
Stat 110 Strategic Practice 3, Fall 2011
Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1 Continuing with Conditioning

1. Consider the Monty Hall problem, except that Monty enjoys opening Door 2

more than he enjoys opening Door 3, and if he has a choice between opening

these two doors, he opens Door 2 with probability p, where 1
2  p  1.

To recap: there are three doors, behind one of which there is a car (which you

want), and behind the other two of which there are goats (which you don’t

want). Initially, all possibilities are equally likely for where the car is. You

choose a door, which for concreteness we assume is Door 1. Monty Hall then

opens a door to reveal a goat, and o↵ers you the option of switching. Assume

that Monty Hall knows which door has the car, will always open a goat door

and o↵er the option of switching, and as above assume that if Monty Hall has a

choice between opening Door 2 and Door 3, he chooses Door 2 with probability

p (with
1
2  p  1).

(a) Find the unconditional probability that the strategy of always switching

succeeds (unconditional in the sense that we do not condition on which of Doors

2,3 Monty opens).

(b) Find the probability that the strategy of always switching succeeds, given

that Monty opens Door 2.

(c) Find the probability that the strategy of always switching succeeds, given

that Monty opens Door 3.

2. For each statement below, either show that it is true or give a counterexample.

Throughout, X, Y, Z are discrete random variables.

(a) If X and Y are independent and Y and Z are independent, then X and Z
are independent.

(b) If X and Y are independent, then they are conditionally independent given

Z.

(c) If X and Y are conditionally independent given Z, then they are indepen-

dent.
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(d) If X and Y have the same distribution given Z, i.e., for all a and z, we
have P (X = a|Z = z) = P (Y = a|Z = z), then X and Y have the same

distribution.

2 Simpson’s Paradox

1. (a) Is it possible to have events A,B,E such that P (A|E) < P (B|E) and

P (A|Ec
) < P (B|Ec

), yet P (A) > P (B)? That is, A is less likely under B
given that E is true, and also given that E is false, yet A is more likely than B
if given no information about E. Show this is impossible (with a short proof)

or find a counterexample (with a “story” interpreting A,B,E).

(b) Is it possible to have events A,B,E such that P (A|B,E) < P (A|Bc, E)

and P (A|B,Ec
) < P (A|Bc, Ec

), yet P (A|B) > P (A|Bc
)? That is, given that

E is true, learning B is evidence against A, and similarly given that E is false;

but given no information about E, learning that B is true is evidence in favor

of A. Show this is impossible (with a short proof) or find a counterexample

(with a “story” interpreting A,B,E).

2. Consider the following conversation from an episode of The Simpsons :

Lisa: Dad, I think he’s an ivory dealer! His boots are ivory, his

hat is ivory, and I’m pretty sure that check is ivory.

Homer: Lisa, a guy who’s got lots of ivory is less likely to hurt

Stampy than a guy whose ivory supplies are low.

Here Homer and Lisa are debating the question of whether or not the man

(named Blackheart) is likely to hurt Stampy the Elephant if they sell Stampy

to him. They clearly disagree about how to use their observations about Black-

heart to learn about the probability (conditional on the evidence) that Black-

heart will hurt Stampy.

(a) Define clear notation for the various events of interest here.

(b) Express Lisa’s and Homer’s arguments (Lisa’s is partly implicit) as condi-

tional probability statements in terms of your notation from (a).

(c) Assume it is true that someone who has a lot of a commodity will have less

desire to acquire more of the commodity. Explain what is wrong with Homer’s
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reasoning that the evidence about Blackheart makes it less likely that he will

harm Stampy.

3 Gambler’s Ruin

1. A gambler repeatedly plays a game where in each round, he wins a dollar with

probability 1/3 and loses a dollar with probability 2/3. His strategy is “quit

when he is ahead by $2,” though some suspect he is a gambling addict anyway.

Suppose that he starts with a million dollars. Show that the probability that

he’ll ever be ahead by $2 is less than 1/4.

4 Bernoulli and Binomial

1. (a) In the World Series of baseball, two teams (call them A and B) play a

sequence of games against each other, and the first team to win four games

wins the series. Let p be the probability that A wins an individual game, and

assume that the games are independent. What is the probability that team A
wins the series?

(b) Give a clear intuitive explanation of whether the answer to (a) depends on

whether the teams always play 7 games (and whoever wins the majority wins

the series), or the teams stop playing more games as soon as one team has won

4 games (as is actually the case in practice: once the match is decided, the two

teams do not keep playing more games).

2. A sequence of n independent experiments is performed. Each experiment is

a success with probability p and a failure with probability q = 1 � p. Show

that conditional on the number of successes, all possibilities for the list of

outcomes of the experiment are equally likely (of course, we only consider lists

of outcomes where the number of successes is consistent with the information

being conditioned on).

3. Let X ⇠ Bin(n, p) and Y ⇠ Bin(m, p), independent of X.

(a) Show that X + Y ⇠ Bin(n+m, p), using a story proof.

(b) Show that X � Y is not Binomial.

