
Stat 110 Strategic Practice 10, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1 Conditional Expectation & Conditional Variance

1. Show that E((Y � E(Y |X))2|X) = E(Y 2|X) � (E(Y |X))2, so these two ex-
pressions for Var(Y |X) agree.

2. Prove Eve’s Law.

3. Let X and Y be random variables with finite variances, and let W = Y �
E(Y |X). This is a residual : the di↵erence between the true value of Y and the
predicted value of Y based on X.

(a) Compute E(W ) and E(W |X).

(b) Compute Var(W ), for the case that W |X ⇠ N (0, X2) with X ⇠ N (0, 1).

4. Emails arrive one at a time in an inbox. Let Tn be the time at which the
nth email arrives (measured on a continuous scale from some starting point in
time). Suppose that the waiting times between emails are i.i.d. Expo(�), i.e.,
T1, T2 � T1, T3 � T2, . . . are i.i.d. Expo(�).

Each email is non-spam with probability p, and spam with probability q = 1�p
(independently of the other emails and of the waiting times). Let X be the
time at which the first non-spam email arrives (so X is a continuous r.v., with
X = T1 if the 1st email is non-spam, X = T2 if the 1st email is spam but the
2nd one isn’t, etc.).

(a) Find the mean and variance of X.

(b) Find the MGF of X. What famous distribution does this imply that X has
(be sure to state its parameter values)?

Hint for both parts: let N be the number of emails until the first non-spam
(including that one), and write X as a sum of N terms; then condition on N .

5. One of two identical-looking coins is picked from a hat randomly, where one
coin has probability p1 of Heads and the other has probability p2 of Heads. Let
X be the number of Heads after flipping the chosen coin n times. Find the
mean and variance of X.
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2 Inequalities

1. Let X and Y be i.i.d. positive r.v.s, and let c > 0. For each part below, fill
in the appropriate equality or inequality symbol: write = if the two sides are
always equal,  if the lefthand side is less than or equal to the righthand side
(but they are not necessarily equal), and similarly for �. If no relation holds
in general, write ?.

(a) E(ln(X)) ln(E(X))

(b) E(X)
p

E(X2)

(c) E(sin2(X)) + E(cos2(X)) 1

(d) E(|X|)
p

E(X2)

(e) P (X > c) E(X3)
c3

(f) P (X  Y ) P (X � Y )

(g) E(XY )
p

E(X2)E(Y 2)

(h) P (X + Y > 10) P (X > 5 or Y > 5)

(i) E(min(X, Y )) min(EX,EY )

(j) E(X/Y ) EX
EY

(k) E(X2(X2 + 1)) E(X2(Y 2 + 1))

(l) E( X3

X3+Y 3 ) E( Y 3

X3+Y 3 )

2. (a) Show that E(1/X) > 1/(EX) for any positive non-constant r.v. X.

(b) Show that for any two positive r.v.s X and Y with neither a constant
multiple of the other, E(X/Y )E(Y/X) > 1.

3. For i.i.d. r.v.s X1, . . . , Xn with mean µ and variance �2, give a value of n (as a
specific number) that will ensure that there is at least a 99% chance that the
sample mean will be within 2 standard deviations of the true mean µ.
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4. The famous arithmetic mean-geometric mean inequality says that for any pos-
itive numbers a1, a2, . . . , an,

a1 + a2 + · · ·+ an
n

� (a1a2 · · · an)1/n.

Show that this inequality follows from Jensen’s inequality, by considering E log(X)
for a r.v. X whose possible values are a1, . . . , an (you should specify the PMF
of X; if you want, you can assume that the aj are distinct (no repetitions), but
be sure to say so if you assume this).
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Stat 110 Strategic Practice 10 Solutions, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1 Conditional Expectation & Conditional Variance

1. Show that E((Y � E(Y |X))2|X) = E(Y 2|X) � (E(Y |X))2, so these two ex-
pressions for Var(Y |X) agree.

This is the conditional version of the fact that

Var(Y ) = E((Y � E(Y ))2) = E(Y 2)� (E(Y ))2,

and so must be true since conditional expectations are expectations, just as con-
ditional probabilities are probabilities. Algebraically, letting g(X) = E(Y |X)
we have

E((Y�E(Y |X))2|X) = E(Y 2�2Y g(X)+g(X)2|X) = E(Y 2|X)�2E(Y g(X)|X)+E(g(X)2|X),

and E(Y g(X)|X) = g(X)E(Y |X) = g(X)2, E(g(X)2|X) = g(X)2 by taking
out what’s known, so the righthand side above simplifies to E(Y 2|X)� g(X)2.

