the definition of the index of contraction and [1, Corollary 2.6].
The following sequence of results will show that W Cq is weakly chained substochastic. We will first

establish a relation between the graph that describes the network and the digraph of W Cq . In particular, we
will establish that the links E(W Cq) in the digraph of W Cq are the inversion of links in the original graph.
Then use assumptions of strong connectivity and existence of a directly observing agent to conclude that
W Cq is weakly chained substochastic.

Lemma 3 Let W Cq ∈ Ruq×uq be defined as before, and let GCq be the subgraph of GL induced by the set

of agents Cq. Then, (i, j) ∈ G(W Cq) if and only if (j, i) ∈ GCq . In other words, GCq is the digraph of W T
Cq .

Proof: Let (i, j) ∈ G(W Cq). Then, by definition of digraph of a matrix, we have that [W Cq ]ij > 0. So,
it means that agent i ∈ Cq is receiving information from agent j ∈ Cq, by the learning protocol (4). Thus,
there must be an edge (j, i) in GCq . Similarly, if (j, i) is an edge in GCq , then agent j is an in-neighbor of
agent i. So, agent i is receiving informattion from agent j, which means that [W Cq ]ij > 0. �

Corollary 2 If there is a path v1 → v2 → · · · → vl in GCq , then there is a path vl → vl−1 → · · · → v1 in
G(W Cq).

Proof: If there is an edge vi → vi+1 in GCq , then by Lemma 3, there exists and edge vi+1 → vi in
G(W Cq). Since this holds for each i = 1, . . . , l − 1, vl → vl−1 → . . . v1 is a path in G(W Cq). �

Theorem 1 For all agents q, given that the set Cq is non-empty, the update matrix W Cq is a weakly chained
substochastic matrix. Moreover, W Cq is convergent.

Proof: Let i ∈ Cq. If agent i has a neighbor d ∈ Dq directly observing agent q, row i must sum up to less
than one since agent i receives information from d and d 6∈ Cq. So, i ∈ Ĵ(W Cq).

Now, assume agent i doesn’t have a directly observing neighbor, i.e. i 6∈ Ĵ(W Cq). We know that
there exists some agent d ∈ Dq that directly observes agent q by Assumption 1.1 and Assumption 1.2. By
Assumption 1.1, the subgraph induced by legitimate agents are strongly connected, so there exists a path

d = i0 → i1 → i2 → . . . il → i

in GL for each ij ∈ L where each arrow denotes a directed edge.2 Now, choose the largest j such that
ij ∈ Dq, and consider the path

ij → ij+1 → · · · → il → i

Here, since j is chosen as the largest j s.t. ij ∈ Dq, we have that ij+1, . . . , il, i ∈ Cq. Moreover, we assumed
i 6∈ Ĵ(W Cq), so j < l since i does not have a directly observing neighbor.

Now, we know, ij+1 has a neighbor directly observing q, i.e. ij . Therefore, row ij+1 of W Cq sums to
less than 1, meaning that ij+1 ∈ Ĵ(W Cq). From Corollary 2, there exists a path

i→ il → il−1 → · · · → ij+2 → ij+1

in the graph G(W Cq). So, in the digraph G(W Cq) there exists a path from i to a row summing to less than
one, ij+1, as desired. Hence, K̂i(W Cq) is non-empty for i 6∈ Ĵ(W Cq). Therefore, W Cq is weakly chained
substochastic and convergent by Remark 2. �

Corollary 3 For all agents q ∈ V where the set Cq is non-empty, pCq(t) almost surely converges to 1{q∈L}
where 1{q∈L} is a vector with all values equal to 1 if q ∈ L and to 0 if q ∈M.

2l ≥ 1 since agent i does not have a directly observing neighbor
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Proof: Remember that the error is defined as ∆Cq(t) = pCq(t) − 1{q∈L}. By Corollary 1 we know that
there exists a finite time Tf such that for all t ≥ Tf + 1 we have

‖∆Cq(t)‖ ≤ ‖W t−Tf

Cq ‖‖∆Cq(Tf )‖. ((11))

Since both pCq(t) and 1{q∈L} are in [0, 1]uq , we have ‖∆Cq(Tf )‖ ≤ √uq. By Theorem 1, we have that

‖W t−Tf

Cq ‖ → 0. Therefore, ‖∆Cq(t)‖ → 0 almost surely. �

4.4 Main Results

In this part, we present our main results which show that all legitimate agents can learn the trustworthiness
of of all agents in the system. Let pLq(t) denote the trustworthiness estimation of all legitimate agents about
an agent q at time t. We show that this vector converges to 1{q∈L}.