(c) Find P (X = k|X + Y = j). How does this relate to the elk problem from

HW 1?
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Stat 110 Strategic Practice 3 Solutions, Fall 2011
Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1 Continuing with Conditioning

1. Consider the Monty Hall problem, except that Monty enjoys opening Door 2
more than he enjoys opening Door 3, and if he has a choice between opening
these two doors, he opens Door 2 with probability p, where 1

2  p  1.

To recap: there are three doors, behind one of which there is a car (which you
want), and behind the other two of which there are goats (which you don’t
want). Initially, all possibilities are equally likely for where the car is. You
choose a door, which for concreteness we assume is Door 1. Monty Hall then
opens a door to reveal a goat, and o↵ers you the option of switching. Assume
that Monty Hall knows which door has the car, will always open a goat door
and o↵er the option of switching, and as above assume that if Monty Hall has a
choice between opening Door 2 and Door 3, he chooses Door 2 with probability
p (with 1

2  p  1).

(a) Find the unconditional probability that the strategy of always switching
succeeds (unconditional in the sense that we do not condition on which of Doors
2,3 Monty opens).

Let Cj be the event that the car is hidden behind door j and let W be the event
that we win using the switching strategy. Using the law of total probability, we
can find the unconditional probability of winning in the same way as in class:

P (W ) = P (W |C1)P (C1) + P (W |C2)P (C2) + P (W |C3)P (C3)

= 0 · 1/3 + 1 · 1/3 + 1 · 1/3 = 2/3.

(b) Find the probability that the strategy of always switching succeeds, given
that Monty opens Door 2.

A tree method works well here (delete the paths which are no longer relevant
after the conditioning, and reweight the remaining values by dividing by their
sum), or we can use Bayes’ rule and the law of total probability (as below).
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Let Di be the event that Monty opens Door i. Note that we are looking for
P (W |D2), which is the same as P (C3|D2) as we first choose Door 1 and then
switch to Door 3. By Bayes’ rule and the law of total probability,

P (C3|D2) =
P (D2|C3)P (C3)

P (D2)

=
P (D2|C3)P (C3)

P (D2|C1)P (C1) + P (D2|C2)P (C2) + P (D2|C3)P (C3)

=
1 · 1/3

p · 1/3 + 0 · 1/3 + 1 · 1/3

=
1

1 + p
.

(c) Find the probability that the strategy of always switching succeeds, given
that Monty opens Door 3.

The structure of the problem is the same as part (b) (except for the condition
that p � 1/2, which was no needed above). Imagine repainting doors 2 and
3, reversing which is called which. By part (b) with 1 � p in place of p,
P (C2|D3) =

1
1+(1�p) =

1
2�p .

2. For each statement below, either show that it is true or give a counterexample.
Throughout, X, Y, Z are discrete random variables.

(a) If X and Y are independent and Y and Z are independent, then X and Z

are independent.

False: for a simple example, take X = Z.

(b) If X and Y are independent, then they are conditionally independent given
Z.

False: this was discussed in class (the fire-popcorn example) in terms of events,
for which we can let X, Y, Z be indicators.

(c) If X and Y are conditionally independent given Z, then they are indepen-
dent.

False: this was discussed in class in terms of events (the chess opponent of
unknown strength example); a coin with a random bias (as on HW 2) is another
simple, useful example to keep in mind.
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(d) If X and Y have the same distribution given Z, i.e., for all a and z, we
have P (X = a|Z = z) = P (Y = a|Z = z), then X and Y have the same
distribution.

True: by the law of total probability, conditioning on Z gives

P (X = a) =
X

z

P (X = a|Z = z)P (Z = z).

Since X and Y have the same conditional distribution given Z, this becomesP
z P (Y = a|Z = z)P (Z = z) = P (Y = a).

2 Simpson’s Paradox

1. (a) Is it possible to have events A,B,E such that P (A|E) < P (B|E) and
P (A|Ec) < P (B|Ec), yet P (A) > P (B)? That is, A is less likely under B

given that E is true, and also given that E is false, yet A is more likely than B

if given no information about E. Show this is impossible (with a short proof)
or find a counterexample (with a “story” interpreting A,B,E).

It is not possible, as seen using the law of total probability:

P (A) = P (A|E)P (E)+P (A|Ec)P (Ec) < P (B|E)P (E)+P (B|Ec)P (Ec) = P (B).

(b) Is it possible to have events A,B,E such that P (A|B,E) < P (A|Bc
, E)

and P (A|B,E
c) < P (A|Bc

, E
c), yet P (A|B) > P (A|Bc)? That is, given that

E is true, learning B is evidence against A, and similarly given that E is false;
but given no information about E, learning that B is true is evidence in favor
of A. Show this is impossible (with a short proof) or find a counterexample
(with a “story” interpreting A,B,E).

Yes, this is possible: this is the structure of Simpson’s Paradox! For example,
consider the Stampy problem above. Or, consider the two doctors example
discussed in class: suppose that there are two doctors, Dr. Hibbert and Dr.
Nick. Each performs two types of surgery, say heart transplants and bandaid
removals. Let A be the event that a surgery is successful, let B be the event
that Dr. Nick performs the surgery and B

c be the complement, that Dr. Hibbert
performs the surgery. Let E be heart surgery and E

c be bandaid removal.
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Is it possible that Dr. Hibbert is better than Dr. Nick at both heart transplants
and bandaid removals, yet Dr. Nick has a higher success rate overall? Yes, this
can happen if Dr. Nick performs mostly bandaid removals and Dr. Hibbert
performs mostly heart transplants. That is, the better doctor may perform
relatively more of the harder surgery, resulting in a lower success rate.