2. Prove Eve’s Law.

We will show that Var(Y ) = E(Var(Y |X))+Var(E(Y |X)). Let g(X) = E(Y |X).
By Adam’s Law, E(g(X)) = E(Y ). Then

E(Var(Y |X)) = E(E(Y 2|X)� g(X)2) = E(Y 2)� E(g(X)2),

Var(E(Y |X)) = E(g(X)2)� (E(g(X))2 = E(g(X)2)� (E(Y ))2.

Adding these equations, we have Eve’s Law.

3. Let X and Y be random variables with finite variances, and let W = Y �
E(Y |X). This is a residual : the di↵erence between the true value of Y and the
predicted value of Y based on X.

(a) Compute E(W ) and E(W |X).

Adam’s law (iterated expectation), taking out what’s known, and linearity give

E(W ) = EY � E(E(Y |X)) = EY � EY = 0,

E(W |X) = E(Y |X)� E(E(Y |X)|X) = E(Y |X)� E(Y |X) = 0.
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(b) Compute Var(W ), for the case that W |X ⇠ N (0, X2) with X ⇠ N (0, 1).

Eve’s Law gives

Var(W ) = Var(E(W |X)) + E(Var(W |X)) = Var(0) + E(X2) = 0 + 1 = 1.

4. Emails arrive one at a time in an inbox. Let Tn be the time at which the
nth email arrives (measured on a continuous scale from some starting point in
time). Suppose that the waiting times between emails are i.i.d. Expo(�), i.e.,
T

1

, T

2

� T

1

, T

3

� T

2

, . . . are i.i.d. Expo(�).

Each email is non-spam with probability p, and spam with probability q = 1�p

(independently of the other emails and of the waiting times). Let X be the
time at which the first non-spam email arrives (so X is a continuous r.v., with
X = T

1

if the 1st email is non-spam, X = T

2

if the 1st email is spam but the
2nd one isn’t, etc.).

(a) Find the mean and variance of X.

Write X = X

1

+X

2

+ · · ·+XN , where Xj is the time from the (j� 1)th to the
jth email for j � 2, and X

1

= T

1

. Then N � 1 ⇠ Geom(p), so

E(X) = E(E(X|N)) = E(N
1

�

) =
1

p�

.

And

Var(X) = E(Var(X|N)) + Var(E(X|N)) = E(N
1

�

2

) + Var(N
1

�

),

which is
1

p�

2

+
1� p

p

2

�

2

=
1

p

2

�

2

.

(b) Find the MGF of X. What famous distribution does this imply that X has
(be sure to state its parameter values)?

Hint for both parts: let N be the number of emails until the first non-spam
(including that one), and write X as a sum of N terms; then condition on N .

Again conditioning on N , the MGF is

E(etX) = E(E(etX1

e

tX
2 · · · etXN |N)) = E

�
E(etX1 |N)E(etX2 |N) . . . E(etXN |N)

�
= E(M

1

(t)N),
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where M

1

(t) is the MGF of X
1

(which is �
��t for t < �). By LOTUS, this is

p

1X

n=1

M

1

(t)nqn�1 =
p

q

1X

n=1

(qM
1

(t))n =
p

q

qM

1

(t)

1� qM

1

(t)
=

p�
��t

1� q�
��t

=
p�

p�� t

for t < p� (as we need qM

1

(t) < 1 for the series to converge). This is the
Expo(p�) MGF, so X ⇠ Expo(p�).

5. One of two identical-looking coins is picked from a hat randomly, where one
coin has probability p

1

of Heads and the other has probability p

2

of Heads. Let
X be the number of Heads after flipping the chosen coin n times. Find the
mean and variance of X.

The distribution of X is a mixture of two Binomials; we have seen before that
X is not Binomial unless p

1

= p

2

. Let I be the indicator of having the p
1

coin.
Then

E(X) = E(X|I = 1)P (I = 1) + E(X|I = 0)P (I = 0) =
1

2
n(p

1

+ p

2

).

Alternatively, we can representX asX = IX

1

+(1�I)X
2

withXj ⇠ Bin(n, pj),
and I,X

1

, X

2

independent. Then

E(X) = E(E(X|I)) = E(Inp
1

+ (1� I)np
2

) =
1

2
n(p

1

+ p

2

).

