
Stat 110 Strategic Practice 11, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1 Law of Large Numbers, Central Limit Theorem

1. Give an intuitive argument that the Central Limit Theorem implies the Weak
Law of Large Numbers, without worrying about the di↵erent forms of conver-
gence; then briefly explain how the forms of convergence involved are di↵erent.

2. (a) Explain why the Pois(n) distribution is approximately Normal if n is a large
positive integer (specifying what the parameters of the Normal are).

(b) Stirling’s formula is an amazingly accurate approximation for factorials:

n! ⇡
p
2⇡n

⇣
n

e

⌘n
,

where in fact the ratio of the two sides goes to 1 as n ! 1. Use (a) to give a
quick heuristic derivation of Stirling’s formula by using a Normal approximation
to the probability that a Pois(n) r.v. is n, with the continuity correction: first
write P (N = n) = P (n� 1

2 < N < n+ 1
2), where N ⇠ Pois(n).

3. Let T1, T2, . . . be i.i.d. Student-t r.v.s with m � 3 degrees of freedom. Find
constants an and bn (in terms of m and n) such that an(T1+T2+ · · ·+Tn� bn)
converges to N (0, 1) in distribution as n ! 1.

4. Let X1, X2, . . . be i.i.d. positive random variables with mean 2. Let Y1, Y2, . . .

be i.i.d. positive random variables with mean 3. Show that

X1 +X2 + · · ·+Xn

Y1 + Y2 + · · ·+ Yn
! 2

3

with probability 1. Does it matter whether the Xi are independent of the Yj?

5. Let f be a complicated function whose integral
R b

a f(x)dx we want to ap-
proximate. Assume that 0  f(x)  c. Let A be the rectangle in the
(x, y)-plane given by a  x  b and 0  y  c. Pick i.i.d. uniform points
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) in the rectangle A.

How would you use these random points to approximate the integral? (This
is an example of a Monte Carlo method.) Show that the estimate converges to
the true value of the integral as n ! 1. Hint: look at whether each point is
in the area below the curve y = f(x).

1



2 Multivariate Normal

1. Show that if (X1, X2, X3) is Multivariate Normal, then so is the subvector
(X1, X2).

2. Is it true that if X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are Multivariate
Normals with X independent of Y, then the “concatenated” random vector
W = (X1, . . . , Xn, Y1, . . . , Ym) is Multivariate Normal?

3. Let (X, Y ) be Bivariate Normal, with X, Y ⇠ N (0, 1) (marginally) and correla-
tion ⇢, where �1 < ⇢ < 1. Find a, b, c, d (in terms of ⇢) such that Z = aX+bY

and W = cX + dY are independent N (0, 1).

4. Let X1, . . . , Xn be i.i.d. N (µ, �2), with n � 2. Let X̄n be the sample mean,
and let S2

n = 1
n�1

Pn
j=1(Xj � X̄n)2 (this is called the sample variance, and is an

unbiased estimator for �2). Show that X̄n and S

2
n are independent by applying

MVN ideas and results to the vector (X̄n, X1 � X̄n, . . . , Xn � X̄n).

3 Markov Chains

1. Let X0, X1, X2 . . . be a Markov chain. Show that X0, X2, X4, X6, . . . is also a
Markov chain, and explain why this makes sense intuitively.

Let Yn = X2n; we need to show Y0, Y1, . . . is a Markov chain. By the definition
of a Markov chain, we know thatX2n+1, X2n+2, . . . (“the future” if we define the
“present” to be time 2n) is conditionally independent ofX0, X1, . . . , X2n�2, X2n�1

(“the past”), given X2n. So given Yn, we have that Yn+1, Yn+2, . . . is condition-
ally independent of Y0, Y1, . . . , Yn�1. Thus,

P (Yn+1 = y|Y0 = y0, . . . , Yn = yn) = P (Yn+1 = y|Yn = yn).

2. Consider the Markov chain shown below, with state space {1, 2, 3, 4} and where
the labels next to arrows indicate the probabilities of those transitions.

(a) Write down the transition matrix Q for this chain.

(b) Which states (if any) are recurrent? Which states (if any) are transient?

(c) Find two di↵erent stationary distributions for the chain.
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1 0.5

2

0.5 0.25

0.75

3 0.25

4

0.75 0.75

0.25

3. A cat and a mouse move independently back and forth between two rooms.
At each time step, the cat moves from the current room to the other room
with probability 0.8. Starting from Room 1, the mouse moves to Room 2 with
probability 0.3 (and remains otherwise). Starting from Room 2, the mouse
moves to Room 1 with probability 0.6 (and remains otherwise).

(a) Find the stationary distributions of the cat chain and of the mouse chain.

(b) Note that there are 4 possible (cat, mouse) states: both in Room 1, cat in
Room 1 and mouse in Room 2, cat in Room 2 and mouse in Room 1, and both
in Room 2. Number these cases 1,2,3,4 respectively, and let Zn be the number
of the current (cat, mouse) state at time n. Is Z0, Z1, Z2, . . . a Markov chain?

4. In chess, the king can move one square at a time in any direction (horizontally,
vertically, or diagonally).

For example, in the diagram, from the current position the king can move to
any of 8 possible squares. A king is wandering around on an otherwise empty
8 by 8 chessboard, where for each move all possibilities are equally likely. Find
the stationary distribution of this chain (of course, don’t list out a vector of
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length 64 explicitly! Classify the 64 squares into “types” and say what the
stationary probability is for a square of each type).

5. Markov chains have recently been applied to code-breaking; this problem will
consider one way in which this can be done. A substitution cipher is a permu-
tation g of the letters from a to z, where a message is enciphered by replacing
each letter ↵ by g(↵). For example, if g is the permutation given by

abcdefghijklmnopqrstuvwxyz

zyxwvutsrqponmlkjihgfedcba

where the second row lists the values g(a), g(b), . . . , g(z), then we would enci-
pher the word “statistics” as “hgzgrhgrxh”. The state space is all 26! ⇡ 4 ·1026
permutations of the letters a through z.

