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Abstract15

The widespread adoption of deep learning to build models that capture the dynamics of neural16

populations is typically based on “black-box” approaches that lack an interpretable link between17

neural activity and function. Here, we propose to apply algorithm unrolling, a method for18

interpretable deep learning, to design the architecture of sparse deconvolutional neural19

networks and obtain a direct interpretation of network weights in relation to stimulus-driven20

single-neuron activity through a generative model. We characterize our method, referred to as21

deconvolutional unrolled neural learning (DUNL), and show its versatility by applying it to22

deconvolve single-trial local signals across multiple brain areas and recording modalities. To23

exemplify use cases of our decomposition method, we uncover multiplexed salience and reward24

prediction error signals from midbrain dopamine neurons in an unbiased manner, perform25

simultaneous event detection and characterization in somatosensory thalamus recordings, and26

characterize the responses of neurons in the piriform cortex. Our work leverages the advances in27

interpretable deep learning to gain a mechanistic understanding of neural dynamics.28

29

Introduction30

Understanding the activity of neurons, both at the single neuron and population levels, in rela-31

tion to features in the environment and the behaviour of an organism, is a key question in neuro-32

science. Recent technological advancements and experimentalmethods have allowed researchers33

to record from an increasingly large population of identified single neurons using high-throughput34

electrophysiology or imaging in animals performing complex tasks [1–3]. In such complex envi-35

ronments, external events might unfold on a variety of timescales, which can give rise to neural36

signals also expressed over different timescales across the population of recorded neurons. More-37

over, these neural representations show complex dynamics anddiffering levels ofmultiplexing. For38

example, single neurons across the cortical hierarchy exhibit varying degrees of mixed selectivity39

to task parameters depending on task structure and demands [4–9]. Neuromodulatory neurons,40
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such as midbrain dopamine neurons, can respond to different environmental and internal vari-41

ables [10, 11]. Additionally, single-neuron activity has been proposed to be composed of multiple42

components required for reward evaluation, such as valence and salience [12, 13].43

In order to understand how multiple representations in simultaneously-recorded single neu-44

rons enable population-level computations, we need fast and reliable methods for decomposing45

their activity into overlapping and non-overlapping local components/events that can capture im-46

portant intrinsic heterogeneity in the recorded populations. Here, we develop such a deconvolu-47

tional method.48

A reasonable deconvolution method ought to meet several requirements. First, the method49

should be able to be implemented on single instantiations of the neural data without the need50

for averaging over trials or animals [14–16]. Preferably, it should apply to both structured and51

naturalistic tasks in which there is little or no trial structure [17–20]. Second, it should be flexible52

concerning the source signal (e.g., spike count data or a proxy signal such as calcium levels via a53

fluorescent indicator [21]). Third, the method should utilize an expressive class of mappings from54

latent representations to data, namely ones that can capture the complexity of neural data. Finally55

and importantly, themethod should be interpretable. By interpretable wemean the existence of 1)56

a directmapping between stimuli (internal or external) and latent variables; and 2) a directmapping57

between these latent variables, which are effectively parameters of the network, to computational58

function. In our framework, this concept of interpretability is in place by design, since it is based59

on a probabilistic generative model that can be interpreted via neural impulse responses [22–24].60

Priorwork using deep learning has addressed, to varying extents, the first three of these desider-61

ata by extracting a low-dimensional latent space from the neural data through a non-linear deep62

neural architecture [25–28]. However, they do not provide a direct link between the contributions63

of single neurons or neuron types and the population level computation, owing to their “black-box”64

approach typical of deep networks [29, 30]. Our method complements these existing tools, by ex-65

tracting interpretable impulse-like responses of multiplexed signals from single neurons, which66

can be further used to characterize heterogeneity and homogeneity across neural populations.67

Broadly, interpretability methods can be categorized into two groups [31]: explainable and68

interpretable deep learning. The former, also called mechanistically interpretable deep learning,69

develops interpretability methods to explain black-box models. For example, in computer vision,70

saliency maps are constructed to highlight input image pixels that are discriminative with respect71

to an output decision of a deep neural network [32, 33]. A more generalizable example is Local72

Interpretable Model-Agnostic Explanations (LIME), a framework for explaining predictions of any73

black-box model by learning a locally-interpretable model around the prediction of interest [34].74

However, this class of models does not make the neural network interpretable in and of itself: the75

model tries to explain what the network does. First, this means that there is no direct mapping76

from the embedding to the data: for instance, the explainable model might conclude that the net-77

work is optimizing for a feature that is simply correlated with the learning objective of the network,78

missing the true understanding of the “black-box” system [35]. Second, this approach does not79

guide the neural network architecture to learn useful representations. That is, the network may80

perform discrimination based on non-generalizable spurious features. Many of the current meth-81

ods used in neuroscience fall in this category, and recent work has successfully gainedmechanistic82

insights into neural circuit computations using this approach. Still, such analysis was achieved from83

a posteriori interpretation and manual tweaking of the network architecture [36]).84

In contrast, model-based interpretable deep learning [37] (Figure 1a) is an emerging technique85

to design deep neural networks that are inherently interpretable. In particular, algorithm un-86

rolling [38], a sub-category of interpretable deep learning, offers deep neural networks whose87

weights and representations can be directly interpreted as parameters and variables of an un-88

derlying generative model [38, 39]. This one-to-one mapping between the neural weights and89

latent representations of a generative model introduces interpretability. These mappings can be90

learned using an iterative algorithm optimizing the model [39–41]. Importantly, this generative91
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model does not require detailed assumptions about the data: it provides domain knowledge infor-92

mation, without restricting the model’s output in such a way that important features of the data93

would be missed. Following seminal work in algorithm unrolling [39], numerous applications have94

been developed across several fields, including computational imaging (e.g., super-resolution [42]95

and image deblurring [43]), medical imaging [44, 45], identification of dynamical systems [46], re-96

mote sensing applications (e.g., radar imaging [47]) or source separation in speech processing [48].97

Here, we propose a novel framework combining algorithm unrolling with convolutional sparse98

coding (i.e., dictionary learning), called Deconvolutional Unrolled Neural Learning (DUNL), that ful-99

fills all the above-listed desiderata (Figure 1a). Our method offers a flexible framework to decon-100

volve single-trial neuronal activity into interpretable and local components. Our source code is flex-101

ible, easy to use, and adaptable to various applications by simple modifications of neural network102

non-linearities and training loss functions, without requiring the user to re-derive an optimization103

algorithm for their specific application.104

To demonstrate the versatility and usefulness of DUNL, we apply it to the deconvolution of105

neural signals acquired in a wide range of experimental conditions. First, we show that it can106

deconvolve the salience and reward prediction error (RPE) components of naturally multiplexed107

reward signals encoded by dopamine neurons in the midbrain. Second, we demonstrate that it108

can deconvolve cue and outcome components of slow calcium signals recorded from dopamine109

neurons during associative learning. Third, we show simultaneous event detection and characteri-110

zation of neural activity from the thalamus in a high signal-to-noise ratio (SNR) setting. Fourth, we111