To make up specific numbers, suppose that Dr. Hibbert performed 90 heart
transplants, with 70 successful, and 10 bandaid removals, with all 10 success-
ful. Dr. Nick performed 10 heart transplants, with 2 successful, and 90 bandaid
removals, with 81 successful. Formally, our probability space consists of ran-
domly choosing one of the 200 surgeries, uniformly. Note that each individual
surgery is more likely to be successful given that it’s performed by Dr. Hibbert,
but Dr. Hibbert’s overall success rate (80%) is lower than Dr. Nick’s (83%).

There are many real-life examples of Simpson’s Paradox. For example, it is
possible for one baseball player to have a higher batting average than another
in each of two seasons, yet a lower batting average when the two seasons are
aggregated. Simpson’s Paradox illustrates the importance of controlling for
additional variables that interfere with the analysis (known as confounders).

2. Consider the following conversation from an episode of The Simpsons :

Lisa: Dad, I think he’s an ivory dealer! His boots are ivory, his

hat is ivory, and I’m pretty sure that check is ivory.

Homer: Lisa, a guy who’s got lots of ivory is less likely to hurt

Stampy than a guy whose ivory supplies are low.

Here Homer and Lisa are debating the question of whether or not the man
(named Blackheart) is likely to hurt Stampy the Elephant if they sell Stampy
to him. They clearly disagree about how to use their observations about Black-
heart to learn about the probability (conditional on the evidence) that Black-
heart will hurt Stampy.

(a) Define clear notation for the various events of interest here.

Let H be the event that the man will hurt Stampy, let L be the event that a
man has lots of ivory, and let D be the event that the man is an ivory dealer.

(b) Express Lisa’s and Homer’s arguments (Lisa’s is partly implicit) as condi-
tional probability statements in terms of your notation from (a).
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Lisa observes that L is true. She suggests (reasonably) that this evidence makes
D more likely, i.e., P (D|L) > P (D). Implicitly, she suggests that this makes
it likely that the man will hurt Stampy, i.e.,

P (H|L) > P (H|Lc).

Homer argues that
P (H|L) < P (H|Lc).

(c) Assume it is true that someone who has a lot of a commodity will have less
desire to acquire more of the commodity. Explain what is wrong with Homer’s
reasoning that the evidence about Blackheart makes it less likely that he will
harm Stampy.

Homer does not realize that observing that Blackheart has so much ivory makes
it much more likely that Blackheart is an ivory dealer, which in turn makes it
more likely that the man will hurt Stampy. (This is an example of Simpson’s
Paradox.) It may be true that, controlling for whether or not Blackheart is a

dealer, having high ivory supplies makes it less likely that he will harm Stampy:
P (H|L,D) < P (H|Lc

, D) and P (H|L,Dc) < P (H|Lc
, D

c). However, this does
not imply that P (H|L) < P (H|Lc).

3 Gambler’s Ruin

1. A gambler repeatedly plays a game where in each round, he wins a dollar with
probability 1/3 and loses a dollar with probability 2/3. His strategy is “quit
when he is ahead by $2,” though some suspect he is a gambling addict anyway.
Suppose that he starts with a million dollars. Show that the probability that
he’ll ever be ahead by $2 is less than 1/4.

This problem is a special case of the gambler’s ruin. Let A1 be the event that
he is successful on the first play and let W be the event that he is ever ahead
by $2 before being ruined. Then by the law of total probability, we have

P (W ) = P (W |A1)P (A1) + P (W |Ac
1)P (Ac

1).

Let ai be the probability that the gambler achieves a profit of $2 before being
ruined, starting with a fortune of $i. For our setup, P (W ) = ai, P (W |A1) =
ai+1 and P (W |Ac

1) = ai�1. Therefore,

ai = ai+1/3 + 2ai�1/3,
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with boundary conditions a0 = 0 and ai+2 = 1. We can then solve this di↵er-
ence equation for ai (directly or using the result of the gambler’s ruin problem):

ai =
2i � 1

22+i � 1
.

This is always less than 1/4 since 2i�1
22+i�1 <

1
4 is equivalent to 4(2

i�1) < 22+i�1,
which is equivalent to the true statement 22+i � 4 < 22+i � 1.

4 Bernoulli and Binomial

1. (a) In the World Series of baseball, two teams (call them A and B) play a
sequence of games against each other, and the first team to win four games
wins the series. Let p be the probability that A wins an individual game, and
assume that the games are independent. What is the probability that team A

wins the series?

Let q = 1� p. First let us do a direct calculation:

P (A wins) = P (A winning in 4 games) + P (A winning in 5 games)

+P (A wins in 6 games) + P (A winning in 7 games)

= p
4 +

✓
4

3

◆
p
4
q +

✓
5

3

◆
p
4
q
2 +

✓
6

3

◆
p
4
q
3
.