(a) Consider the chain that picks two di↵erent random coordinates between 1
and 26 and swaps those entries of the 2nd row, e.g., if we pick 7 and 20, then

abcdefghijklmnopqrstuvwxyz

zyxwvutsrqponmlkjihgfedcba

becomes

abcdefghijklmnopqrstuvwxyz

zyxwvugsrqponmlkjihtfedcba

Find the probability of going from a permutation g to a permutation h in one
step (for all g, h), and find the stationary distribution of this chain.

(b) Suppose we have a system that assigns a positive “score” s(g) to each
permutation g (intuitively, this could be a measure of how likely it would be to
get the observed enciphered text, given that g was the cipher used). Consider
the following Markov chain. Starting from any state g, generate a “proposal” h

using the chain from (a). If s(g)  s(h), then go to h (i.e., accept the proposal).
Otherwise, flip a coin with probability s(h)/s(g) of Heads. If Heads, go to h

(i.e., accept the proposal); if Tails, stay at g. Show that this chain is reversible
and has stationary distribution proportional to the list of all scores s(g).

Hint: for g 6= h, let q(g, h) be the probability of going from g to h in one step,
and show that s(g)q(g, h) = s(h)q(h, g). To compute q(g, h), note that it is the
probability of proposing h when at g, times the probability of accepting the
proposal.
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Stat 110 Strategic Practice 11 Solutions, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1 Law of Large Numbers, Central Limit Theorem

1. Give an intuitive argument that the Central Limit Theorem implies the Weak
Law of Large Numbers, without worrying about the di↵erent forms of conver-
gence; then briefly explain how the forms of convergence involved are di↵erent.

Let X1, X2, . . . be i.i.d. with mean µ and variance �

2. The CLT says that
p
n

�

(X̄n � µ) ! N (0, 1)

in distribution. Since
p
n goes to infinity, it makes sense that X̄n�µ should go

to 0, to prevent
p
n(X̄n � µ) from exploding. The CLT is more informative in

the sense that it gives the shape of the distribution of the sample mean (after
standardization), and gives information about the rate at which the sample
mean goes to the true mean (replacing

p
n by a di↵erent power of n, the

expression would go to 0 or 1 rather than to a Normal distribution).

On the other hand, the CLT is a statement about convergence in distribution

(i.e., the distribution of the r.v. on the left goes to the standard Normal distri-
bution), while the Weak Law of Large Numbers says that the r.v. X̄n will be
extremely close to µ with extremely high probability, for n large enough.

2. (a) Explain why the Pois(n) distribution is approximately Normal if n is a large
positive integer (specifying what the parameters of the Normal are).

Let Sn = X1 + · · · +Xn, with X1, X2, . . . i.i.d. ⇠ Pois(1). Then Sn ⇠ Pois(n)
and for n large, Sn is approximately N (n, n) by the CLT.

(b) Stirling’s formula is an amazingly accurate approximation for factorials:

n! ⇡
p
2⇡n

⇣
n

e

⌘n
,

where in fact the ratio of the two sides goes to 1 as n ! 1. Use (a) to give a
quick heuristic derivation of Stirling’s formula by using a Normal approximation
to the probability that a Pois(n) r.v. is n, with the continuity correction: first
write P (N = n) = P (n� 1

2 < N < n+ 1
2), where N ⇠ Pois(n).
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Let N ⇠ Pois(n) and X ⇠ N (n, n). Then

P (N = n) ⇡ P

✓
n� 1

2
< X < n+

1

2

◆
=

1p
2⇡n

Z n+1/2

n�1/2

e

�(x�n)2

2n
dx.

The integral is approximately 1 since the interval of integration has length 1
and for large n the integrand is very close to 1 throughout the interval. So

e

�n
n

n
/n! ⇡ (2⇡n)�1/2

.

Rearranging this gives exactly Stirling’s formula.

3. Let T1, T2, . . . be i.i.d. Student-t r.v.s with m � 3 degrees of freedom. Find
constants an and bn (in terms of m and n) such that an(T1+T2+ · · ·+Tn� bn)
converges to N (0, 1) in distribution as n ! 1.

First let us find the mean and variance of each Tj. Let T = Zp
V/m

with

Z ⇠ N (0, 1) independent of V ⇠ �

2
m. By LOTUS, for G ⇠ Gamma(a,�),

E(Gr) is ��r�(a+ r)/�(a) for r > �a, and does not exist for r  �a. So

E(T ) = E(Z)E(
1p
V/m

) = 0,

Var(T ) = E(T 2)� (ET )2 = mE(Z2)E

✓
1

V

◆

= m

(1/2)�(m/2� 1)

�(m/2)

=
m�(m/2� 1)

2�(m/2)

=
m/2

m/2� 1
=

m

m� 2
.

By the CLT (and linearity of E, and the fact that the variance of the sum of
uncorrelated r.v.s is the sum of the variances), this is true for

bn = E(T1) + . . .+ E(Tn) = 0,

an =
1p

Var(T1) + · · ·+Var(Tn)
=

r
m� 2

mn

.
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4. Let X1, X2, . . . be i.i.d. positive random variables with mean 2. Let Y1, Y2, . . .

be i.i.d. positive random variables with mean 3. Show that

X1 +X2 + · · ·+Xn

Y1 + Y2 + · · ·+ Yn
! 2

3

with probability 1. Does it matter whether the Xi are independent of the Yj?