For the variance, note that it is not valid to say “Var(X) = Var(X|I = 1)P (I =
1) + Var(X|I = 0)P (I = 0)”; an extreme example of this mistake would be
claiming that “Var(I) = 0 since Var(I|I = 1)P (I = 1) + Var(I|I = 0)P (I =
0) = 0”; of course, Var(I) = 1

4

). Instead, we can use Eve’s Law:

Var(X) = E(Var(X|I)) + Var(E(X|I)),

where Var(X|I) = Inp

1

(1�p

1

)+(1�I)np
2

(1�p

2

) is np
1

(1�p

1

) with probability
1/2 and np

2

(1� p

2

) with probability 1/2, and E(X|I) = Inp

1

+ (1� I)np
2

is
np

1

or np
2

with probability 1

2

each, so

Var(X) =
1

2
(np

1

(1� p

1

) + np

2

(1� p

2

)) +
1

4
n

2(p
1

� p

2

)2.
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2 Inequalities

1. Let X and Y be i.i.d. positive r.v.s, and let c > 0. For each part below, fill
in the appropriate equality or inequality symbol: write = if the two sides are
always equal,  if the lefthand side is less than or equal to the righthand side
(but they are not necessarily equal), and similarly for �. If no relation holds
in general, write ?.

(a) E(ln(X))  ln(E(X)) (by Jensen: logs are concave)

(b) E(X) 
p

E(X2) (since Var(X) � 0, or by Jensen)

(c) E(sin2(X)) + E(cos2(X)) = 1 (by linearity, trig identity)

(d) E(|X|) 
p

E(X2) (by (b) with |X| in place of X; here |X| = X anyway)

(e) P (X > c)  E(X3

)

c3 (by Markov, after cubing both sides of X > c)

(f) P (X  Y ) = P (X � Y ) (by symmetry, as X, Y are i.i.d.)

(g) E(XY ) 
p

E(X2)E(Y 2) (by Cauchy-Schwarz)

(h) P (X + Y > 10)  P (X > 5 or Y > 5) (if X + Y > 10, then X > 5 or
Y > 5)

(i) E(min(X, Y ))  min(EX,EY ) (since min(X, Y )  X gives Emin(X, Y ) 
EX, and similarly Emin(X, Y )  EY )

(j) E(X/Y ) � EX
EY (since E(X/Y ) = E(X)E( 1

Y ), with E( 1

Y ) �
1

EY by Jensen)

(k) E(X2(X2+1)) � E(X2(Y 2+1)) (since E(X4) � (EX

2)2 = E(X2)E(Y 2) =
E(X2

Y

2), because X2 and Y

2 are i.i.d. and independent implies uncorrelated)

(l) E( X3

X3

+Y 3

) = E( Y 3

X3

+Y 3

) (by symmetry!)

2. (a) Show that E(1/X) > 1/(EX) for any positive non-constant r.v. X.

The function g(x) = 1/x is strictly convex because g

00(x) = 2x�3

> 0 for
all x > 0, so Jensen’s inequality yields E(1/X) > 1/(EX). for any positive
non-constant r.v. X.

(b) Show that for any two positive r.v.s X and Y with neither a constant
multiple of the other, E(X/Y )E(Y/X) > 1.
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The r.v. W = Y/X is positive and non-constant, so (a) yields

E(X/Y ) = E(1/W ) > 1/E(W ) = 1/E(Y/X).

3. For i.i.d. r.v.s X
1

, . . . , Xn with mean µ and variance �2, give a value of n (as a
specific number) that will ensure that there is at least a 99% chance that the
sample mean will be within 2 standard deviations of the true mean µ.

We have to find n such that

P (|Xn � µ| > 2�)  0.01.

By Chebyshev’s inequality (in the form P (|Y � EY | > c)  Var(Y )

c2 ), we have

P (|Xn � µ| > 2�)  VarX̄n

(2�)2
=

�2

n

4�2

=
1

4n
.

So the desired inequality holds if n � 25.

4. The famous arithmetic mean-geometric mean inequality says that for any pos-
itive numbers a

1

, a

2

, . . . , an,

a

1

+ a

2

+ · · ·+ an

n

� (a
1

a

2

· · · an)1/n.