demonstrate that in a low SNR setting, we can extract classes of neural responses from the piriform112

cortex in the presence of random and overlapping odor pulses. Finally, we perform model charac-113

terization and compare it to other decomposition methods to show how local interpretability in a114

limited data regime is an important feature of our deconvolution method.115

Results116

Sparse deconvolutional learning uncovers structure in single-trial, single-neuron117

activity118

We aim to decompose single-trial neural activity into local impulse-like responses to sparse yet119

recurring events. We assume that the observed neural activity is the result of a combination of re-120

curring components–kernels of a “dictionary”–whose timing andmagnitudes can vary on an event-121

by-event basis. Thus, we seek to obtain a reconstruction of the neural data by optimizing themodel122

that generates these components or kernels. To achieve this, the neural activity is modeled as a123

sum of convolutions between these kernels, and their timing and magnitude in response to re-124

curring sparse events. We refer to the vector representing the timing of events and the strength125

of neural response as a sparse code. Stochasticity in the estimated activity is added by passing126

this convolved signal through a generative model using a probability distribution of the natural127

exponential family (e.g., Gaussian, Binomial, and Poisson).128

More specifically, we model (Figure 1b) the observations 𝒚𝑛,𝑗 from neuron 𝑛 at trial 𝑗 using the129

natural exponential family [49, 50] (e.g., Binomial or Poisson for spiking and Gaussian for calcium130

signals) with distribution mean of 𝝁𝑛,𝑗 . We impose a generative model on the 𝑛th neuron’s mean131

activity at trial 𝑗, 𝝁𝑛,𝑗 , and express it as the convolution of 𝐾 localized kernels {𝒉𝑛
𝑘}

𝐾
𝑘=1 and sparse132

codes (representations) {𝒙𝑛,𝑗
𝑘 }𝐾𝑘=1, along with a background, baseline, measured activity level 𝑎𝑛,𝑗133

(Figure 1b). The convolutional structure enables the identification of local patterns occurring across134

time. Kernels and codes are interpretable in the following sense. Kernels capture characteristics135

shared among trials (or neural population, depending on the model design): they characterize136

the neuron’s response to time-sensitive sparse events/stimuli. The nonzero entries of the sparse137

latent representation 𝒙𝑛,𝑗
𝑘 represent the time when the event associated with the kernel 𝑘 occurs in138

trial 𝑗; their amplitude captures the strength of the neural response. In relation to the functional139

identification of a system, thismodel characterizes the system in terms of cause-effect relationship:140
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the code captures the timing of a stimulus applied locally in time [51]; the kernel captures the141

impulse response of the neuron, whose dynamics are modeled through resistor-capacitor (RC)142

differential equations [52].143

Figure 1. Interpretable deep learning with deconvolutional unrolled neural learning: DUNL. a,Categorization of deep learning tools developed for neural data analysis and advantages of using algorithmunrolling. b, Generative model used by DUNL to estimate neural activity as a function of the sum ofconvolution between kernels and sparse codes. c, Schematic representation of DUNL: the deep inferencenetwork, whose weights are the estimated kernels, estimates the sparse codes used as an input to thegenerative decoder. The output of this decoder is used to optimize the network. d, The demonstration ofDUNL’s ability to deconvolve events from unstructured single-trials, where two recurrent events occur locallyat random times and with varying amplitudes.

Thus, the kernels in themodel are learned fully fromdata, i.e., they do not obey a user-specified144

parametric form, and the codes are sparse in time. We learn the kernels and codes by minimiz-145

ing the negative data log-likelihood ∑𝐽
𝑗=1 log 𝑝(𝒚

𝑛,𝑗 ∣ 𝝁𝑛,𝑗) regularized/penalized by terms encourag-146

ing desired properties on the codes and kernels. We impose a sparsity prior, to promote a few147
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code activations in time, and an optional second-order covariance structure on the codes to cap-148

ture dependencies among kernels (e.g., discouraging activation of two event types simultaneously).149

Where needed, we apply smoothing regularization on the kernels [53, 54].150

Wemap the optimization into an encoder/decoder neural architecture following the algorithm151

unrolling approach [38] (Figure 1c). We call this framework Deconvolutional Unrolled Neural Learn-152

ing (DUNL), an application of algorithm unrolling to convolutional dictionary learning [55–57]. The153

encoder is a deep-structured recurrent convolutional neural network. Unlike sequential deep en-154

coder approaches, this encoder shares the same parameters as the generative model/decoder.155

The encoder takes single neuron single-trial observation 𝒚𝑛,𝑗 as input and encodes a set of sparse156

representations {𝒙𝑛,𝑗
𝑘 }𝐾𝑘=1. As explained above, this latent code corresponds to event/stimuli onsets157

and the strength of neural response to the event. The decoder is a shallow network based on the158

proposed generative model. This decoder maps the estimated time series of sparse representa-159

tions into a time-series estimate of the mean neural activity. Both the encoder and decoder are160

characterized by the kernels {𝒉𝑛
𝑘}

𝐾
𝑘=1 from the generative model (i.e., kernels are weights of the161

artificial deep neural network and can be trained by backpropagation). Training DUNL involves162

both a forward pass (inference for codes) and a backward pass (training to learn the kernels, see163

Supplementary Methods), both of which are parallelizable over neurons and trials.164

To demonstrate the applicability of DUNL, we start by applying it to synthetic spiking data. The165

experiment consists of two event types characterized by local kernels. Within one trial, the events166

happen 3 times uniformly at random. In this unstructured experiment, the goal is to recover the167

underlying kernels, as well as the timing and magnitude of the events associated with them, in-168

dependently of whether these are single events or composed events (superposition of more than169

one kernel). DUNL successfully decomposes the synthetic neural data into kernels and codes (Fig-170

ure 1d), and it achieves so in a data-limited regime (see following sections).171

To summarize, we introduce a novel framework to recover the statistics of time series data172

as a sparse superposition of kernels (Figure 1d), that is akin to a convolutional generalization of173

Generalized Linear Models (GLMs), in which both covariates and kernels are learnable, contrary174

to GLMs in which the kernels are user-defined and fixed [58]. Importantly, our method outputs a175

response amplitude for each individual occurrence of an event, a feature that is absent from other176

encoding methods.177

DUNL uncovers salience and value signals from single dopamine neurons178

We first apply DUNL to deconvolvemultiplexed signals in the responses of dopamine neurons. The179

activity of dopamine neurons in the midbrain has long been an interest of neuroscientists, both in180

fundamental and clinical research, given their involvement in motivated behaviours, learning, and181

multiple physiological functions. A subset of these neurons located in the Ventral Tegmental Area182

(VTA) has been described as encoding a reward prediction error (RPE) from temporal difference183