By the Law of Large Numbers, X1+X2+···+X
n

n ! 2 with probability 1 and
Y1+Y2+···+Y

n

n ! 3 with probability 1, as n ! 1. Note that if two events A

and B both have probability 1, then the event A\B also has probability 1. So
with probability 1, both the convergence involving the Xi and the convergence
involving the Yj occur. Therefore,

X1 +X2 + · · ·+Xn

Y1 + Y2 + · · ·+ Yn
=

(X1 +X2 + · · ·+Xn)/n

(Y1 + Y2 + · · ·+ Yn)/n
! 2

3
with probability 1

as n ! 1. It was not necessary to assume that the Xi are independent of the
Yj because of the pointwise with probability 1 convergence.

5. Let f be a complicated function whose integral
R b

a f(x)dx we want to ap-
proximate. Assume that 0  f(x)  c. Let A be the rectangle in the
(x, y)-plane given by a  x  b and 0  y  c. Pick i.i.d. uniform points
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) in the rectangle A.

How would you use these random points to approximate the integral? (This
is an example of a Monte Carlo method.) Show that the estimate converges to
the true value of the integral as n ! 1. Hint: look at whether each point is
in the area below the curve y = f(x).

Let B be the region under the curve y = f(x) (and above the x axis) for
a  x  b, so the desired integral is the area of region B. Define indicator r.v.s
I1, . . . , In by letting Ij = 1 if Xj is in B and Ij = 0 otherwise. Let µ = E(I1).
In terms of areas, µ is the ratio of the area of B to the area of the rectangle A:

µ = E(Ij) = P (Ij = 1) =

R b

a f(x)dx

c(b� a)
.

We can estimate µ using 1
n

Pn
j=1 Ij, and then estimate the desired integral by

Z b

a

f(x)dx ⇡ c(b� a)
1

n

nX

j=1

Ij.

Since the Ij are i.i.d. with mean µ, it follows from the Law of Large Numbers
that with probability 1, the estimate converges to the true value of the integral.
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2 Multivariate Normal

1. Show that if (X1, X2, X3) is Multivariate Normal, then so is the subvector
(X1, X2).

Any linear combination t1X1 + t2X2 can be thought of as a linear combination
of X1, X2, X3 (where the coe�cient of X3 is 0), so t1X1 + t2X2 is Normal for
all t1, t2, which shows that (X1, X2) is MVN.

2. Is it true that if X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) are Multivariate
Normals with X independent of Y, then the “concatenated” random vector
W = (X1, . . . , Xn, Y1, . . . , Ym) is Multivariate Normal?

Yes, since any linear combination s1X1+· · ·+snXn+t1Y1+· · ·+tmYm is Normal,
because s1X1 + · · ·+ snXn and t1Y1 + · · ·+ tmYm are Normal (by definition of
X and Y being MVN) and are independent, so their sum is Normal.

3. Let (X, Y ) be Bivariate Normal, with X, Y ⇠ N (0, 1) (marginally) and correla-
tion ⇢, where �1 < ⇢ < 1. Find a, b, c, d (in terms of ⇢) such that Z = aX+bY

and W = cX + dY are independent N (0, 1).

We need to find a, b, c, d such that

Cov(Z,W ) = Cov(aX + bY, cX + dY )

= Cov(aX, cX) + Cov(bY, cX) + Cov(aX, dY ) + Cov(bY, dY )

= acVar(X) + (bc+ ad)Cov(X, Y ) + dbVar(Y )

= ac+ (bc+ ad)⇢+ db = 0, (1)

Var(Z) = Cov(aX + bY, aX + bY )

= a

2Var(X) + 2abCov(X, Y ) + b

2Var(Y )

= a

2 + 2ab⇢+ b

2 = 1, (2)

Var(W ) = c

2 + 2cd⇢+ d

2 = 1. (3)

Since uncorrelated implies independent within a Multivariate Normal, if we
can solve these equations then Z and W are as desired. These are 3 equations
in 4 unknowns, so there may be many solutions; let us simplify by looking for
a solution with a = 1. Then by (2), 2b⇢ + b

2 = b(2⇢ + b) = 0, so b = 0 or
b = �2⇢. Trying the possibility b = 0, we then have c = �d⇢ by (1). Plugging
this into equation (3) gives us

(�d⇢)2 + 2(�d⇢)d⇢+ d

2 = d

2(1� ⇢

2) = 1,
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which yields d = ±1/
p

1� ⇢

2. So if we let a = 1, b = 0, c = �⇢/

p
1� ⇢

2
, and

d = 1/
p

1� ⇢

2, then Z = aX + bY and W = cX + dY are i.i.d. N (0, 1).

4. Let X1, . . . , Xn be i.i.d. N (µ, �2), with n � 2. Let X̄n be the sample mean,
and let S2

n = 1
n�1

Pn
j=1(Xj � X̄n)2 (this is called the sample variance, and is an

unbiased estimator for �2). Show that X̄n and S

2
n are independent by applying

MVN ideas and results to the vector (X̄n, X1 � X̄n, . . . , Xn � X̄n).

The vector X̄n, X1 � X̄n, . . . , Xn � X̄n) is MVN since any linear combination
of its components can be written as a linear combination of X1, . . . , Xn. Now
compute the covariance of X̄n with Xj � X̄n:

Cov(X̄n, Xj � X̄n) = E(X̄n(Xj � X̄n)).

This can be found by expanding it out, but a faster way is to use Adam’s Law
to write it as

E(E(X̄n(Xj � X̄n)|X̄n)) = E(X̄n(E(Xj � X̄n)|X̄n)).

But this is 0 since E(Xj � X̄n|X̄n) = E(Xj|X̄n)� E(X̄n|X̄n) = X̄n � X̄n = 0,
using the idea of Problem 2 from the Penultimate Homework. Therefore, X̄n

is uncorrelated with (X1 � X̄n, . . . , Xn � X̄n) (i.e., it is uncorrelated with each
component of this vector). Since within a MVN it is true that uncorrelated
implies independent, we have that X̄n is independent of (X1�X̄n, . . . , Xn�X̄n).
Thus, X̄n is independent of S2

n.