To understand how these probabilities are calculated, note for example that

P (A wins in 5) = P (A wins 3 out of first 4) · P (A wins 5th game|A wins 3 out of first 4)

=

✓
4

3

◆
p
3
qp

(This value can also be found from the PMF of a distribution known as the
Negative Binomial, which we will see later in the course.)

An neater solution is to use the fact (explained in (b)) that we can assume that
the teams play all 7 games no matter what. Then let X be the number of wins
for team A, so that

X ⇠ Binomial(7, p).

The probability that team A wins the series is

P (X � 4) = P (X = 4) + P (X = 5) + P (X = 6) + P (X = 7)
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The PMF of the Bin(n, p) distribution is

P (X = k) =

✓
n

k

◆
p
k(1� p)n�k

,

and therefore

P (X � 4) =

✓
7

4

◆
p
4
q
3 +

✓
7

5

◆
p
5
q
2 +

✓
7

6

◆
p
6
q + p

7
,

which looks di↵erent from the above but is actually identical as a function of
p (as can be verified by simplifying both expressions as polynomials in p).

(b) Give a clear intuitive explanation of whether the answer to (a) depends on
whether the teams always play 7 games (and whoever wins the majority wins
the series), or the teams stop playing more games as soon as one team has won
4 games (as is actually the case in practice: once the match is decided, the two
teams do not keep playing more games).

The answer to (a) does not depend on whether the teams play all seven games
no matter what. Imagine telling the players to continue playing the games even
after the match has been decided, just for fun: the outcome of the match won’t
be a↵ected by this, and this also means that the probability that A wins the
match won’t be a↵ected by assuming that the teams always play 7 games!

2. A sequence of n independent experiments is performed. Each experiment is
a success with probability p and a failure with probability q = 1 � p. Show
that conditional on the number of successes, all possibilities for the list of
outcomes of the experiment are equally likely (of course, we only consider lists
of outcomes where the number of successes is consistent with the information
being conditioned on).

Let Xj be 1 if the jth experiment is a success and 0 otherwise, and let X =
X1 + · · · + Xn be the total number of successes. Then for any k and any
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a1, . . . , an 2 {0, 1} with a1 + · · ·+ an = k,

P (X1 = a1, . . . , Xn = an|X = k) =
P (X1 = a1, . . . , Xn = an, X = k)

P (X = k)

=
P (X1 = a1, . . . , Xn = an)

P (X = k)

=
p
k
q
n�k

�
n
k

�
pkqn�k

=
1�
n
k

� .

This does not depend on a1, . . . , an. Thus, for n independent Bernoulli trials,
given that there are exactly k successes, the

�
n
k

�
possible sequences consisting of

k successes and n� k failures are equally likely. Interestingly, the conditional
probability above also does not depend on p (this leads to the notion of a
su�cient statistic, which is studied in Stat 111).

3. Let X ⇠ Bin(n, p) and Y ⇠ Bin(m, p), independent of X.

(a) Show that X + Y ⇠ Bin(n+m, p), using a story proof.

Interpret X as the number of successes in n independent Bernoulli trials and
Y as the number of successes in m more independent Bernoulli trials, where
each trial has probability p of success. Then X + Y is the number of successes
in the n+m trials, so X + Y ⇠ Bin(n+m, p).

(b) Show that X � Y is not Binomial.

A Binomial can’t be negative, but X � Y is negative with positive probability.

(c) Find P (X = k|X + Y = j). How does this relate to the elk problem from
HW 1?

By definition of conditional probability,

P (X = k|X + Y = j) =
P (X = k,X + Y = j)

P (X + Y = j)
=

P (X = k)P (Y = j � k)

P (X + Y = j)

since the event X = k is independent of the event Y = j � k. This becomes
�
n
k

�
p
k(1� p)n�k

�
m
j�k

�
p
j�k(1� p)m�(j�k)

�
m+n
j

�
pj(1� p)m+n�j

=

✓
n

k

◆✓
m

j � k

◆
/

✓
n+m

j

◆
.
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Note that the p disappeared! This is exactly the same distribution as in the
elk problem (it is called the Hypergeometric distribution). To see why, imagine
that there are n male elk and m female elk, each of which is tagged with the
word “success” with probability p (independently). Suppose we then want to
know how many of the male elk are tagged, given that a total of j elk have
been tagged. For this, p is no longer relevant, and we can “capture” the male
elk and count how many are tagged, analogously to the original elk problem.

9



Stat 110 Homework 3, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1. (a) Consider the following 7-door version of the Monty Hall problem. There are

7 doors, behind one of which there is a car (which you want), and behind the rest of

which there are goats (which you don’t want). Initially, all possibilities are equally

likely for where the car is. You choose a door. Monty Hall then opens 3 goat doors,

and o↵ers you the option of switching to any of the remaining 3 doors.

Assume that Monty Hall knows which door has the car, will always open 3 goat

doors and o↵er the option of switching, and that Monty chooses with equal proba-

bilities from all his choices of which goat doors to open. Should you switch? What

is your probability of success if you switch to one of the remaining 3 doors?

(b) Generalize the above to a Monty Hall problem where there are n � 3 doors, of

which Monty opens m goat doors, with 1  m  n� 2.