(TD) reinforcement learning algorithms [59–64]. This computation requires the neural representa-184

tion of the value of rewards in the environment: a transient positive RPE response signals an un-185

expected increase in the value of the environment. However, reward is a subjective quantity that186

is non-linearly modulated along multiple dimensions of reward (e.g., probability, size, etc.), and it187

has been suggested that the reward responses of dopamine neuronsmultiplex two sequential and188

overlapping signals [65], the first one carrying information related to the salience of the reward and189

the second one carrying subjective value information, or utility, of the reward [12]. This distinction190

is important from a computational point of view because only the value-like component matches191

the reward prediction error signal driving learning in TD algorithms. However, in practice, most192

studies of dopamine neurons ignore this potential multiplexing by averaging dopamine responses193

over a single time window following reward delivery [66, 67], or, at best, apply user-defined ad-hoc194

windows to try to isolate these two contributions [68]. We used DUNL to find, in a data-driven195

manner, whether the reward responses of dopamine neurons can indeed be decomposed into196

two components and whether these are differently modulated by reward value.197
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Figure 2. DUNL uncovers salience and value signals from single dopamine neurons’ reward responses.
a, Experimental setup showing optical fiber and tetrode recordings on a sagittal slice of the mouse brain (topleft), distribution of reward sizes (top right), and task structure (bottom). b, Raster plot (each dot is a spike)from one neuron (left) and corresponding firing rate averaged across trials of the same reward size. c,Representation of the input information used to run DUNL in this dataset: neuron activity across time andtrials, timing of stimuli, number of kernels to learn, probabilistic generative model. d, Learned kernels sharedacross neurons (top) and inferred code amplitudes for one example neuron (bottom, each dot responds to asingle-trial code, the line is the linear regression of the codes over reward sizes). e, Diversity of neuralencodings (code amplitudes) as a function of reward size for expected and unexpected trials; each linerepresents one neuron; the black line is the average for expected trials, and the red dashed line is theaverage for unexpected trials. The lines are normalized per neuron, and the normalization constants areshared across trial types and codes. For non-normalized curves, see Figure S3. f, Spearman’s rank correlationbetween codes and reward size vs. the windowed averaged firing rates and reward size within the full 600mswindow. The alignment of the red dots (Reward II) under the diagonal line illustrates that the value-like codeis more informative about the reward size (each neuron is represented by two dots (expected andunexpected); the average of all neurons is shown by the marker x (t-test: 𝑝 = 0.050 expected (yellow),
𝑝 = 6.19 ∗ 10−5 unexpected (green)). g, Mapping of the Spearman’s correlation (its distance from the diagonal)as a function of the window start time for the windowing method. The positive distance corresponds to belowthe diagonal. Colorbar: normalized probability density function at each bin, such that the integral over theshown range in the x-axis is 1. For experiment results on limited data (< 8% of current analyses data) seeSupplementary materials (Figure S4).
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We used electrophysiological data from 40 optogenetically identified dopamine neurons [66,198

67] recorded in mice performing a classical conditioning task as part of a previous study [69] (Fig-199

ure 2a and see Methods). In “Unexpected” trials, a reward of varying size (i.e., 0.1 to 20 𝜇𝑙) was200

delivered without a cue, and in “Expected” trials, an odor cue preceded reward delivery by 1.5 s (Fig-201

ure 2a,b). Although the cue predicted the timing of the reward, it provided no information about202

its magnitude.203

Wemodeled the data with three non-negative kernels: one to characterize the response to the204

odor cue, and another two for the reward event (Figure 2c) [12]. DUNLwas providedwith the timing205

of the cue and reward events but not the trial types (reward amounts). The goal is to recover the206

generating kernels, associated with the cue and reward events, given only raw spiking data and the207

timing of these events. We defined DUNL’s inputs such that the kernels would be shared across208

the population of neurons, but the codes would be individualized for each neuron in single trials209

(Figure 2c), such that each neuron is characterized by its own decomposition of its estimated firing210

rate (see example neuron decomposition in Figure S2).211

DUNL’s output showed that, as expected, the magnitude of the associated code obtained us-212

ing the kernel for cue responses is essentially invariant to the reward size. More importantly, al-213

though we did not instruct DUNL to retrieve salience and value-related components separately,214

DUNL obtained two reward-related kernels which can be characterized as responding to salience215

(blue, Reward I) and value (red, Reward II) (Figure 2d). Whenwe plot the code values for each kernel216

as a function of reward size we observe that codes corresponding to salience (blue, Reward I) are217

modulated by expectation (unexpected vs. expected), but almost invariant to the reward size, and218

codes corresponding to the value (red, Reward II) are strongly positively correlated with reward219

size, both for individual neurons and across the population average (Figure 2e, and Figure S3 for220

non-normalized data). In fact, the value code carries more information about the reward size than221

the firing rates over a traditional ad-hoc window (Figure 2f). Furthermore, combining the two re-222

ward kernels (Reward I and II) does not improve the information about the reward size, indicating223

that the salience-like code does not contribute to value information. We also found that as the224

ad-hoc window shrinks to exclude the first spike(s) traditionally attributed to salience, the ad-hoc225

window method improves in the representation of reward size (for Reward II, the best ad-hoc win-226

dow approximately excludes the first 125 (expected) and 150 (unexpected) ms of data from the227

reward onset). Still, DUNL’s code is more informative of the reward value (Figure 2g).228

DUNL’s successful decomposition of neural responses to the reward, as opposed to spike counts229

from ad-hoc windows, indicates that the code amplitudes in single trials from the value kernel are230

a powerful measure of the neurons’ tuning to reward size. Importantly, we also showed that DUNL231

can successfully perform similar learning/inference in a data-limited regime (< 8% of the current232

analyses data, Figure S4). To quantify the quality of our decomposition as a function of the num-233

ber of trials used for training, we simulated dopamine neurons in the same experimental settings.234

We found that in our simulated dopamine data, we could recover well-fitted kernels with as little235

as 14 trials Figure S5). In summary, we showed that DUNL can discover two components in the236

reward responses of dopamine neurons in a systematic, data-driven approach, recovering a first237

component that is not modulated by reward size, while the second component is. We note that238

although the choice of the number of kernels, in this case, two for reward events, is a hyperparam-239

eter to set a priori, it can be tuned using validation sets. Overall, DUNL will empower future studies240

to precisely quantify the value-like component as the reward prediction error response of single241

dopamine neurons in an unbiased manner.242

DUNL deconvolves cue, salience, and value signals from single dopamine neurons243

in two-photon calcium recordings244

To demonstrate DUNL’s flexibility and applicability to other data modalities beyond spike trains,245

we next applied DUNL to two-photon calcium imaging data [64, 70]. To this goal, we recorded246

the activity of 56 dopamine neurons in mice using two-photon calcium imaging with a gradient247
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refractive index (GRIN) lens (Figure 3a) in a classical conditioning task with the same structure as248

in the above experiment [67, 69], but with a longer delay between the cue and the reward delivery.249

In unexpected trials, rewards of different sizes (i.e., 0.3 to 11 𝜇𝑙) were delivered once at a random250

time. In expected trials, an odor cue was delivered 3 s before the reward delivery. There is diversity251

in the responses of neurons to the cue and the multiple reward deliveries and, in general, we see252

modulation by expectation and reward size (Figure 3b).253

We characterized the neural activity using four kernels (Figure 3c), as follows. The response to254

the odor cue in expected trials was characterized by one kernel (orange), and the reward response255