3 Markov Chains

1. Let X0, X1, X2 . . . be a Markov chain. Show that X0, X2, X4, X6, . . . is also a
Markov chain, and explain why this makes sense intuitively.

Let Yn = X2n; we need to show Y0, Y1, . . . is a Markov chain. By the definition
of a Markov chain, we know thatX2n+1, X2n+2, . . . (“the future” if we define the
“present” to be time 2n) is conditionally independent ofX0, X1, . . . , X2n�2, X2n�1

(“the past”), given X2n. So given Yn, we have that Yn+1, Yn+2, . . . is condition-
ally independent of Y0, Y1, . . . , Yn�1. Thus,

P (Yn+1 = y|Y0 = y0, . . . , Yn = yn) = P (Yn+1 = y|Yn = yn).
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To find the transition probabilities, callX0, X1, . . . the “X-chain” and Y0, Y1, . . .

the “Y -chain”. To find the transition probabilities of the Y -chain, let Q be the
transition matrix of the X-chain (labeling the states as 1, 2, . . . ,M). Then
Q

2 gives the “two-step” transition probabilities of the X-chain, so P (Yn+1 =
j|Yn = i) is the (i, j) entry of Q2.

This makes sense intuitively since, for example, in predicting what X110 will be
based on X0, X2, . . . , X108, we only need to use the most recent value, X108, and
then the one-step transitions of the Y -chain correspond to two-step transitions
of the X-chain.

2. Consider the Markov chain shown below, with state space {1, 2, 3, 4} and where
the labels next to arrows indicate the probabilities of those transitions.

1 0.5

2

0.5 0.25

0.75

3 0.25

4

0.75 0.75

0.25

(a) Write down the transition matrix Q for this chain.

The transition matrix is

Q =

0

BB@

0.5 0.5 0 0
0.25 0.75 0 0
0 0 0.25 0.75
0 0 0.75 0.25

1

CCA

(b) Which states (if any) are recurrent? Which states (if any) are transient?

All of the states are recurrent. Starting at state 1, the chain will go back
and forth between states 1 and 2 forever (sometimes lingering for a while).
Similarly, for any starting state, the probability is 1 of returning to that state.

(c) Find two di↵erent stationary distributions for the chain.

Solving

(a b)

✓
0.5 0.5
0.25 0.75

◆
= (a b)
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(c d)

✓
0.25 0.75
0.75 0.25

◆
= (c d)

shows that (a, b) = (1/3, 2/3), and (c, d) = (1/2, 1/2) are stationary distribu-
tions on the 1, 2 chain and on the 3, 4 chain respectively, viewed as separate
chains. It follows that (1/3, 2/3, 0, 0) and (0, 0, 1/2, 1/2) are both stationary for
Q (as is any mixture p(1/3, 2/3, 0, 0) + (1� p)(0, 0, 1/2, 1/2) with 0  p  1).

3. A cat and a mouse move independently back and forth between two rooms.
At each time step, the cat moves from the current room to the other room
with probability 0.8. Starting from Room 1, the mouse moves to Room 2 with
probability 0.3 (and remains otherwise). Starting from Room 2, the mouse
moves to Room 1 with probability 0.6 (and remains otherwise).

(a) Find the stationary distributions of the cat chain and of the mouse chain.

For the cat Markov chain, the stationary distribution is (1/2, 1/2) by symmetry.
For the mouse Markov chain: solving sQ = s and normalizing yields (2/3, 1/3).

(b) Note that there are 4 possible (cat, mouse) states: both in Room 1, cat in
Room 1 and mouse in Room 2, cat in Room 2 and mouse in Room 1, and both
in Room 2. Number these cases 1,2,3,4 respectively, and let Zn be the number
of the current (cat, mouse) state at time n. Is Z0, Z1, Z2, . . . a Markov chain?

Yes, it is a Markov chain. Given the current (cat, mouse) state, the past history
of where the cat and mouse were previously are irrelevant for computing the
probabilities of what the next state will be.

4. In chess, the king can move one square at a time in any direction (horizontally,
vertically, or diagonally).

For example, in the diagram, from the current position the king can move to
any of 8 possible squares. A king is wandering around on an otherwise empty
8 by 8 chessboard, where for each move all possibilities are equally likely. Find
the stationary distribution of this chain (of course, don’t list out a vector of
length 64 explicitly! Classify the 64 squares into “types” and say what the
stationary probability is for a square of each type).

There are 4 corner squares, 24 edge squares, and 36 normal squares, where
by “edge” we mean a square in the first or last row or column, excluding the
4 corners, and by “normal” we mean a square that’s not on the edge or in a
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corner. View the chessboard as an undirected network, where there is an edge
between two squares if the king can walk from one to the other in one step.

The stationary probabilities are proportional to the degrees. Each corner
square has degree 3, each edge square has degree 5, and each normal square
has degree 8. The total degree is 420 = 3 · 4+24 · 5+36 · 8 (which is also twice
the number of edges in the network). Thus, the the stationary probability is
3

420 for a corner square, 5
420 for an edge square, and 8

420 for a normal square.

5. Markov chains have recently been applied to code-breaking; this problem will
consider one way in which this can be done. A substitution cipher is a permu-
tation g of the letters from a to z, where a message is enciphered by replacing
each letter ↵ by g(↵). For example, if g is the permutation given by

abcdefghijklmnopqrstuvwxyz

zyxwvutsrqponmlkjihgfedcba

where the second row lists the values g(a), g(b), . . . , g(z), then we would enci-
pher the word “statistics” as “hgzgrhgrxh”. The state space is all 26! ⇡ 4 ·1026
permutations of the letters a through z.