Show that this inequality follows from Jensen’s inequality, by considering E log(X)
for a r.v. X whose possible values are a

1

, . . . , an (you should specify the PMF
of X; if you want, you can assume that the aj are distinct (no repetitions), but
be sure to say so if you assume this).

Assume that the aj are distinct, and let X be a random variable which takes
values from a

1

, a

2

, ..., an with equal probability (the case of repeated aj’s can
be handled similarly, letting the probability of X = aj be mj/n, where mj

is the number of times aj appears in the list a

1

, . . . , an). Jensen’s inequality
gives E(logX)  log(EX), since the log function is concave. The left-hand
side is 1

n

Pn
i=1

log ai, while the right hand-side is log a
1

+a
2

+···+an
n . So we have

the following inequality:

log
a

1

+ a

2

+ · · ·+ an

n

� 1

n

nX

i=1

log ai

Thus,

a

1

+ a

2

+ · · ·+ an

n

� e

1

n

Pn
i=1

log ai = e

log(a
1

···an)

n = (a
1

· · · an)1/n.
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Stat 110 Penultimate Homework, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1. Judit plays in a total of N ⇠ Geom(s) chess tournaments in her career. Suppose
that in each tournament she has probability p of winning the tournament, indepen-
dently. Let T be the number of tournaments she wins in her career.

(a) Find the mean and variance of T .

(b) Find the MGF of T . What is the name of this distribution (with its parameters)?

2. Let X1, X2 be i.i.d., and let X̄ = 1
2(X1 +X2). In many statistics problems, it is

useful or important to obtain a conditional expectation given X̄. As an example of
this, find E(w1X1 + w2X2|X̄), where w1, w2 are constants with w1 + w2 = 1.

3. A certain stock has low volatility on some days and high volatility on other days.
Suppose that the probability of a low volatility day is p and of a high volatility day
is q = 1� p, and that on low volatility days the percent change in the stock price is
N (0, �2

1), while on high volatility days the percent change is N (0, �2
2), with �1 < �2.

Let X be the percent change of the stock on a certain day. The distribution is
said to be a mixture of two Normal distributions, and a convenient way to represent
X is as X = I1X1+ I2X2 where I1 is the indicator r.v. of having a low volatility day,
I2 = 1� I1, Xj ⇠ N (0, �2

j ), and I1, X1, X2 are independent.

(a) Find the variance of X in two ways: using Eve’s Law, and by calculating
Cov(I1X1 + I2X2, I1X1 + I2X2) directly.

(b) The kurtosis of a r.v. Y with mean µ and standard deviation � is defined by

Kurt(Y ) =
E(Y � µ)4

�4
� 3.

This is a measure of how heavy-tailed the distribution of Y . Find the kurtosis of X
(in terms of p, q, �2

1, �
2
2, fully simplified). The result will show that even though the

kurtosis of any Normal distribution is 0, the kurtosis of X is positive and in fact can
be very large depending on the parameter values.

4. We wish to estimate an unknown parameter ✓, based on a r.v. X we will get
to observe. As in the Bayesian perspective, assume that X and ✓ have a joint
distribution. Let ✓̂ be the estimator (which is a function of X). Then ✓̂ is said to be
unbiased if E(✓̂|✓) = ✓, and ✓̂ is said to be the Bayes procedure if E(✓|X) = ✓̂.
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(a) Let ✓̂ be unbiased. Find E(✓̂ � ✓)2 (the average squared di↵erence between the
estimator and the true value of ✓), in terms of marginal moments of ✓̂ and ✓.

Hint: condition on ✓.

(b) Repeat (a), except in this part suppose that ✓̂ is the Bayes procedure rather than
assuming that it is unbiased.

Hint: condition on X.

(c) Show that it is impossible for ✓̂ to be both the Bayes procedure and unbiased,
except in silly problems where we get to know ✓ perfectly by observing X.

Hint: if Y is a nonnegative r.v. with mean 0, then P (Y = 0) = 1.

5. The surprise of learning that an event with probability p happened is defined as
log2(1/p) (where the log is base 2 so that if we learn that an event of probability 1/2
happened, the surprise is 1, which corresponds to having received 1 bit of informa-
tion). Let X be a discrete r.v. whose possible values are a1, a2, . . . , an (distinct real
numbers), with P (X = aj) = pj (where p1 + p2 + · · ·+ pn = 1).