(at the reward onsets) in both unexpected and expected trials was modeled by three kernels: the256

blue kernel can be freely active with a positive code, while the red/green kernels were positive257

and their codes were positive and negative, respectively. We coupled red and green kernels such258

that only one of them is encouraged to be active on each trial. To achieve this, we used structured259

representation learning (seeMethods Section in Supplementary Materials). This structural regular-260

ization is motivated to capture the different response dynamics of the calcium signal to increases261

versus decreases in the underlying firing of the neurons due to the different onset and offset dy-262

namics of the sensor. DUNL’s output shows that the blue reward kernel resembles the salience263

response, and the red/green reward coupled kernels resemble the value response (Figure 3d). The264

inferred single-trial codes from a single neuron (Figure 3e) and across the population (Figure 3f)265

show that the salience-like kernel (Reward I) is almost invariant to reward size, while the combina-266

tion of the value-components kernels (Reward II Coupled) correlates positively with reward size.267

To understand this choice of kernel characterization, we looked into the interactions of the cho-268

sen kernels in the decomposition of the raw data (Figure S6). In this dataset, we observed that269

many neurons lack an obvious salience-like response (i.e., an early transient increase of the neural270

activity that is invariant to the reward size), probably because the cue-related calcium signal has271

not yet decayed to the baseline, potentially masking the salience response. Due to the calcium272

sensor’s faster onset than offset dynamics, we observed faster salience-contaminated positive re-273

sponses for high-reward trials, and a very slow negative response for low-reward trials. Given the274

different temporal dynamics of positive and negative signals, the decomposition of reward signals275

into only two kernels (salience and value-like) would result in a combination of salience and valence276

information for both kernels, such that both kernels would be correlated with the reward size.277

We computed the Spearman correlation between the Cue code, the Reward I code (blue), the278

Reward II coupled (red + green) code, as well as all the reward codes combined (blue + red + green)279

with the reward size. These correlation values were then compared to the ad-hoc approach where280

the correlation was computed using the 4 s windowed averaged activity at the reward onset. This281

analysis showed that only when all reward codes (salience-like + value-like) are combined, the282

codes become more informative of the reward size than the ad-hoc windowing approach (the dis-283

tribution of points is below the identity line, Figure 3g). This can also be noticed in the average284

population activity (Figure 3f and Figure S7). Regardless of the window size used for computing285

the value component of the reward response in traditional approaches, the Reward Combined286

code is significantly more informative of the reward size than the windowing approach in both287

unexpected and expected trials (Figure 3h). We attribute this success to the denoising capability288

of DUNL: it performs deconvolution of the cue response from the reward response, which is im-289

portant in these slow calcium signals. For further discussion on the limited temporal resolution of290

these data and the recovery capability of DUNL.291
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Figure 3. Deconvolution of the cue, salience, and value components from dopamine calcium data. a,Experimental setup depicted on a sagittal slice of the mouse brain with dopamine neurons represented ingreen (top) and histology images showing dopamine neurons expressing the fluorescent calcium indicatorGCaMP6m (bottom): coronal slice of the mouse brain showing GRIN lens track over the VTA (left, scalebar:
600𝜇m), and projection image of the field of view obtained during an experimental acquisition under thetwo-photon microscope showing individual VTA dopamine neurons (right). b, Left: Heatmap of time-alignedtrials at the reward onset. The trials are ordered from low to high reward size, with a horizontal lineseparating the different trial types. Right: Averaged time-aligned activity of an example neuron for eachreward size. c, Inputs used to run DUNL in this dataset: calcium activity across time and trials, timing ofstimuli, number of kernels to learn, and probabilistic generative model. d, Kernel characterization of cue andreward events. Three kernels were used to estimate the reward response: one for salience (blue) and twonon-concurrent kernels for positive or negative value (green and red). e, Code amplitude as a function of thereward size for an example neuron (each dot corresponds to the code inferred from single-trial neuralactivity, these values are fitted by linear regression). f, Diversity of neural encodings as a function of rewardsize for unexpected (top) and expected trials (bottom): each line represents one neuron, the black line showsthe average for expected trials, and the red dashed line average for unexpected trials. Activity is normalizedper neuron and across trial types, and codes for comparison across subfigures. g, Spearman correlation ofthe codes (x-axis) and the windowed average activity of 4 seconds (y-axis) with respect to the reward sizes:each dot represents one neuron and the average across all neurons are shown by yellow (expected) andgreen (unexpected) ’x’ marker (Reward Combined has 𝑝 = 0.008, and 𝑝 = 3.468 ∗ 10−9 t-test, respectively). Thethird panel (brown) from the left combines the code from Reward Coupled kernels (positive and negative,depending on the trial). The right panel combines all the reward-related codes (salience-like Reward andvalue-like Reward-Coupled). h, Heatmap of the distance of the yellow (unexpected) and green (expected) ’x’marker in f, from the diagonal as a measure of the increased Spearman’s correlation between codes andreward size, as the interval chosen for the ad-hoc window is modified: it shrinks from the bottom to the top ofthe y-axis to gradually exclude the early activities after the onset. Positive values are located below thediagonal. On the right panel, the marker is closest to the diagonal when 0.4 s of activity at the reward onset isexcluded in the ad-hoc window approach. Colorbar: normalized probability density function at each bin, suchthat the integral over each line in the x-axis is 1.
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DUNL demonstrates modulation of somatosensory thalamus by whisker velocity292

using unsupervised simultaneous onset detection and kernel characterization293

Owing to its algorithm unrolling foundation, DUNL is a very versatile framework, whose inputs can294

be adjusted according to the application. In our previous examples, we provided DUNL with the295

expected number of kernels and expected times of events to guide the learning process. However,296

this information might be completely omitted, and we can use DUNL to perform simultaneous297

onset detection and learn local kernels in an unsupervised manner. This approach will be more298

successful in a high signal-to-noise ratio (SNR) setting.299

To demonstrate this, we applied DUNL to electrophysiological recordings from the somatosen-300

sory thalamus of rats recorded in response to periodic whisker deflections. The whisker position301

was controlled by a piezoelectric stimulator using an ideal position waveform [71]. The experiment302

was designed with trials starting/ending with a 500 ms baseline; in the middle 2000 ms, 16 deflec-303

tions of the principal whisker were applied, each with a period of 125ms (Figure 4a). We considered304

the whisker position to be the stimulus and attributed a particular phase of the whisker position305

as the event of interest to detect. The goal is to detect the onset of the events, and characterize the306

neural response to the stimulus using one kernel. In this experiment, onsets of events were un-307

known, and DUNL looks for up to 18 events in each trial (Figure 4b; the additional 2 events were to308

adjust for unknown activities outside the known 16 deflection stimuli, e.g., see Figure 4g bottom)).309

We refer the reader to theMethods section and Table S4 formore information on the unsupervised310