(a) Consider the chain that picks two di↵erent random coordinates between 1
and 26 and swaps those entries of the 2nd row, e.g., if we pick 7 and 20, then

abcdefghijklmnopqrstuvwxyz

zyxwvutsrqponmlkjihgfedcba

becomes
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abcdefghijklmnopqrstuvwxyz

zyxwvugsrqponmlkjihtfedcba

Find the probability of going from a permutation g to a permutation h in one
step (for all g, h), and find the stationary distribution of this chain.

The probability of going from g to h (in one step) is 0 unless h can be obtained
from g by swapping 2 entries of the second row. Assuming h can be obtained
in this way, the probability is 1

(262 )
, since there are

�
26
2

�
such swaps, all equally

likely.

This Markov chain is irreducible, since by performing enough swaps we can get
from any permutation to any other permutation (imagine rearranging a deck of
cards by swapping cards two at a time: it is possible to reorder the cards in any
desired configuration by doing this enough times). Note that p(g, h) = p(h, g),
where p(g, h) is the transition probability of going from g to h. So the chain is
reversible with respect to the uniform distribution over all permutations. Thus,
the stationary distribution is the uniform distribution over all 26! permutations
of the letters a through z.

(b) Suppose we have a system that assigns a positive “score” s(g) to each
permutation g (intuitively, this could be a measure of how likely it would be to
get the observed enciphered text, given that g was the cipher used). Consider
the following Markov chain. Starting from any state g, generate a “proposal” h

using the chain from (a). If s(g)  s(h), then go to h (i.e., accept the proposal).
Otherwise, flip a coin with probability s(h)/s(g) of Heads. If Heads, go to h

(i.e., accept the proposal); if Tails, stay at g. Show that this chain is reversible
and has stationary distribution proportional to the list of all scores s(g).

Hint: for g 6= h, let q(g, h) be the probability of going from g to h in one step,
and show that s(g)q(g, h) = s(h)q(h, g). To compute q(g, h), note that it is the
probability of proposing h when at g, times the probability of accepting the
proposal.

We will check the reversibility condition s(g)q(g, h) = s(h)q(h, g). Assume
g 6= h and q(g, h) 6= 0 (if g = h or q(g, h) = 0, then it follows immediately
that the reversibility condition holds). Let p(g, h) be the transition probability
from (a) (which is the probability of “proposing” h when at g). First consider

9



the case that s(g)  s(h). Then q(g, h) = p(g, h) and

q(h, g) = p(h, g)
s(g)

s(h)
= p(g, h)

s(g)

s(h)
= q(g, h)

s(g)

s(h)
,

so s(g)q(g, h) = s(h)q(h, g). Now consider the case that s(h) < s(g). By a sym-
metrical argument (reversing the roles of g and h), we again have s(g)q(g, h) =
s(h)q(h, g). Thus, the stationary probability of g is proportional to the score
s(g).

The algorithm here is an example of the Metropolis algorithm, which is a pow-
erful, general method of transmogrifying one Markov chain into a new Markov
chain with a certain desired stationary distribution. This algorithm was named
one of the ten most important algorithms created in the 20th century!
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Stat 110 Ultimate Homework, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1. Each day, a very volatile stock rises 70% or drops 50% in price, with equal
probabilities (with di↵erent days independent). Let Xn be the stock price after n
days, starting from an initial value of X0 = 100.

(a) Explain why logXn is approximately Normal for n large, and state its parameters.

(b) What happens to E(Xn) as n ! 1?

(c) Use the Law of Large Numbers to find out what happens to Xn as n ! 1.

Hint: let Un be the number of days the stock rises up until time n.

2. Let Vn ⇠ �2
n and Tn ⇠ tn for n 2 {1, 2, 3, . . . }.

(a) Find numbers an and bn such that an(Vn�bn) converges in distribution toN (0, 1).

(b) Show that T 2
n/(n+ T 2

n) has a Beta distribution (without using calculus).

3. Let (X, Y ) be Bivariate Normal, with X and Y marginally N (0, 1) and with
correlation ⇢ between X and Y .

(a) Use MGFs to show that if ⇢ = 0, then X and Y are independent (without quoting
the result from class about uncorrelated vectors within a Multivariate Normal). You
can use the fact that the MGF E(esX+tY ) of a random vector (X, Y ) determines its
joint distribution (if the MGF exists).

(b) Show that (X + Y,X � Y ) is also Bivariate Normal.

(c) Find the joint PDF of X + Y and X � Y (without using calculus).

4. Consider the Markov chain shown below, where 0 < p < 1 and the labels on the

1

p

2
1-p

1-p

p

arrows indicate the probabilities of making those transitions.

1



(a) Write down the transition matrix Q for this chain.

(b) Find the stationary distribution of the chain.

(c) What is the limit of Qn as n ! 1?

5. In the Ehrenfest chain, there are two containers with a total ofM (distinguishable)
particles, and transitions are done by choosing a random particle and moving it from
its current container into the other container. Initially (at time n = 0), all of the
particles are in the second container. Let Xn be the number of particles in the first
container at time n (so X0 = 0 and the transition from Xn to Xn+1 is done as
described above). This is a Markov chain with state space {0, 1, . . . ,M}.

(a) Why is q(n)ii (i.e., the probability of being in state i after n steps, starting from
state i) always 0 if n is odd?

(b) Show that (s0, s1, . . . , sM) with si =
�
M
i

�
(12)

M is the stationary distribution. Why
does this, which is a Binomial distribution, seem reasonable intuitively?

Hint: first show that siqij = sjqji.

6. Daenerys has three dragons: Drogon, Rhaegal, and Viserion. Each dragon in-
dependently explores the world in search of tasty morsels. Let Xn, Yn, Zn be the
locations at time n of Drogon, Rhaegal, Viserion respectively, where time is assumed
to be discrete and the number of possible locations is a finite number M . Their paths
X0, X1, X2, . . . ; Y0, Y1, Y2, . . . ; and Z0, Z1, Z2, . . . are independent Markov chains
with the same stationary distribution s. Each dragon starts out at a random lo-
cation generated according to the stationary distribution.