The entropy of X is defined to be the average surprise of learning the value of X,
i.e., H(X) =

Pn
j=1 pj log2(1/pj). This concept was used by Shannon to create the

field of information theory, which is used to quantify information and has become
essential for communication and compression (e.g., MP3s and cell phones).

(a) Explain why H(X3) = H(X), and give an example where H(X2) 6= H(X).

(b) Show that the maximum possible entropy forX is when its distribution is uniform
over a1, a2, . . . , an, i.e., P (X = aj) = 1/n. (This should make sense intuitively:
learning the value of X conveys the most information on average when X is equally
likely to take any of its values, and the least possible information if X is a constant.)

Hint: this can be done by Jensen’s inequality, without any need for calculus. To do
so, consider a r.v. Y whose possible values are the probabilities p1, . . . , pn, and show
why E(log2(1/Y ))  log2(E(1/Y )) and how to interpret it.

6. In a national survey, a random sample of people are chosen and asked whether they
support a certain policy. Assume that everyone in the population is equally likely
to be surveyed at each step, and that the sampling is with replacement (sampling
without replacement is typically more realistic, but with replacement will be a good
approximation if the sample size is small compared to the population size). Let n be
the sample size, and let p̂ and p be the proportion of people who support the policy
in the sample and in the entire population, respectively. Show that for every c > 0,

P (|p̂� p| > c)  1

4nc2
.
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Stat 110 Penultimate Homework Solutions, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1. Judit plays in a total of N ⇠ Geom(s) chess tournaments in her career. Suppose
that in each tournament she has probability p of winning the tournament, indepen-
dently. Let T be the number of tournaments she wins in her career.

(a) Find the mean and variance of T .

We have T |N ⇠ Bin(N, p). By Adam’s Law,

E(T ) = E(E(T |N)) = E(Np) = p(1� s)/s.

By Eve’s Law,

Var(T ) = E(Var(T |N)) + Var(E(T |N))

= E(Np(1� p)) + Var(Np)

= p(1� p)(1� s)/s+ p2(1� s)/s2

=
p(1� s)(s+ (1� s)p)

s2
.

(b) Find the MGF of T . What is the name of this distribution (with its parameters)?

Let Ij ⇠ Bern(p) be the indicator of Judit winning the jth tournament. Then

E(etT ) = E(E(etT |N))

= E((pet + q)N)

= s
1X

n=0

(pet + 1� p)n(1� s)n

=
s

1� (1� s)(pet + 1� p)
.

This is reminiscent of the Geometric MGF used on HW 9. The famous discrete
distributions we have studied whose possible values are 0, 1, 2, . . . are the Poisson,
Geometric, and Negative Binomial, and T is clearly not Poisson since its variance
doesn’t equal its mean. If T ⇠ Geom(✓), we have ✓ = s

s+p(1�s) , as found by setting

E(T ) = 1�✓
✓ or by finding Var(T )/E(T ). Writing the MGF of T as

E(etT ) =
s

s+ (1� s)p� (1� s)pet
=

s
s+(1�s)p

1� (1�s)p
s+(1�s)pe

t
,

1



we see that T ⇠ Geom(✓), with ✓ = s
s+(1�s)p . Note that this is consistent with (a).

The distribution of T can also be obtained by a story proof. Imagine that just before
each tournament she may play in, Judit retires with probability s (if she retires,
she does not play in that or future tournaments). Her tournament history can be
written as a sequence of W (win), L (lose), R (retire), ending in the first R, where
the probabilities of W,L,R are (1� s)p, (1� s)(1�p), s respectively. For calculating
T , the losses can be ignored: we want to count the number of W ’s before the R. The
probability that a result is R given that it is W or R is s

s+(1�s)p , so we again have

T ⇠ Geom( s
s+(1�s)p).

2. Let X1, X2 be i.i.d., and let X̄ = 1
2(X1 +X2). In many statistics problems, it is

useful or important to obtain a conditional expectation given X̄. As an example of
this, find E(w1X1 + w2X2|X̄), where w1, w2 are constants with w1 + w2 = 1.

By symmetry E(X1|X̄) = E(X2|X̄) and by linearity and taking out what’s known,
E(X1|X̄) + E(X2|X̄) = E(X1 + X2|X̄) = X1 + X2. So E(X1|X̄) = E(X2|X̄) = X̄
(this was also derived in class). Thus,

E(w1X1 + w2X2|X̄) = w1E(X1|X̄) + w2E(X2|X̄) = w1X̄ + w2X̄ = X̄.