DUNL method and training.311

We divided the data in a training and test set to show that DUNL simultaneously characterizes312

the shape of neural spiking modulation (Figure 4d,e) and infers (detects) the event onsets at single-313

trial level (Figure 4g). The learned kernel suggests that the measured neurons encode, and are314

modulated by, the whisker velocity, a feature found by prior work [72, 73]. Moreover, unlike prior315

work analyzing these data by averaging the time-aligned trials [49], DUNL does inference on single-316

trial data (Figure 4g top) with bin spike counts of only 5 ms. The heterogeneity of the inferred317

code amplitudes (Figure 4g bottom) is indicative of the intrinsic variability of the neural response318

to the stimulus. This feature is absent in previously published GLM analyses [72, 73], which assume319

the neural responses are constant across deflections. Figure 4d shows the reconstructed average320

firing rate and the peristimulus time histogram for one neuron. For event detection, we showed321

that DUNL performs significantly better than a peak-finding algorithm (applied on the smoothed322

raster plot) (Figure 4f). This experiment highlights the ability of DUNL to detect event onset while323

simultaneously characterizing the neural response to the event; this event detection feature is324

absent in prior GLM frameworks [58].325

Characterization of single neurons in an unstructured olfactory experiment using326

DUNL327

Finally, we highlight how DUNL can be used for exploratory data analysis. We applied DUNL to328

electrophysiological data recorded from the piriform cortex of mice engaged in an olfactory task329

in which short odor pulses occur at random times across trials, mimicking the statistics of natural330

odor plumes [74]. In each trial, 50msGamma-distributed odor pulses were delivered. We recorded331

and isolated 770 neurons from mice’s anterior piriform cortex (Figure 5a,b, details of data acquisi-332

tion and scientific results on this data will be reported fully in another publication). The structure333

of piriform cortex neural responses to sequences of odor pulses are largely unexplored, and here334

we use DUNL to characterize them. Tomodel neural responses, we aligned the non-zero elements335

of the sparse code to the timing of the odor pulses, and spike counts were modeled with a Poisson336

process (Figure 5c). Each neuronwas characterized by one kernel. We learned both the kernels and337

the code amplitudes for all recorded neurons. Using k-means clustering, we identified 4 clusters338

for the kernel shapes detected in the population (Figure 5d,e). Three of these neural populations339

correspond to neurons whose activity increases following an odor pulse, albeit with different dy-340
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Figure 4. Event detection with DUNL for analysis of spiking data from the somatosensory thalamus. a,Experimental setup [71]: periodic whisker deflections of constant velocity are imposed in each trial (top),resulting in phase-locked neural activity (bottom left) in the VPM region of the thalamus in anesthetized rats(bottom right). b, DUNL setup to detect one kernel across the entire population. c, Raster plot from oneneuron (both train and test trials). Each trial starts/end with 500ms baseline period; 16 deflections with aperiod of 125ms are applied to the whisker of the rat for a total of 2000ms. d, Peristimulus time histogramfrom one neuron (black) and DUNL estimate of the firing rates (blue). e, Kernel characterization of thewhisker motion (blue). The gray sinusoid is the first derivative of stimulus motion. f, Quantification of themiss/false events detected by DUNL. The red dot represents the performance of DUNL when events aredetected on single-trials. The black curve shows the performance of a peak-finding algorithm on thesmoothed spike trains for a range of thresholds. We used a tolerance of 10 ms (2-time bins) while computingthe false/miss events. g, spikes in one example trial (top), smoothed spike rate in black, and spike rateestimation in blue (middle), with the inferred code on the detection of 16+2 events in time (bottom). (For moreinformation on the analyzed neurons and stimuli in relation to the original paper collecting the data [71], seesupplementary materials).

namics, while the other cluster corresponds to neurons whose activity is inhibited by the olfactory341

pulses. One can complement this exploratory data analysis using a different number of clusters342

(Figure S8).343

This application demonstrates how any type and shape of kernels can be learned by DUNL,344

without any assumptions guiding the shape of the kernels. Thus, DUNL can capture a diversity345
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that may not be recoverable when using a hand-crafted family-of-basis, highlighting the value of346

non-parametric temporal characterization of neural responses [75].347

Figure 5. Characterizing the structure of piriform cortex responses with DUNL. a, The experimental task.
b, Raster plot from one neuron in an unstructured trial-based experiment. The red dots denote 50msGamma-distributed odor pulses, and the black dots represent single spikes. c, Schematic of the analysis usingDUNL. d, Kernel characterization of single neurons. The kernels (zero-mean, normalized) are shown for thefour clusters. For K-means with 3 and 5 clusters, see Figure S8. e, The cosine similarity matrix correspondingto the clusters of learned kernels. f, Visualization of the four clusters of kernels using Principal ComponentAnalysis (principal components 1 and 2). See also Supplementary materials.

Model characterization348

To assess the reliability of the results reported here and guide DUNL’s end users, we characterized349

the performance of DUNL on awide range of simulated data, focusing on the spiking-datamodality.350

The section includes two distinct simulation studies.351

Simulation study I: data generation. In scenario I, we focused on a setting where a neuron352

responds to two different types of events, characterized by two distinct kernels of length 400 ms.353

In each trial, 3 different events from each kernel can occur. They are unstructured, such that event354

onsets are chosen uniformly at random, with a minimum distance of 200 ms between two events355

of the same type. However, events of different types can occur simultaneously, thus convolving356

their activity (Figure 6a, blue and red events). The strength of the neural responses of the neuron357

was generated by the Gaussian distribution with mean 50 and variance of 2 for blue events and358

with mean 55 and variance of 2 for red events. The baseline firing rate was chosen to be 8 Hz.359

Simulation study I: fitting using DUNL. We trained DUNL with these synthetic data using bin360

size resolution of 25 ms while the number of trials available for training varies from 25 to 1600361

(results in Figure 6b and Figure S9 are from a test set with 500 trials). The number of events in each362

trial was known, but the timing of the events was unknown to DUNL. DUNL estimated the firing363

rate of the neuron and deconvolved it into two components, corresponding to each event type.364

Moreover, the magnitude of the sparse codes inferred by DUNL encoded the local activity of each365

event (kernel) within the trial (Figure 6b). Lastly, the result held with small kernel recovery error in366

the limited data regime, i.e., 25 training trials (Figure 6c,d).367

Simulation study II: data generation. In this scenario, we restricted ourselves to the setting of368

a single neuron and a single event to assess how well DUNL can learn the kernel associated with369

this neuron, as well as its codes. This model characterization empowers end users to assess the370

reliability of DUNL based on the statistics of their data. We evaluated the performance of DUNL as371
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Figure 6. DUNL model characterization with two kernels in an unstructured experiment. a, Test trialsfor this unstructured synthetic experiment: raster plot of spiking events (top), smoothed raster (middle), andtrue event onsets (bottom). b, Example trial showing original firing rate (top), estimated firing rate by DUNL(middle), estimated codes and kernels (bottom). c, Estimated kernels for 25, 50, 100, 400, and 1600 trainingtrials. Gray traces represent the true kernels used to generate the data. The test 𝑅2 fit score, evaluated on thebinned spikes, is shown for each training size. d, Kernel recovery error (i.e.,√1 − (cosine similarity)2, as afunction of number of training trials. Specifically, we computed cross-correlation to compute the cosinesimilarity to account for learning shifted kernels. See Figure S9 for more single trials and decompositionexamples. The event detection hit rate is, on average, 80.22% and 80.68% for the smallest and largest trainingdatasets with a tolerance of 2 time bins (with a tolerance of 3 time bins, the hit rate is increased to 91.58% and
93.34%, respectively. We report hit rate with tolerance to account for learned shifted kernels (see theSupplementary Methods for more info on the shift/delay property of DUNL).