Theorem 2 (Convergence to the true trust vector almost surely) For all agents q ∈ V , pLq(t) converges
almost surely to the true trust vector 1{q∈L}, where 1{q∈L} is an |L| × 1 vector with all of its values equal
to 1 if q ∈ L and equal to 0 if q ∈M.

Proof: Without loss of generality, we reorder the indices of agents such that Cq = {1, 2, . . . , uq}, and
Dq = {uq + 1, . . . , |L|} where Cq is the set of legitimate agents not observing q and Dq is the set of
legitimate agents directly observing q. We have two different cases where the set Cq is empty and non-
empty. First assume that Cq is empty. We know that pLq(t) = pDq . There exists a finite time Tf such that
for all t ≥ Tf + 1 we have pLq(t) = 1{q∈L} by Lemma 2. Hence, pLq(t) converges to 1{q∈L} almost surely.

Now, assume that Cq is non-empty. Hence, we can represent pLq(t) as pLq(t) =

[
pCq(t)
pDq(t)

]
. Define

∆Lq(t) = pLq(t)− 1{q∈L}. Using the triangle inequality we obtain

‖∆Lq(t)‖ ≤ ‖pCq(t)− 1{q∈L}‖+ ‖pDq(t)− 1{q∈L}‖
= ‖∆Cq(t)‖+ ‖pDq(t)− 1{q∈L}‖,

where ∆Cq(t) is the same one with (8). Now, assume that t ≥ Tf + 1. Then we have ‖pDq − 1{q∈L}‖ = 0
by Lemma 2. Moreover, by Corollary 3, we have that ‖∆Cq(t)‖ → 0 almost surely. Hence, we can conclude
that ‖∆Lq(t)‖ → 0 and pLq(t) converges to 1{q∈L} almost surely. �

Theorem 3 (Convergence in mean to the true trust vector) For all agents q ∈ V and r ≥ 1, pLq(t) con-
verges in mean to the true trust vector 1{q∈L}. That is,

lim
t→∞

E[‖pLq(t)− 1{q∈L}‖r] = 0. (13)

Proof: Since pLq(t) ∈ [0, 1]|L|, ‖pLq(t)‖2 ≤
√
|L|. Also we have 1{q∈L} in [0, 1]L. Then, using the

triangle inequality we get ‖pLq(t)− 1{q∈L}‖r ≤ (
√
|L|)r <∞. We can apply the dominated convergence

theorem [30] to conclude our proof since pLq(t) converges to 1{q∈L} almost surely by Theorem 2. �
Finally, the following Corollary shows that following this protocol, every legitimate agent can learn the
trustworthiness of all agents in the network, including their in- and out-neighbors, N in

i , N out
i , for all i ∈ L.

Corollary 4 (Learning the Trustworthiness of All Agents) All legitimate agents i ∈ L can learn the trust-
worthiness of all agents in the network correctly. That is, there exists a finite time Tmax such that for all
t ≥ Tmax and for all q ∈ V , piq(t) ≥ 1/2 if q ∈ L and piq(t) < 1/2 if q ∈M almost surely.
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Proof: Let i be a legitimate agent. Let q be an arbitrary agent in the system. Then, by Theorem 2, there
exist a time Tq almost surely such that for all t ≥ Tq, piq(t) > 1/2 if q ∈ L and piq(t) < 1/2 otherwise.
Then we can choose Tmax = maxq∈V Tq. �

5 Numerical Studies

In this section, we evaluate the performance of the algorithm via numerical studies. We show that all
legitimate agents can learn the the trustworthiness of all the other agents in the system using our algorithm
in various network realizations, which supports our theoretical results.