2. The odds of an event with probability p are defined to be
p

1�p
, e.g., an event with

probability 3/4 is said to have odds of 3 to 1 in favor (or 1 to 3 against). We are

interested in a hypothesis H (which we think of as a event), and we gather new data

as evidence (expressed as an event D) to study the hypothesis. The prior probability

of H is our probability for H being true before we gather the new data; the posterior
probability of H is our probability for it after we gather the new data. The likelihood
ratio is defined as

P (D|H)
P (D|Hc) .

(a) Show that Bayes’ rule can be expressed in terms of odds as follows: the posterior
odds of a hypothesis H are the prior odds of H times the likelihood ratio.

(b) As in the example from class, suppose that a patient tests positive for a disease

a✏icting 1% of the population. For a patient who has the disease, there is a 95%

chance of testing positive (in medical statistics, this is called the sensitivity of the

test); for a patient who doesn’t have the disease, there is a 95% chance of testing

negative test (in medical statistics, this is called the specificity of the test).

The patient gets a second, independent test done (with the same sensitivity and

specificity), and again tests positive. Use the odds form of Bayes’ rule to find the

probability that the patient has the disease, given the evidence, in two ways : in

one step, conditioning on both test results simultaneously, and in two steps, first

updating the probabilities based on the first test result, and then updating again

based on the second test result.

3. Is it possible to have events A1, A2, B, C with P (A1|B) > P (A1|C) and P (A2|B) >

P (A2|C), yet P (A1 [A2|B) < P (A1 [A2|C)? If so, find an example (with a “story”
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interpreting the events, as well as giving specific numbers); otherwise, show that it

is impossible for this phenomenon to happen.

4. Calvin and Hobbes play a match consisting of a series of games, where Calvin has

probability p of winning each game (independently). They play with a “win by two”

rule: the first player to win two games more than his opponent wins the match. Find

the probability that Calvin wins the match (in terms of p), in two di↵erent ways:

(a) by conditioning, using the law of total probability.

(b) by interpreting the problem as a gambler’s ruin problem.

5. A fair die is rolled repeatedly, and a running total is kept (which is, at each

time, the total of all the rolls up until that time). Let pn be the probability that the

running total is ever exactly n (assume the die will always be rolled enough times so

that the running total will eventually exceed n, but it may or may not ever equal n).

(a) Write down a recursive equation for pn (relating pn to earlier terms pk in a simple

way). Your equation should be true for all positive integers n, so give a definition of

p0 and pk for k < 0 so that the recursive equation is true for small values of n.

(b) Find p7.

(c) Give an intuitive explanation for the fact that pn ! 1/3.5 = 2/7 as n ! 1.

6. Players A and B take turns in answering trivia questions, starting with player A

answering the first question. Each time A answers a question, she has probability p1

of getting it right. Each time B plays, he has probability p2 of getting it right.

(a) If A answers m questions, what is the PMF of the number of questions she gets

right?

(b) If A answers m times and B answers n times, what is the PMF of the total

number of questions they get right (you can leave your answer as a sum)? Describe

exactly when/whether this is a Binomial distribution.

(c) Suppose that the first player to answer correctly wins the game (with no prede-

termined maximum number of questions that can be asked). Find the probability

that A wins the game.

7. A message is sent over a noisy channel. The message is a sequence x1, x2, . . . , xn

of n bits (xi 2 {0, 1}). Since the channel is noisy, there is a chance that any bit

might be corrupted, resulting in an error (a 0 becomes a 1 or vice versa). Assume

that the error events are independent. Let p be the probability that an individual
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bit has an error (0 < p < 1/2). Let y1, y2, . . . , yn be the received message (so yi = xi

if there is no error in that bit, but yi = 1� xi if there is an error there).

To help detect errors, the nth bit is reserved for a parity check: xn is defined to be

0 if x1+x2+ · · ·+xn�1 is even, and 1 if x1+x2+ · · ·+xn�1 is odd. When the message

is received, the recipient checks whether yn has the same parity as y1+y2+ · · ·+yn�1.

If the parity is wrong, the recipient knows that at least one error occurred; otherwise,

the recipient assumes that there were no errors.

(a) For n = 5, p = 0.1, what is the probability that the received message has errors

which go undetected?

(b) For general n and p, write down an expression (as a sum) for the probability that

the received message has errors which go undetected.

(c) Give a simplified expression, not involving a sum of a large number of terms, for

the probability that the received message has errors which go undetected.

Hint for (c): Letting

a =

X

k even, k�0

✓
n

k

◆
p
k
(1� p)

n�k
and b =

X

k odd, k�1

✓
n

k

◆
p
k
(1� p)

n�k
,

the binomial theorem makes it possible to find simple expressions for a+ b and a� b,

which then makes it possible to obtain a and b.
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Stat 110 Homework 3 Solutions, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1. (a) Consider the following 7-door version of the Monty Hall problem. There are
7 doors, behind one of which there is a car (which you want), and behind the rest of
which there are goats (which you don’t want). Initially, all possibilities are equally
likely for where the car is. You choose a door. Monty Hall then opens 3 goat doors,
and o↵ers you the option of switching to any of the remaining 3 doors.

Assume that Monty Hall knows which door has the car, will always open 3 goat
doors and o↵er the option of switching, and that Monty chooses with equal proba-
bilities from all his choices of which goat doors to open. Should you switch? What
is your probability of success if you switch to one of the remaining 3 doors?