a function of the background firing rate (i.e., 2, 5, 8, 11, 14, and 17 Hz), the bin-size the model uses to372

count spikes (i.e., 5, 10, 25, and 50ms) (Figure S10), and the number of trials (i.e., 10, 25, 250, 500, 1000),373

available to learn the model parameters (i.e., kernels) (Figure S11).374

We simulated multiple trials of activity, a subset of which we used for training, and the other375

for testing. Each trial was 4000ms long with 1ms resolution. In each trial, 5 similar events happen376

uniformly at random with a minimum distance of 200ms. We assumed the neural response to the377

event is 500ms long. Wemodeled the strength of the neural response using a Gaussian distributed378

code amplitude ofmean 30with variance 2. Given the code and kernel, the firing rate of the neuron379

was constructed based on the DUNL generativemodel using the Binomial distribution. The test set380

consisted of 100 trials following similar statistics to the training set. For a low background firing rate,381

a few spikes were observed in each trial (e.g., for 2 Hz, only 29 spikes were observed in one trial,382

whereas for 17 Hz firing rate, 202 spikes were observed on average in each trial). Hence, learning383

and inference were challenging when the neuron was very silent.384

Simulation study II: fitting using DUNL. We considered two scenarios: a) known timing of events385

(known support), and b) unknown timing of events with a known number of events (unknown sup-386

port)(Figure S12). The dopamine (Figures 2 and 3) and olfactory (Figure 5) experiments from earlier387

sections correspond to known support scenario, and the whisker deflection (Figure 4) experiment388

corresponds to unknown support. When the onsets were known, the inference was reduced to389

estimating the amplitude of the sparse codes and the training was for learning the kernel. When390

the onsets were unknown, the inference was more challenging: it involved estimating the event391

onsets in addition to the neural strength response (the code amplitude). In this case, the reliability392

of learning the kernel was entangled with the reliability of estimating the event onsets.393
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Figure 7. DUNL model characterization with a single kernel. The learning is evaluated through a kernelrecovery error (i.e.,√1 − (cosine similarity)2, and code inference/recovery is evaluated through an eventrecovery error (i.e., 1 − #identified events
# total events ) when events’ timing are unknown. a, The hit rate (event onsetdetection) as a function of baseline activity. Results are shown for 25 and 250 training trials available, as afunction of two different tolerance factors. For low tolerance on event detection, increasing the time binresolution window improves the performance. b, Kernel recovery error when support is known (first row) andunknown (second row). For known support, smaller bin size results in better kernel recovery. The increase inkernel recovery error as the bin size increases is due to the decrease in resolution of the kernel. On the otherhand, for unknown support scenarios, increasing the bin size is beneficial as it helps to have better eventdetection (shown in a). c, True (black) and learned (blue) kernels when event onsets are known. Kernels areshown for bin sizes of 5 and 25ms, and 25 and 250 training trials. d, Similar to c but for the case when theonsets of events are unknown, hence estimated. See Figures S10 to S12 for more detailed info.

We showed that when the event onsets are known (Figure 7b known event onsets), DUNL’s394

kernel recovery is relatively robust to the baseline firing rate and can successfully be achieved with395

few trials (e.g., 25 trials). In this setting, high-temporal resolution (e.g., 5 ms bin size) should be396

used, regardless of the size of the data. If data are very limited (e.g., 25 trials), increasing the bin397

size slightly (e.g., 5 ms to 10 ms) is important to implicitly learn a smoother kernel (Figure 7c) (we398

note that one can also tune the kernel smoothing hyperparameter in the DUNL training framework399

for better results with very limited data). When the event onsets are unknown (Figure 7b unknown400

event onsets), the bin-size imposes a limit on how well the kernel can be learned (Figure 7d). This401

challenge comes from the fact that the lower the bin size, the harder the event detection (Figure 7a).402

We recommendusing as large as possible bin sizes thatmatch auser’s tolerance for event detection403

errors. In summary, the higher the number of trials, the higher the firing rate, and the larger the404

bin-size, the better DUNL’s ability to learn kernels and infer event onsets. Our analyses can help405

practitioners explore in which regime their experimental data lies and assess which parameters of406

the model can be recovered from the data.407

Comparison with other decomposition methods408

DUNL is a versatile deconvolutional method that can extract directly interpretable latent represen-409

tations from time-series data. Its main strengths are its ability to learnmultiple local kernels within410

single trials, either in a supervised or unsupervised manner, and the capacity to do so in a limited411
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data regime. This is achieved through its learnable network architecture, implemented using al-412

gorithm unrolling. To emphasize how our framework fills a gap in the space of functionalities of413

other decomposition methods, we compared DUNL with other frameworks (baselines), namely: 1)414

dimensionality reduction methods, such as Principal Component Analysis (PCA), Non-negative Ma-415

trix Factorization (NMF), and trial-based Poisson GLM regression [58]; 2) the deep learning frame-416

work for latent factor analysis via dynamical systems (LFADS) [25]. We first performed comparison417

analysis with LFADS over full-length trial simulated data to demonstrate the ability of DUNL to418

perform local characterization and deconvolution. Second, we showed how the set of bases and419

coefficients offered by each baseline fails to offer interpretability and the salience/value decom-420

position of interest in the dopamine spiking data. In the latter, we applied the methods on local421

windowed data to focus on the capability of their set of bases. Accordingly, we compared with NMF422

as opposed to convNMF/seqNMF [76].423

We started by using a synthetic dataset to compare DUNL with LFADS [25], a deep learning424

framework for inferring latent factors from single-trial neural activity. We note that LFADS fits the425

data at the same resolution as the original rate, while DUNL uses a bin size of 25 ms to model426

the firing rate. We challenged the interpretability of LFADS in a simple scenario: the trials of the427

experiment were time-aligned and structured, with two different types of events occurring in single428

trials. The events were non-overlapping. We evaluated the interpretability of DUNL and LFADS429

from their ability to deconvolve the single-trial neural activity into two traces, each corresponding430

to one underlying event type.431

We generated such trials for a training dataset and a test dataset (Figure 8a). Both DUNL and432

LFADS were able to estimate the underlying firing rate of the simulated neuron (Figure 8b,c,d).433

DUNL can recover the underlying kernels (Figure 8e), and has 𝑅2 fit score, of 0.89, 0.95, 0.97,434