3. A certain stock has low volatility on some days and high volatility on other days.
Suppose that the probability of a low volatility day is p and of a high volatility day
is q = 1� p, and that on low volatility days the percent change in the stock price is
N (0, �2

1), while on high volatility days the percent change is N (0, �2
2), with �1 < �2.

Let X be the percent change of the stock on a certain day. The distribution is
said to be a mixture of two Normal distributions, and a convenient way to represent
X is as X = I1X1+ I2X2 where I1 is the indicator r.v. of having a low volatility day,
I2 = 1� I1, Xj ⇠ N (0, �2

j ), and I1, X1, X2 are independent.

(a) Find the variance of X in two ways: using Eve’s Law, and by calculating
Cov(I1X1 + I2X2, I1X1 + I2X2) directly.

By Eve’s Law,

Var(X) = E(Var(X|I1))+Var(E(X|I1)) = E(I21�
2
1+(1�I1)

2�2
2)+Var(0) = p�2

1+(1�p)�2
2,

since I21 = I1, I
2
2 = I2. For the covariance method, expand

Var(X) = Cov(I1X1+I2X2, I1X1+I2X2) = Var(I1X1)+Var(I2X2)+2Cov(I1X1, I2X2).

Then Var(I1X1) = E(I21X
2
1 )�(E(I1X1))

2 = E(I1)E(X2
1 ) = pVar(X1) since E(I1X1) =

E(I1)E(X1) = 0. Similarly, Var(I2X2) = (1 � p)Var(X2). And Cov(I1X1, I2X2) =

2



E(I1I2X1X2) � E(I1X1)E(I2X2) = 0 since I1I2 always equals 0. So again we have
Var(X) = p�2

1 + (1� p)�2
2.

(b) The kurtosis of a r.v. Y with mean µ and standard deviation � is defined by

Kurt(Y ) =
E(Y � µ)4

�4
� 3.

This is a measure of how heavy-tailed the distribution of Y . Find the kurtosis of X
(in terms of p, q, �2

1, �
2
2, fully simplified). The result will show that even though the

kurtosis of any Normal distribution is 0, the kurtosis of X is positive and in fact can
be very large depending on the parameter values.

Note that (I1X1 + I2X2)
4 = I1X

4
1 + I2X

4
2 since the cross terms disappear (because

I1I2 is always 0) and any positive power of an indicator r.v. is that indicator r.v.! So

E(X4) = E(I1X
4
1 + I2X

4
2 ) = 3p�4

1 + 3q�4
2.

Alternatively, we can use E(X4) = E(X4|I1 = 1)p + E(X4|I1 = 0)q to find E(X4).
The mean of X is E(I1X1) + E(I2X2) = 0, so the kurtosis of X is

Kurt(X) =
3p�4

1 + 3q�4
2

(p�2
1 + q�2

2)
2
� 3.

This becomes 0 if �1 = �2, since then we have a Normal distribution rather than a
mixture of two di↵erent Normal distributions. For �1 < �2, the kurtosis is positive
since p�4

1 + q�4
2 > (p�2

1 + q�2
2)

2, as seen by a Jensen’s inequality argument, or by
interpreting this as saying E(Y 2) > (EY )2 where Y is �2

1 with probability p and �2
2

with probability q.

4. We wish to estimate an unknown parameter ✓, based on a r.v. X we will get
to observe. As in the Bayesian perspective, assume that X and ✓ have a joint
distribution. Let ✓̂ be the estimator (which is a function of X). Then ✓̂ is said to be
unbiased if E(✓̂|✓) = ✓, and ✓̂ is said to be the Bayes procedure if E(✓|X) = ✓̂.

(a) Let ✓̂ be unbiased. Find E(✓̂ � ✓)2 (the average squared di↵erence between the
estimator and the true value of ✓), in terms of marginal moments of ✓̂ and ✓.

Hint: condition on ✓.
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Conditioning on ✓, we have

E(✓̂ � ✓)2 = E(E(✓̂2 � 2✓̂✓ + ✓2|✓))
= E(E(✓̂2|✓))� E(E(2✓̂✓|✓)) + E(E(✓2|✓))
= E(✓̂2)� 2E(✓E(✓̂|✓)) + E(✓2)

= E(✓̂2)� 2E(✓2) + E(✓2)

= E(✓̂2)� E(✓2).