Assume the doors are labeled such that you choose Door 1 (to simplify notation),
and suppose first that you follow the “stick to your original choice” strategy. Let S
be the event of success in getting the car, and let Cj be the event that the car is
behind Door j. Conditioning on which door has the car, we have

P (S) = P (S|C1)P (C1) + · · ·+ P (S|C7)P (C7) = P (C1) =
1

7
.

Let Mijk be the event that Monty opens Doors i, j, k. Then

P (S) =
X

i,j,k

P (S|Mijk)P (Mijk)

(summed over all i, j, k with 2  i < j < k  7.) By symmetry, this gives

P (S|Mijk) = P (S) =
1

7

for all i, j, k with 2  i < j < k  7. Thus, the conditional probability that the car
is behind 1 of the remaining 3 doors is 6/7, which gives 2/7 for each. So you should
switch, thus making your probability of success 2/7 rather than 1/7.

(b) Generalize the above to a Monty Hall problem where there are n � 3 doors, of
which Monty opens m goat doors, with 1  m  n� 2.

By the same reasoning, the probability of success for “stick to your original
choice” is 1

n
, both unconditionally and conditionally. Each of the n � m � 1 re-

maining doors has conditional probability n�1
(n�m�1)n of having the car. This value is

greater than 1
n
, so you should switch, thus obtaining probability n�1

(n�m�1)n of success

(both conditionally and unconditionally).
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2. The odds of an event with probability p are defined to be p

1�p
, e.g., an event with

probability 3/4 is said to have odds of 3 to 1 in favor (or 1 to 3 against). We are
interested in a hypothesis H (which we think of as a event), and we gather new data
as evidence (expressed as an event D) to study the hypothesis. The prior probability
of H is our probability for H being true before we gather the new data; the posterior
probability of H is our probability for it after we gather the new data. The likelihood
ratio is defined as P (D|H)

P (D|Hc) .

(a) Show that Bayes’ rule can be expressed in terms of odds as follows: the posterior

odds of a hypothesis H are the prior odds of H times the likelihood ratio.

We want to show that
P (H|D)

P (Hc|D)
=

P (H)

P (Hc)

P (D|H)

P (D|Hc)

By Bayes’ rule, we have

P (H|D) = P (D|H)P (H)/P (D),

P (Hc|D) = P (D|Hc)P (Hc)/P (D).

Dividing the first of these by the second, we immediately obtain the desired equation,
which is a useful alternative way to write Bayes’ rule.

(b) As in the example from class, suppose that a patient tests positive for a disease
a✏icting 1% of the population. For a patient who has the disease, there is a 95%
chance of testing positive (in medical statistics, this is called the sensitivity of the
test); for a patient who doesn’t have the disease, there is a 95% chance of testing
negative test (in medical statistics, this is called the specificity of the test).

The patient gets a second, independent test done (with the same sensitivity and
specificity), and again tests positive. Use the odds form of Bayes’ rule to find the
probability that the patient has the disease, given the evidence, in two ways : in
one step, conditioning on both test results simultaneously, and in two steps, first
updating the probabilities based on the first test result, and then updating again
based on the second test result.

To go from odds back to probability, we divide odds by (1 plus odds), since p/q

1+p/q
= p

for q = 1� p. Let H be the event of having the disease. The prior odds are 99 to 1
against having the disease. The likelihood ratio based on one test result is 0.95

0.05 . Now
we can immediately carry out either the one update or the two update method.

One update method: The likelihood ratio based on both test results is 0.952

0.052 since the
tests are independent. So the posterior odds of the patient having the disease are

1

99
· 0.95

2

0.052
=

361

99
⇡ 3.646,

2



which corresponds to a probability of 361/(361 + 99) = 361/460 ⇡ 0.78 (whereas
based on one positive test, the probability was only 0.16 of having the disease).

Two updates method: After the first test, the posterior odds of the patient having
the disease are

1

99
· 0.95
0.05

⇡ 0.19,

which corresponds to a probability of 0.19/(1+0.19) ⇡ 0.16 (agreeing with the result
from class). These posterior odds become the new prior odds, and then updating
based on the second test gives

�
1
99 ·

0.95
0.05

�
0.95
0.05 , which is the same result as above.

3. Is it possible to have events A1, A2, B, C with P (A1|B) > P (A1|C) and P (A2|B) >
P (A2|C), yet P (A1 [A2|B) < P (A1 [A2|C)? If so, find an example (with a “story”
interpreting the events, as well as giving specific numbers); otherwise, show that it
is impossible for this phenomenon to happen.

Yes, this is possible. First note that P (A1 [A2|B) = P (A1|B) + P (A2|B)� P (A1 \
A2|B), so it is not possible if A1 and A2 are disjoint, and that it is crucial to consider
the intersection. So let’s choose examples where P (A1 \ A2|B) is much larger than
P (A1 \ A2|C), to o↵set the other inequalities.