0.95, 0.96, 0.97, 0.97, for training scenarios with 25, 50, 100, 200, 400, 800, 1600 examples, respectively435

(the score is evaluated on the binned spikes). LFADS has 𝑅2 score of 0.999 on the test set. Despite436

the good fit, LFADS: a) finds factors that span the entire trial duration, lacking the locality provided437

by DUNL, and b) fails to deconvolve the neural activities excited by events of different types from438

one another (Figure 8f). Overall, unlike DUNL, which provides a functional relation between kernels439

and firing rates of neurons via a probabilistic generative model, LFADS inference is based on a440

recurrent neural network, whose encoder and decoder are not tied to one another, thus lacking a441

direct link between spiking data and the latent factors. At last, we note that DUNL is a convolutional442

framework, i.e., it can analyze trials of various lengths. However, LFADS can only run on trials of443

similar length.444

To further demonstrate how latent variables from other decomposition methods might not445

capture interpretable convolved contributions to the neural activity, we applied classical and deep446

dimensionality reduction methods to the dopamine spiking data. The result showed that Principal447

Component Analysis (PCA), and Non-negative Matrix Factorization (NMF) can be used to extract448

components fromwindoweddata (600msstarting from the rewardonset) (Figure S13a,c). However,449

the results suggest that even if both PCA and NMF fit the data well, neither of them offers the450

salience/value interpretability that DUNL provides. The coefficients extracted from each trial and451

the Spearman’s rank correlation between each neuron’s coefficients across all trials are not aligned452

with the decomposed codes from DUNL (Figure S13b,d). For PCA, this is due to the dissimilarity453

of the learned kernels to what we know from the salience and value responses. For NMF, the454

kernels are semi-similar to the learned kernels in DUNL (non-negative kernels are learned in the455

spiking scenario). However, the NMF coefficients are not capable of capturing the dip in neural456

responses, due to their non-negativity constraint, resulting in a lower Spearman’s rank correlation457

to the reward sizes.458

Moreover, we compared LFADS with DUNL using the dopamine spiking data. Since LFADS’s459

factors cover the entire trial duration, we applied it to windowed spiking data time-aligned to the460

reward onset. Specifically, we used only 600ms of each trial, starting from the reward onset.461
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Figure 8. Comparison of DUNL with LFADS. DUNL finds local components in single trials. a, Experimentalsetting implemented for simulated spiking neural activity: this is a multiple trial-based experiment in whichtwo events occur in single trials (top and middle). The event onsets for the two events in each trial of the testset (bottom). b, LFADS estimates two factors for this dataset, which span the entire duration of the trial. c,d, Inan example trial (raster and smoothed rate on top), DUNL estimates the firing rate of this simulated neuron in
25ms bins (c, middle) while LFADS estimates the firing rate in the original rate (d, middle). DUNL finds localcodes for the two kernels (c, bottom), while LFADS finds two kernels that span the entire trial duration (d,bottom). e, Kernels found by DUNL using 25, 50, 100, 400 or 1600 trials for training (compared to the trueunderlying kernels used to generate the data in gray). f, Average LFADS factors across the training scenarios.

Using two factors, we found that despite LFADS’s success in estimating the firing rate of neurons462

in each trial (𝑅2 = 0.999 on the test set), the learned factors lack salience-value interpretability (Fig-463

ure S13e). The comparison of the Spearman’s rank correlation analysis on the LFADS factors and464

DUNL’s codes for the reward response (Figure S13f) further supports the absence of salience-like465

characterization in the LFADS method: both factors incorporate value information. These effects466

could be due to the more expressive architecture of LFADS that overfits the data at the expense of467

a parsimonious and interpretable description (See Figure S13g-h in Supplementary materials for468
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LFADS analysis in the limited data-regime).469

Finally, we applied GLM with a family of basis functions [58] using a similar time-bin resolution470

of 25 ms as DUNL to the dopamine spiking experiment. We guide the framework to fit the data471

using a set of bases at the onset of the reward for a duration of 600ms. We show results from two472

scenarios, each with a different set of bases, i.e., non-linear raised cosines and raised cosines. We473

found that although GLM with pre-defined bases has smooth fitting curves, it cannot deconvolve474

single-trials into components that are interpretable from the perspective of salience and value in475

this experiment (Figure S14). We argue that this is primarily due to the dissimilarity of the pre-476

defined bases to the kernels learned by DUNL. One may use the DUNL kernels within the GLM477

framework to perform the deconvolution of interest, thus taking advantage of the interpretability478

of learned kernels in place of pre-defined bases. However, in the absence of a kernel-learning479

framework, such interpretable kernels are unknown a priori.480

Discussion481

The technical and computational developments of the last decade have enabled the acquisition of482

increasingly large datasets of neural data during behaviour, through the use of high-throughput483

electrophysiology and two-photon calcium imaging in animals performing complex tasks [2, 3].484

This trend has shifted the focus of many neural analyses from the characterization of single neu-485

rons to the analysis of emergent, dynamic properties of simultaneously-recorded neural popula-486

tions [77]. Both of these approaches are important for understanding how neural computations487

lead to behaviour. In fact, aswe increasingly studymore cognitive variables that enable complex be-488

haviour, such as learning, decision-making, evidence integration, or cognitive maps, the field must489

have more capacity to investigate how different neuron types, or heterogeneity within a more or490

less homogeneous population, support dynamic population-level computations in stochastic envi-491

ronments. With new technologies enabling neuroscience research to grow into more naturalistic492

and unstructured settings, closer to the natural environments inhabited by animals [78], tools that493

bridge the activity and properties of single neurons with their population and circuit-level compu-494

tations during these unconstrained behaviours are of utmost importance.495

Here, we introduced the use of unrolled dictionary learning-based neural networks [55–57] to496

deconvolve multiplexed components of neural data that are relatable to human-interpretable la-497

tent variables. This is a technique, based on algorithm unrolling [38, 39], to design an interpretable498

deep neural network. Our method, DUNL (Deconvolutional Unrolled Neural Learning), fulfills im-499

portant desiderata of a decomposition method: it can be implemented in single instantiations of500

the neural data, it can be trained with a limited dataset, it is flexible in regard to the source signal,501

it generates a mapping between data and latent variables, and, importantly, from these latent vari-502

ables to human-interpretable variables. This is achieved through the use of a generative model503

that guides the architecture of the inference deep neural network during the optimization process504

(Figure 1). This method is a deconvolutional method that can look for and encode local overlap-505

ping events within a single trial (e.g., cue and reward components in the dopamine experiments506

or multiple deflections in the whisker experiment), while Principal Component Analysis (PCA), Non-507

negative Matrix Factorization (NMF), and Latent Factor Analysis via Dynamical System (LFADS) can508

only offer components/factors covering the entire duration of a trial (for this reason, we apply509

them on windowed data aligned at the onset of the events of interests). Our work, while sharing510

the statistical nature of previous methods based on optimization using generalized linear models511