(a) Let state 0 be “home” (so s0 is the stationary probability of the home state).
Find the expected number of times that Drogon is at home, up to time 24, i.e., the
expected number of how many of X0, X1, . . . , X24 are state 0 (in terms of s0).

(b) If we want to track all 3 dragons simultaneously, we need to consider the vector
of positions, (Xn, Yn, Zn). There are M3 possible values for this vector; assume
that each is assigned a number from 1 to M3, e.g., if M = 2 we could encode
the states (0, 0, 0), (0, 0, 1), (0, 1, 0), . . . , (1, 1, 1) as 1, 2, 3, . . . , 8 respectively. Let Wn

be the number between 1 and M3 representing (Xn, Yn, Zn). Determine whether
W0,W1, . . . is a Markov chain.

(c) Given that all 3 dragons start at home at time 0, find the expected time it will
take for all 3 to be at home again at the same time.

7. Let G be a network (also called a graph); there are n nodes, and for each pair of
distinct nodes, there either is or isn’t an edge joining them. We have a set of k colors,
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e.g., if k = 7 the color set may be {red, orange, yellow, green, blue, indigo, violet}.
A k-coloring of the network is an assignment of a color to each node, such that two
nodes joined by an edge can’t be the same color. For example, a 4-coloring of the 50
states in the U.S. is shown below (created using http://monarch.tamu.edu/⇠maps2/),
where the corresponding network has 50 nodes (one for each state), with an edge be-
tween two di↵erent states if and only if they share a border of nonzero length. Graph
coloring is an important topic in computer science, with wide-ranging applications
such as coloring a map, scheduling tasks, and in the game of Sudoku.

Suppose that it is possible to k-color G. Form a Markov chain on the space of all
k-colorings of G, with transitions as follows: starting with a k-coloring of G, pick a
uniformly random node, figure out what the legal colors are for that node, and then
repaint that node with a uniformly random legal color (note that this random color
may be the same as the current color). Show that this Markov chain is reversible,
and find its stationary distribution.

3



Stat 110 Ultimate Homework Solutions, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1. Each day, a very volatile stock rises 70% or drops 50% in price, with equal
probabilities (with di↵erent days independent). Let X

n

be the stock price after n

days, starting from an initial value of X0 = 100.

(a) Explain why logX
n

is approximately Normal for n large, and state its parameters.

We have X
n

= X0Y1Y2 . . . Yn

, where Y
j

is 1.7 if the stock goes up on the jth day and
Y

j

is 0.5 otherwise (so Y

j

= X

j

/X

j�1). Taking logs,

log(X
n

) = log(X0) + log(Y1) + · · ·+ log(Y
n

).

Let Z
j

= log(Y
j

). Then the Z

j

are i.i.d. with

P (Z
n

= log(0.5)) = P (Z
n

= log(1.7)) = 0.5,

E(Z
n

) = log(0.85)/2 ⇡ �0.081,

Var(Z
n

) ⇡ 0.374.

By the CLT, the distribution of Z1 + · · ·+ Z

n

, after standardization, converges to a
Normal distribution. Thus, log(X

n

) is approximately Normal for large n, with

E(log (X
n

)) = log (X0) + nE(Z1) = log (100) + log(0.85)n/2 ⇡ log(100)� 0.081n,

Var(log (X
n

)) = nVar(Z
n

) ⇡ 0.374n.

Alternatively, we can write X

n

= X0(0.5)
n�Un(1.7)Un where U

n

⇠ Bin(n, 12) is the
number of times the stock rises in the first n days. This gives

log(X
n

) = log(X0)� n log(2) + U

n

log(3.4),

which is just a location and scale transformation of U
n

. By the CLT, U
n

is approxi-
mately N (n2 ,

n

4 ) for large n, so log(X
n

) is approximately Normal with the parameters
as above for large n.

(b) What happens to E(X
n

) as n ! 1?

We have E(X1) = (170 + 50)/2 = 110. Similarly,

E(X
n+1|Xn

) =
1

2
(1.7X

n

) +
1

2
(0.5X

n

) = 1.1X
n

,

1



so
E(X

n+1) = E(E(X
n+1|Xn

)) = 1.1E(X
n

).

Thus, E(X
n

) = 1.1nE(X0) goes to 1 as n ! 1.

(c) Use the Law of Large Numbers to find out what happens to X

n

as n ! 1.

Hint: let U
n

be the number of days the stock rises up until time n.

Let U
n

⇠ Bin(n, 12) be the number of times the stock rises in the first n days. Note
that even though E(X

n

) ! 1, if the stock goes up 70% one day and then drops
50% the next day, then overall it has dropped 15% since 1.7 · 0.5 = 0.85. So X

n

will
be very small (for n large) if about half the time the stock rose 70% and about half
the time the stock dropped 50%; and the Law of Large Numbers ensures that this
will be the case! We have

X

n

= X0(0.5)
n�Un(1.7)Un = X0

✓
(3.4)Un/n

2

◆
n

,

where we simplified in terms of U
n

/n so that we can apply the Law of Large Numbers,
which here gives that U

n

/n ! 0.5 with probability 1. But then (3.4)Un/n !
p
3.4 < 2

with probability 1, so X

n

! 0 with probability 1.

Paradoxically, EX

n

! 1 but X
n

! 0 with probability 1. With very high probabil-
ity, the stock price will get very close to 0 since gaining 70% half the time while losing
50% the other half of the time is very bad; but the expected price goes to 1 since on
average each day the price is up 10% from the previous day. To gain more intuition
on this, consider a more extreme example, where a gambler starts with $100 and
each day either quadruples his or her money or loses the entire fortune, with equal
probabilities. Then on average the gambler’s wealth doubles each day, which sounds
good for that gambler until one notices that eventually there will be a day when the
gambler goes broke. So the actual fortune goes to 0 with probability 1, whereas the
expected value goes to infinity due to tiny probabilities of getting extremely large
amounts of money (as in the St. Petersburg Paradox).