Story 1: Consider two basketball players, one of whom is randomly chosen to shoot
two free throws. The first player is very streaky, and always either makes both or
misses both free throws, with probability 0.8 of making both (this is an extreme
example chosen for simplicity, but we could also make it so the player has good
days (on which there is a high chance of making both shots) and bad days (on
which there is a high chance of missing both shots) without requiring always making
both or missing both). The second player’s free throws go in with probability 0.7,
independently. Define the events as Aj: the jth free throw goes in; B: the free throw
shooter is the first player; C = B

c. Then

P (A1|B) = P (A2|B) = P (A1 \ A2|B) = P (A1 [ A2|B) = 0.8,

P (A1|C) = P (A2|C) = 0.7, P (A1\A2|C) = 0.49, P (A1[A2|C) = 2·0.7�0.49 = 0.91.

Story 2: Suppose that you can either take Good Class or Other Class, but not
both. If you take Good Class, you’ll attend lecture 70% of the time, and you will
understand the material if and only if you attend lecture. If you take Other Class,
you’ll attend lecture 40% of the time and understand the material 40% of the time,
but because the class is so poorly taught, the only way you understand the material

3



is by studying on your own and not attending lecture. Defining the events as A1:
attend lecture; A2: understand material; B: take Good Class; C: take Other Class,

P (A1|B) = P (A2|B) = P (A1 \ A2|B) = P (A1 [ A2|B) = 0.7,

P (A1|C) = P (A2|C) = 0.4, P (A1 \ A2|C) = 0, P (A1 [ A2|C) = 2 · 0.4 = 0.8.

4. Calvin and Hobbes play a match consisting of a series of games, where Calvin has
probability p of winning each game (independently). They play with a “win by two”
rule: the first player to win two games more than his opponent wins the match. Find
the probability that Calvin wins the match (in terms of p), in two di↵erent ways:

(a) by conditioning, using the law of total probability.

Let C be the event that Calvin wins the match, X ⇠ Bin(2, p) be how many of
the first 2 games he wins, and q = 1� p. Then

P (C) = P (C|X = 0)q2 + P (C|X = 1)(2pq) + P (C|X = 2)p2 = 2pqP (C) + p
2
,

so P (C) = p
2

1�2pq . This can also be written as p
2

p2+q2
, since p+ q = 1.

Miracle check : Note that this should (and does) reduce to 1 for p = 1, 0 for p = 0,
and 1

2 for p = 1
2 . Also, it makes sense that the probability of Hobbes winning, which

is 1� P (C) = q
2

p2+q2
, can also be obtained by swapping p and q.

(b) by interpreting the problem as a gambler’s ruin problem.

The problem can be thought of as a gambler’s ruin where each player starts out
with $2. So the probability that Calvin wins the match is

1� (q/p)2

1� (q/p)4
=

(p2 � q
2)/p2

(p4 � q4)/p4
=

(p2 � q
2)/p2

(p2 � q2)(p2 + q2)/p4
=

p
2

p2 + q2
,

which agrees with the above.

5. A fair die is rolled repeatedly, and a running total is kept (which is, at each
time, the total of all the rolls up until that time). Let pn be the probability that the
running total is ever exactly n (assume the die will always be rolled enough times so
that the running total will eventually exceed n, but it may or may not ever equal n).

(a) Write down a recursive equation for pn (relating pn to earlier terms pk in a simple
way). Your equation should be true for all positive integers n, so give a definition of
p0 and pk for k < 0 so that the recursive equation is true for small values of n.

4



We will find something to condition on to reduce the case of interest to earlier,
simpler cases. This is achieved by the useful strategy of first step anaysis. Let pn be
the probability that the running total is ever exactly n. Note that if, for example,
the first throw is a 3, then the probability of reaching n exactly is pn�3 since starting
from that point, we need to get a total of n� 3 exactly. So

pn =
1

6
(pn�1 + pn�2 + pn�3 + pn�4 + pn�5 + pn�6),

where we define p0 = 1 (which makes sense anyway since the running total is 0 before
the first toss) and pk = 0 for k < 0.

(b) Find p7.

Using the recursive equation in (a), we have

p1 =
1

6
, p2 =

1

6
(1 +

1

6
), p3 =

1

6
(1 +

1

6
)2,

p4 =
1

6
(1 +

1

6
)3, p5 =

1

6
(1 +

1

6
)4, p6 =

1

6
(1 +

1

6
)5.

Hence,

p7 =
1

6
(p1 + p2 + p3 + p4 + p5 + p6) =

1

6

✓
(1 +

1

6
)6 � 1

◆
⇡ 0.2536.

(c) Give an intuitive explanation for the fact that pn ! 1/3.5 = 2/7 as n ! 1.

An intuitive explanation is as follows. The average number thrown by the die is
(total of dots)/6, which is 21/6 = 7/2, so that every throw adds on an average of 7/2.
We can therefore expect to land on 2 out of every 7 numbers, and the probability
of landing on any particular number is 2/7. This result can be proved as follows (a
proof was not required):

pn+1 + 2pn+2 + 3pn+3 + 4pn+4 + 5pn+5 + 6pn+6

=pn+1 + 2pn+2 + 3pn+3 + 4pn+4 + 5pn+5

+ pn + pn+1 + pn+2 + pn+3 + pn+4 + pn+5

=pn + 2pn+1 + 3pn+2 + 4pn+3 + 5pn+4 + 6pn+5

= · · ·
=p�5 + 2p�4 + 3p�3 + 4p�2 + 5p�1 + 6p0 = 6.
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Taking the limit of the lefthand side as n goes to 1, we have

(1 + 2 + 3 + 4 + 5 + 6) lim
n!1

pn = 6,

so limn!1 pn = 2/7.