Communication graph: We generate the graph of legitimate agents, denoted with GL, in two different
ways to show that the protocol works with different graph structures. The first way is to use a cyclic
graph. We choose this graph model because it is strongly connected by default and the contraction index
for learning the trustworthiness of any legitimate agent in the system is |L| − 2, which grows linearly with
the number of legitimate agents. The second way is to generate a random graph using Erdős–Rényi model
where each edge in the graph is either included or not with probability p [5]. We choose p = 2 log |L|

|L| to
have a high probability of generating a strongly connected graph [10], and in the case where the generated
graph is not strongly connected, we repeat the process to ensure satisfaction of Assumption 1.1. The graphs
generated using this model is likely to have a better connectivity and a lower contraction index for learning
any legitimate agent compared to the cyclic graphs. In this way the cyclic graph represents the most difficult
case where legitimate information takes longest to circulate throughout the network. After generating the
graph of legitimate agents, we randomly add malicious agents to the system.

Malicious agents: We assume that all the malicious agents in the system are omnipotent in that they
know the trustworthiness of every other agent in the system, this represents a strong attack. The malicious
agents do not follow the update rules and they always send the opposite of the true trustworthiness infor-
mation to other agents, i.e. they assign 1 to all malicious agents and assign 0 to all legitimate agents in the
trust vector they share. Since the malicious agents do not follow the learning protocol, we do not explicitly
model the communication between the malicious agents.

Trust observations: Following the previous work [29], we model the trust observations αij(t) as fol-
lows: At each time step t we sample αij(t) uniformly from the interval [0.35, 0.75] if j ∈ L and from
[0.25, 0.65] if j ∈M. This way, E[αij(t)] = 0.55 if j is a legitimate agent and E[αij(t)] = 0.45 otherwise.
With this setup, Assumption 2 is satisfied.

Metrics: We evaluate the model performance based on two different metrics. The first one is mean
squared error (MSE) where we calculate the mean squared error between the true trust vector and trust vector
of legitimate agents and take the average across all legitimate agents. Following from Theorem 2, the MSE
should converge to 0. The second metric we define is T̂max, which is a proxy for Tmax defined in Corollary
4. If all legitimate agents classify every other agent correctly for N number of time steps after time t, where
N is the total number of agents in the system, we assign T̂max = t and stop the experiment, assuming that
no further classification error would occur since N is large enough for information to propagate through the
whole network.

5.1 Results

Here, we present the results for three different setups with |L| ∈ {20, 40, 80} and |M| = 1.5 × |L|. For
each |L|, we generate the network of legitimate agents in two different ways: using a cyclic graph, and
an Erdős–Rényi graph over legitimate agents. Then we add the malicious agents randomly, and we track
the MSE for both networks. Examples of these graph topologies can be seen in Figure 4 . The results are
presented in Figure 5. It can be seen that both MSE and maximum error converges to 0 in all setups.
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(a) Cyclic GL (b) Erdős–Rényi GL

Figure 4: Example graph topologies with |L| = 6, |M| = 9 nodes.

|L| = 20, |M| = 30 |L| = 40, |M| = 60 |L| = 80, |M| = 120

T̂max ĉonmax T̂max ĉonmax T̂max ĉonmax

Cyclic 66 19 109 38 192 78
Erdős–Rényi 49 3 64 3 76 3

Table 1: This table shows T̂max and ĉonmax for 8 different setups. We can see that a higher ĉonmax usually
corresponds to a higher T̂max. This correlation is intuitive since ĉonmax is an indicator of how long it
takes for information to propagate from observing agents to non-observing agents. Since the graph topology
dictates ĉonmax, we observe a higher T̂max in Cyclic graphs compared to Erdős–Rényi graphs.

For each setup, we present the maximum contraction index, denoted by ĉonmax and T̂max in Table 1.
We define the maximum contraction index as ĉonmax = maxq∈V ĉonW Cq , where ĉonW Cq is defined in
(12).