2. Let V
n

⇠ �

2
n

and T

n

⇠ t

n

for n 2 {1, 2, 3, . . . }.
(a) Find numbers a

n

and b

n

such that a
n

(V
n

�b

n

) converges in distribution toN (0, 1).

By definition of �2
n

, we can take V
n

= Z

2
1+· · ·+Z

2
n

, where Z
j

⇠ N (0, 1) independently.
We have E(Z2

1) = 1 and E(Z4
1) = 3, so Var(Z2

1) = 2. By the CLT, if we standardize
V

n

it will go to N (0, 1):

Z

2
1 + · · ·+ Z

2
n

� np
2n

! N (0, 1) in distribution.

2



So we can take a

n

= 1p
2n
, b

n

= n.

(b) Show that T 2
n

/(n+ T

2
n

) has a Beta distribution (without using calculus).

We can take T

n

= Z0/
p

V

n

/n, with Z0 ⇠ N (0, 1) independent of V
n

. Then we have
T

2
n

/(n+ T

2
n

) = Z

2
0/(Z

2
0 + V

n

), with Z

2
0 ⇠ Gamma(1/2, 1/2), V

n

⇠ Gamma(n/2, 1/2).
By the bank-post o�ce story, Z2

0/(Z
2
0 + V

n

) ⇠ Beta(1/2, n/2).

3. Let (X, Y ) be Bivariate Normal, with X and Y marginally N (0, 1) and with
correlation ⇢ between X and Y .

(a) Use MGFs to show that if ⇢ = 0, then X and Y are independent (without quoting
the result from class about uncorrelated vectors within a Multivariate Normal). You
can use the fact that the MGF E(esX+tY ) of a random vector (X, Y ) determines its
joint distribution (if the MGF exists).

Suppose that Cov(X, Y ) = 0. Then the MGF of (X, Y ) is

E(esX+tY ) = e

E(sX+tY )+ 1
2Var(sX+tY ) = e

1
2 (s

2+t

2) = e

1
2 s

2
e

1
2 t

2
.

For Z1, Z2 i.i.d. N (0, 1), the joint MGF is

E(esZ1+tZ2) = E(esZ1)E(etZ2) = e

1
2 s

2
e

1
2 t

2
,

the same as the above! Thus, X and Y are i.i.d. N (0, 1).

(b) Show that (X + Y,X � Y ) is also Bivariate Normal.

The linear combination s(X + Y ) + t(X � Y ) = (s+ t)X + (s� t)Y is also a linear
combination of X and Y , so it is Normal, which shows that (X+Y,X�Y ) is MVN.

(c) Find the joint PDF of X + Y and X � Y (without using calculus).

Since X+Y and X�Y are uncorrelated (as Cov(X+Y,X�Y ) = Var(X)�Var(Y ) =
0) and (X+Y,X�Y ) is MVN, they are independent. Marginally, X+Y ⇠ N (0, 2+
2⇢) and X � Y ⇠ N (0, 2� 2⇢). Thus, the joint PDF is

f(s, t) =
1

4⇡
p

1� ⇢

2
e

� 1
4 (s

2
/(1+⇢)+t

2
/(1�⇢))

.

4. Consider the Markov chain shown below, where 0 < p < 1 and the labels on the
arrows indicate the probabilities of making those transitions.

(a) Write down the transition matrix Q for this chain.
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1

p

2
1-p

1-p

p

The transition matrix is

Q =

✓
p 1� p

1� p p

◆

(b) Find the stationary distribution of the chain.

Because Q is symmetric, the stationary distribution for the chain is the uniform
distribution (1/2, 1/2).

(c) What is the limit of Qn as n ! 1?

The limit of Qn as n ! 1 is the matrix with the limit distribution (1/2, 1/2) as

each row, i.e.,

✓
1/2 1/2
1/2 1/2

◆
.

5. In the Ehrenfest chain, there are two containers with a total ofM (distinguishable)
particles, and transitions are done by choosing a random particle and moving it from
its current container into the other container. Initially (at time n = 0), all of the
particles are in the second container. Let X

n

be the number of particles in the first
container at time n (so X0 = 0 and the transition from X

n

to X

n+1 is done as
described above). This is a Markov chain with state space {0, 1, . . . ,M}.

(a) Why is q

(n)
ii

(i.e., the probability of being in state i after n steps, starting from
state i) always 0 if n is odd?

The quantity q

(n)
ii

is the probability that, given that the first container has i particles,

it will again have i particles n steps later. We want to prove that q
(n)
ii

= 0 for all odd
n. Note that the parity of X

n

(whether it is even or odd) changes after each step of
the chain. So after an odd number of steps, the parity is di↵erent from the initial
parity, which shows that q

(n)
ii

= 0.

(b) Show that (s0, s1, . . . , sM) with s

i

=
�
M

i

�
(12)

M is the stationary distribution. Why
does this, which is a Binomial distribution, seem reasonable intuitively?
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Hint: first show that s
i

q

ij

= s

j

q

ji

.

The Binomial distribution makes sense here since after running the Markov chain for
a long time, each particle is about equally likely to be in either container, approxi-
mately independently. To show that the stationary distribution is Binomial(M, 1/2),
we will check the reversibility condition s

i

q

ij

= s

j

q

ji

.

Let s
i

=
�
M

i

�
(12)

M , and check that s
i

q

ij

= s

j

q

ji

. If j = i+ 1 (for i < M), then

s

i

q

ij

=

✓
M

i

◆
(
1

2
)M

M � i

M

=
M !

(M � i)!i!
(
1

2
)M

M � i

M

=

✓
M � 1

i

◆
(
1

2
)M ,

s

j

q

ji

=

✓
M

j

◆
(
1

2
)M

j

M

=
M !