6. Players A and B take turns in answering trivia questions, starting with player A
answering the first question. Each time A answers a question, she has probability p1

of getting it right. Each time B plays, he has probability p2 of getting it right.

(a) If A answers m questions, what is the PMF of the number of questions she gets
right?

The r.v. is Bin(m, p1), so the PMF is
�
m

k

�
p
k

1(1� p1)m�k for k 2 {0, 1, . . . ,m}.
(b) If A answers m times and B answers n times, what is the PMF of the total
number of questions they get right (you can leave your answer as a sum)? Describe
exactly when/whether this is a Binomial distribution.

Let T be the total number of questions they get right. To get a total of k questions
right, it must be that A got 0 and B got k, or A got 1 and B got k � 1, etc. These
are disjoint events so the PMF is

P (T = k) =
kX

j=0

✓
m

j

◆
p
j

1(1� p1)
m�j

✓
n

k � j

◆
p
k�j

2 (1� p2)
n�(k�j)

for k 2 {0, 1, . . . ,m+ n}, with the usual convention that
�
n

k

�
is 0 for k > n.

This is the Bin(m + n, p) distribution if p1 = p2 = p, as shown in class (using
the story for the Binomial, or using Vandermonde’s identity). For p1 6= p2, it’s not a
Binomial distribution, since the trials have di↵erent probabilities of success; having
some trials with one probability of success and other trials with another probability of
success isn’t equivalent to having trials with some “e↵ective” probability of success.

(c) Suppose that the first player to answer correctly wins the game (with no prede-
termined maximum number of questions that can be asked). Find the probability
that A wins the game.

Let r = P (A wins). Conditioning on the results of the first question for each
player, we have

r = p1 + (1� p1)p2 · 0 + (1� p1)(1� p2)r,

which gives r = p1

1�(1�p1)(1�p2)
= p1

p1+p2�p1p2
.
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7. A message is sent over a noisy channel. The message is a sequence x1, x2, . . . , xn

of n bits (xi 2 {0, 1}). Since the channel is noisy, there is a chance that any bit
might be corrupted, resulting in an error (a 0 becomes a 1 or vice versa). Assume
that the error events are independent. Let p be the probability that an individual
bit has an error (0 < p < 1/2). Let y1, y2, . . . , yn be the received message (so yi = xi

if there is no error in that bit, but yi = 1� xi if there is an error there).

To help detect errors, the nth bit is reserved for a parity check: xn is defined to be
0 if x1+x2+ · · ·+xn�1 is even, and 1 if x1+x2+ · · ·+xn�1 is odd. When the message
is received, the recipient checks whether yn has the same parity as y1+y2+ · · ·+yn�1.
If the parity is wrong, the recipient knows that at least one error occurred; otherwise,
the recipient assumes that there were no errors.

(a) For n = 5, p = 0.1, what is the probability that the received message has errors
which go undetected?

Note that
P

n

i=1 xi is even. If the number of errors is even (and nonzero), the errors
will go undetected; otherwise,

P
n

i=1 yi will be odd, so the errors will be detected.
The number of errors is Bin(n, p), so the probability of undetected errors when

n = 5, p = 0.1 is ✓
5

2

◆
p
2(1� p)3 +

✓
5

4

◆
p
4(1� p) ⇡ 0.073.

(b) For general n and p, write down an expression (as a sum) for the probability that
the received message has errors which go undetected.

By the same reasoning as in (a), the probability of undetected errors is

X

k even, k�2

✓
n

k

◆
p
k(1� p)n�k

.

(c) Give a simplified expression, not involving a sum of a large number of terms, for
the probability that the received message has errors which go undetected.

Hint for (c): Letting

a =
X

k even, k�0

✓
n

k

◆
p
k(1� p)n�k and b =

X

k odd, k�1

✓
n

k

◆
p
k(1� p)n�k

,

the binomial theorem makes it possible to find simple expressions for a+ b and a� b,
which then makes it possible to obtain a and b.
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Let a, b be as in the hint. Then

a+ b =
X

k�0

✓
n

k

◆
p
k(1� p)n�k = 1,

a� b =
X

k�0

✓
n

k

◆
(�p)k(1� p)n�k = (1� 2p)n.

Solving for a and b gives

a =
1 + (1� 2p)n

2
and b =

1� (1� 2p)n

2
.

X

k even, k�0

✓
n

k

◆
p
k(1� p)n�k =

1 + (1� 2p)n

2
.

Subtracting o↵ the possibility of no errors, we have

X

k even, k�2

✓
n

k

◆
p
k(1� p)n�k =

1 + (1� 2p)n

2
� (1� p)n.

Miracle check : note that letting n = 5, p = 0.1 here gives 0.073, which agrees with
(a); letting p = 0 gives 0, as it should; and letting p = 1 gives 0 for n odd and 1 for
n even, which again makes sense.
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