(b) Repeat (a), except in this part suppose that ✓̂ is the Bayes procedure rather than
assuming that it is unbiased.

Hint: condition on X.

By the same argument as (a) except now conditioning on X, we have

E(✓̂ � ✓)2 = E(E(✓̂2 � 2✓̂✓ + ✓2|X))

= E(E(✓̂2|X))� E(E(2✓̂✓|X)) + E(E(✓2|X))

= E(✓̂2)� 2E(✓̂2) + E(✓2)

= E(✓2)� E(✓̂2).

(c) Show that it is impossible for ✓̂ to be both the Bayes procedure and unbiased,
except in silly problems where we get to know ✓ perfectly by observing X.

Hint: if Y is a nonnegative r.v. with mean 0, then P (Y = 0) = 1.

Suppose that ✓̂ is both the Bayes procedure and unbiased. By the above, we have
E(✓̂�✓)2 = a and E(✓̂�✓)2 = �a, where a = E(✓̂2)�E(✓2). But that implies a = 0,
which means that ✓̂ = ✓ (with probability 1). That can only happen in the extreme
situation where the observed data reveal the true ✓ perfectly ; in practice, nature is
much more elusive and does not reveal its deepest secrets with such alacrity.

5. The surprise of learning that an event with probability p happened is defined as
log2(1/p) (where the log is base 2 so that if we learn that an event of probability 1/2
happened, the surprise is 1, which corresponds to having received 1 bit of informa-
tion). Let X be a discrete r.v. whose possible values are a1, a2, . . . , an (distinct real
numbers), with P (X = aj) = pj (where p1 + p2 + · · ·+ pn = 1).

The entropy of X is defined to be the average surprise of learning the value of X,
i.e., H(X) =

Pn
j=1 pj log2(1/pj). This concept was used by Shannon to create the

field of information theory, which is used to quantify information and has become
essential for communication and compression (e.g., MP3s and cell phones).
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(a) Explain why H(X3) = H(X), and give an example where H(X2) 6= H(X).

Note that the definition of H(X) depends only on the probabilities of the distinct
values of X, not on what the values are. Since the function g(x) = x3 is one-to-
one, P (X3 = a3j) = pj for all j. So H(X3) = H(X). For a simple example where
H(X2) 6= H(X), let X be a “random sign,” i.e., let X take values �1 and 1 with
probability 1/2 each. Then X2 has entropy 0, whereas X has entropy log2(2) = 1.

(b) Show that the maximum possible entropy forX is when its distribution is uniform
over a1, a2, . . . , an, i.e., P (X = aj) = 1/n. (This should make sense intuitively:
learning the value of X conveys the most information on average when X is equally
likely to take any of its values, and the least possible information if X is a constant.)

Hint: this can be done by Jensen’s inequality, without any need for calculus. To do
so, consider a r.v. Y whose possible values are the probabilities p1, . . . , pn, and show
why E(log2(1/Y ))  log2(E(1/Y )) and how to interpret it.

Let Y be as in the hint. Then H(X) = E(log2(1/Y )) and E(1/Y ) =
Pn

j=1
pj
pj

= n.

By Jensen’s inequality, E(log2(T ))  log2(E(T )) for any positive r.v. T , since log2
is a concave function. Therefore,

H(X) = E(log2(1/Y ))  log2(E(1/Y )) = log2(n).

Equality holds if and only if 1/Y is a constant, which is the case where pj = 1/n for
all j. This corresponds to X being equally likely to take on each of its values.

6. In a national survey, a random sample of people are chosen and asked whether they
support a certain policy. Assume that everyone in the population is equally likely
to be surveyed at each step, and that the sampling is with replacement (sampling
without replacement is typically more realistic, but with replacement will be a good
approximation if the sample size is small compared to the population size). Let n be
the sample size, and let p̂ and p be the proportion of people who support the policy
in the sample and in the entire population, respectively. Show that for every c > 0,

P (|p̂� p| > c)  1

4nc2
.

We can write p̂ = X/n with X ⇠ Bin(n, p). So E(p̂) = p,Var(p̂) = p(1� p)/n. Then
by Chebyshev’s inequality,

P (|p̂� p| > c)  Var(p̂)

c2
=

p(1� p)

nc2
 1

4nc2
,

where the last inequality is because p(1� p) is maximized at p = 1/2.
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