5.2 The Effect of Malicious Agents

In this part, we investigate the effect of malicious agents in the system to the learning protocol. We use the
Erdős–Rényi graph setup from the previous part with 40 legitimate agents. We look into two cases: First,
we fix the number of malicious agents in the system to 60 and we change the likelihood that the malicious
agents make a connection with a legitimate agent. Then, we fix the probability of making a connection to
0.2 and increase the number of malicious agents in the system. The MSE graphs are shown in Fig 6

5.3 Necessity of Assumption 1.2

In our experiments, we empirically demonstrate the necessity of Assumption 1.2 for the learning protocol
to work. We generated a simple example with two legitimate agents and two malicious agents, which can
be seen in Figure 7. In this example, the malicious agent 1 is not an in-neighbor of either of the legitimate
nodes while the malicious agent 2 is an in-neighbor of both of the legitimate agents. With this setup,
both of the legitimate agents failed to learn the identity of the agent m1 as expected while learning all
of the other agents successfully in ten different trials. This is because before the legitimate agents learn
the trustworthiness of the malicious agent 2, the malicious agent 2 changes the opinions of the legitimate
agents about the malicious agent 1. After that, since none of the legitimate agents is directly observing the
malicious agent 1, their opinion does not change.
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(a) |L| = 20, |M| = 30 (b) |L| = 40, |M| = 60 (c) |L| = 80, |M| = 120

Figure 5: Convergence plots for three different cases where the number of malicious agents are chosen as
|M| = 1.5 × |L|. Solid lines represents the MSE. The shaded areas show the range of error among the
legitimate agents. We see that in all cases, the MSE converges to zero eventually as predicted by our theory.
Since the malicious agents can have influence on the other nodes in the beginning, we observe an increase
in the error at first. This effect is higher in cyclic graphs since the information takes longer to propagate.
Moreover, as we increase the size of the graph for cyclic graphs, the convergence time also increases. On
the other hand, since Erdős–Rényi graph has good connectivity in all cases, the convergence time is not as
sensitive to the graph size compared to the cyclic graphs.

(a) (b)

Figure 6: (a) The effect of increasing the expected number of connections that each malicious agent has.
Here, p denotes the probability that the edge (i,m) is present in the system, meaning that m ∈ M is an in-
neighbor of i ∈ L. As malicious agents are being observed by more agents, their early effect in the network
decreases since all of the directly observing agents learn their trustworthiness using their own observations,
without waiting for the information to propagate from the other learning agents. (b) The effect of increasing
the number of malicious agents in the system. As we increase the number of malicious agents in the system,
their effect on the legitimate agents’ opinions also increase. However, the opinions of the legitimate agents
still converge to the correct values eventually demonstrating agreement with our main result in Theorems 2
and 3.
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Figure 7: An example network topology where the learning is not guaranteed and the Assumption 1.2 is
violated. Since the agent 2 is not an in-neighbor of either of the legitimate agents, they fail to learn the
trustworthiness of this agent.

min max mean std
Cyclic 97 175 112.8 8.85
Erdős–Rényi 36 164 58.2 14.8

Table 2: This table shows the summary statistics of T̂max calculated over 500 random trials. In all trials, we
observe a finite time T̂max where no classification errors occur thereafter as predicted by the theory. Since
the connections between legitimate agents in Erdős–Rényi graph is random, a higher variation in T̂max is
observed.

5.4 Aggregate Results

We present numerical results over multiple trials in this section, each representing a random instantiation
of the graph topology and stochastic observations of trust drawn from the distribution described at the
beginning of this section. We fix the number of legitimate agents to 40 and the number of malicious agents
to 60. Then, we run 500 trials for both cyclic graph and Erdős–Rényi setups. For each trial, we run the
protocol for 1000 communication rounds and record the T̂max. The resulting statistics of T̂max are shown
in Table 2.

6 Conclusion

This paper presents a protocol for learning which agents to trust, and the accompanying analysis, for directed
multiagent graphs with stochastic observations of trust. Here, the directed nature of the graph presents an
important challenge where the out-neighbors of a node cannot directly observe or receive information from
it; this leads to a learning dynamic that makes accurate assessment of malicious agents in the network partic-
ularly elusive. The learning protocol developed herein specifically addresses this challenge of learning trust
in directed graphs and constitutes the novelty of this paper. Since directed graphs often arise in practical
multiagent systems due to heterogeneity in sensing and communication, we believe that the learning pro-
tocol and theory presented here can support many optimization, estimation, and learning tasks for general
multiagent systems.
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