(M � j)!j!
(
1

2
)M

j

M

=

✓
M � 1

j � 1

◆
(
1

2
)M = s

i

q

ij

.

Similarly, if j = i � 1 (for i > 0), then s

i

q

ij

= s

j

q

ji

. For all other values of i, j,
q

ij

= q

ji

= 0. Therefore, s is stationary.

6. Daenerys has three dragons: Drogon, Rhaegal, and Viserion. Each dragon in-
dependently explores the world in search of tasty morsels. Let X

n

, Y

n

, Z

n

be the
locations at time n of Drogon, Rhaegal, Viserion respectively, where time is assumed
to be discrete and the number of possible locations is a finite number M . Their paths
X0, X1, X2, . . . ; Y0, Y1, Y2, . . . ; and Z0, Z1, Z2, . . . are independent Markov chains
with the same stationary distribution s. Each dragon starts out at a random lo-
cation generated according to the stationary distribution.

(a) Let state 0 be “home” (so s0 is the stationary probability of the home state).
Find the expected number of times that Drogon is at home, up to time 24, i.e., the
expected number of how many of X0, X1, . . . , X24 are state 0 (in terms of s0).

By definition of stationarity, at each time Drogon has probability s0 of being at home.
By linearity, the desired expected value is 25s0.

(b) If we want to track all 3 dragons simultaneously, we need to consider the vector
of positions, (X

n

, Y

n

, Z

n

). There are M

3 possible values for this vector; assume
that each is assigned a number from 1 to M

3, e.g., if M = 2 we could encode
the states (0, 0, 0), (0, 0, 1), (0, 1, 0), . . . , (1, 1, 1) as 1, 2, 3, . . . , 8 respectively. Let W

n

be the number between 1 and M

3 representing (X
n

, Y

n

, Z

n

). Determine whether
W0,W1, . . . is a Markov chain.

Yes, W0,W1, . . . is a Markov chain, since given the entire past history of the X, Y,

and Z chains, only the most recent information about the whereabouts of the dragons
should be used in predicting their vector of locations. To show this algebraically, let
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A

n

be the event {X0 = x0, . . . , Xn

= x

n

}, B
n

be the event {Y0 = y0, . . . , Yn

= y

n

},
C

n

be the event {Z0 = z0, . . . , Zn

= z

n

}, and D

n

= A

n

\ B

n

\ C

n

. Then

P (X
n+1 = x, Y

n+1 = y, Z

n+1 = z|D
n

)

= P (X
n+1 = x|D

n

)P (Y
n+1 = y|X

n+1 = x,D

n

)P (Z
n+1 = z|X

n+1 = x, Y

n+1 = y,D

n

)

= P (X
n+1 = x|A

n

)P (Y
n+1 = y|B

n

)P (Z
n+1 = z|C

n

)

= P (X
n+1 = x|X

n

= x

n

)P (Y
n+1 = y|Y

n

= y

n

)P (Z
n+1 = z|Z

n

= z

n

).

(c) Given that all 3 dragons start at home at time 0, find the expected time it will
take for all 3 to be at home again at the same time.

The stationary probability for the W -chain of the state with Drogon, Rhaegal, Vis-
erion being at locations x, y, z is s

x

s

y

s

z

, since if (X
n

, Y

n

, Z

n

) is drawn from this dis-
tribution, then marginally each dragon’s location is distributed according to its sta-
tionary distribution, so P (X

n+1 = x, Y

n+1 = y, Z

n+1 = z) = P (X
n+1 = x)P (Y

n+1 =
y)P (Z

n+1 = z) = s

x

s

y

s

z

. So the expected time for all 3 dragons to be home at the
same time, given that they all start at home, is 1/s30.

7. Let G be a network (also called a graph); there are n nodes, and for each pair of
distinct nodes, there either is or isn’t an edge joining them. We have a set of k colors,
e.g., if k = 7 the color set may be {red, orange, yellow, green, blue, indigo, violet}.
A k-coloring of the network is an assignment of a color to each node, such that two
nodes joined by an edge can’t be the same color. For example, a 4-coloring of the 50
states in the U.S. is shown below (created using http://monarch.tamu.edu/⇠maps2/),
where the corresponding network has 50 nodes (one for each state), with an edge be-
tween two di↵erent states if and only if they share a border of nonzero length. Graph
coloring is an important topic in computer science, with wide-ranging applications
such as coloring a map, scheduling tasks, and in the game of Sudoku.

Suppose that it is possible to k-color G. Form a Markov chain on the space of all
k-colorings of G, with transitions as follows: starting with a k-coloring of G, pick a
uniformly random node, figure out what the legal colors are for that node, and then
repaint that node with a uniformly random legal color (note that this random color
may be the same as the current color). Show that this Markov chain is reversible,
and find its stationary distribution.

Let C be the set of all k-colorings of G, and let q
ij

be the transition probability of
going from i to j for any k-colorings i and j in C. We will show that q

ij

= q

ji

, which
implies that the stationary distribution is uniform on C.
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For any k-coloring i and node v, let L(i, v) be the number of legal colorings for node
v, keeping the colors of all other nodes the same as they are in i. If k-colorings i and
j di↵er at more than one node, then q

ij

= 0 = q

ji

. If i = j, then obviously q

ij

= q

ji

.
If i and j di↵er at exactly one node v, then L(i, v) = L(j, v), so

q

ij

=
1

n

1

L(i, v)
=

1

n

1

L(j, v)
= q

ji

.

So
1

c

q

ij

=
1

c

q

ji

for all i and j in C, where c is the size of C. This shows that the chain is reversible,
with the uniform distribution on C as stationary distribution.

This Markov chain is an example of what is known as a Gibbs sampler. Together, the
Gibbs sampler and the Metropolis algorithm described in SP 11 have revolutionized
scientific computing, as mainstays of Markov chain Monte Carlo.
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