(GLM) [58, 75], goes beyond them by a) learning kernels (covariates) from the data and b) using512

deep learning and backpropagation for data fitting, such that the typical response function of neu-513

rons and their amplitudes to multiple events in single trials are directly obtained from the network514

weights and latent representations.515

Our method owes its efficiency to the combination of algorithm unrolling with sparse coding516

to provide temporal structure to the analysis of the neural data. Exogenous stimuli, behaviour,517
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and neural activity all share time as a fundamental variable, and sparse coding has a rich history518

in neuroscience as an interpretable theory of early sensory processing in many brain regions and519

systems [79, 80]. By adding temporal structure to sparse coding, we obtain an expressive artificial520

neural network that can deconvolve single-trial neuronal activity into interpretable components,521

because they correlate with exogenous stimuli and/or behaviour. First, the obtained latent rep-522

resentations are aligned with time and, second, they are sparse. Our method’s deconvolution of523

neural response components can be seen as resulting in an input/output characterization of the524

functional properties of a system (neuron(s) in this case). The appeal of approaches such as GLMs525

comes from the fact that, in some sense, they provide such input/output descriptions of neural526

responses. Signal processing theory [52] has well-established links between such descriptions and527

computations (e.g., differential equations). The GLM-like statistical nature of our models linking528

latent, learnable, representations and neuronal data, together with their translation, via algorithm529

unrolling, into interpretable deep-learning architectures, leads to a powerful approach for analyz-530

ing single-trial neural data that satisfies the desiderata put forth.531

Our method expands the techniques, available to neuroscientists for analysis of neural data,532

such as NMF, PCA, sparse coding, GLM, and deep neural networks [25–28, 81–84]. In particular,533

our method is useful when multiplexed signals are encoded by individual neurons or populations,534

and when detection of events is needed in high SNR settings. Our method does not intrinsically535

impose constraints on the basis/kernels, such as orthogonality as in PCA, or non-negativity as in536

NMF. It is also not limited by a user-defined set of basis functions, and it outputs a measure of the537

intensity of the response on an event-by-event basis.538

Importantly, constraints and regularization can be easily added to the optimization problem539

if these are useful (such as enforcing or discouraging the co-activation of certain kernels, non-540

negativity, etc.). Moreover, our method can learn local characteristics from time series, which is541

missing in LFADS. The user can choose whether to learn individual kernels for each neuron, or542

shared kernels among neurons with individualized code values, and our model can be trained543

with very few trials: its computational efficiency is provided by the sparsity constraint. Thus, our544

framework is easier to use, customize, and train than previous methods [25].545

To show the versatility of our model, we applied it to a diversity of experimental settings. First,546

we deconvolved multiplexed components of the reward response of dopamine neurons acquired547

using electrophysiology and using calcium imaging, to show that our methods are source-agnostic.548

Our results illustrate the challenge of measuring neural activity with sensors whose dynamics are549

slower than the dynamics of the signals encoded in single neurons, and our ability to deconvolve550

slow calcium responses to odor cues from the reward response: these signals become artificially551

convolved by the calcium sensor, but DUNL can recover them. We also showed, in these datasets,552

that ourmethod providesmore interpretability than alternative dimensionality reductionmethods,553

such as PCA, NMF, and LFADS, even if their combined components fit the original data very well.554

Our results show that the inferred value-like code is more informative about the reward size than555

traditional ad-hoc window activity averaging, opening up the possibility of a more precise charac-556

terization of dopamine neurons’ heterogeneity. Second, we used DUNL to simultaneously detect557

a kernel and the timing of events in a high SNR setting. Neurons from the sensory thalamus have558

a stereotyped response to whisker deflections, which can be detected by DUNL with minimal in-559

put. This goes beyond previous analysis using GLMs, which performed averaging over trials as well560

as windowed analysis over whisker deflections and did not provide an event-by-event measure of561

the amplitude of the response to an individual whisker deflection in a single trial. Finally, we used562

DUNL to find the kernels of individual neurons from the piriform cortex in response to randomly563

delivered odor plumes. This application shows how it can be used for exploratory data analysis,564

namely to cluster different types of neural responses.565

To conclude, we point out that the unrolling framework can be extended to provide inter-566

pretable latent representations under other regimes, besides the sparsity one used here. More567

complex generative models can be used, for instance, Kalman filtering-based neural networks [38,568
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46], 2D filters with other constraints, or group sparsity [85]. Our work is a first step towards lever-569

aging the advances in interpretable deep learning to gain a mechanistic understanding of neural570

dynamics and underlying computations.571
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Supplementary Methods - Methods840

Notation841

Scalars are denoted by non-bold-lower-case 𝑎. Vectors and matrices are denoted by bold-lower-842

case 𝒂 and upper-case letters 𝑨, respectively. We let 𝑛 = 1,… , 𝑁 index neurons, and 𝑗 = 1, 2,… , 𝐽843

the number of trials. We assume that the time series representing the activity from neuron 𝑛 at844

trial 𝑗 comprises 𝑇 measurements, which we denote 𝒚𝑛,𝑗 . We denote the full measurement tensor845

by 𝒀 with 𝑇 × 𝐽 × 𝑁 dimensions (time/bin measurements, number of trials, number of neurons).846

We denote the convolution operator by ∗ and its transpose operator (correlation) by ⋆. Finally, we847

use superscript T for transpose of a matrix 𝑨T.848

Data Distribution849

For spiking data, the spikes at each trial are binned at 𝐵 ms resolution. Hence, each entry of 𝒚𝑛,𝑗
850

represents a spike count ranging from 0 to 𝐵. We model the observations using the natural expo-851

nential family [49, 50], i.e., 𝒚𝑛,𝑗 ∼ Poisson(𝝁𝑛,𝑗) and 𝒚𝑛,𝑗 ∼ Binomial(𝐵,𝝁𝑛,𝑗), where 𝝁𝑛,𝑗 models the852

mean of the distribution for neuron 𝑛 at trial 𝑗. For continuous-valued data, such as Calcium fluo-853

rescence data, we model the time series 𝒚𝑛,𝑗 ∈ ℝ𝑇 as a Gaussian distribution with mean 𝝁𝑛,𝑗 . We854

construct the data log-likelihood of the natural exponential family as [49, 50]855

log 𝑝(𝒚𝑛,𝑗 ∣ 𝝁𝑛,𝑗) = 𝑔−1(𝝁𝑛,𝑗)T𝒚𝑛,𝑗 + 𝑓 (𝒚𝑛,𝑗) − 𝑉 (𝝁𝑛,𝑗), (1)
where condition of 𝜇𝑛,𝑗 , we assume the entries of 𝒚𝑛,𝑗 are independent. The functions 𝑔 (i.e., inverse856

link), 𝑓 and 𝑉 depend on the particular choice of distribution (see Table S1).
Table S1. Natural exponential family data log-likelihood specifications.

𝒚 V(𝒛) 𝑔(⋅)
Gaussian ℝ 𝒛T𝒛 𝐼(⋅)
Binomial [0…𝐵] −𝟏T log(𝟏 − 𝒛) sigmoid(⋅)
Poisson [0…∞) 𝟏T𝒛 exp(⋅)

857

Generative Model858

We follow the perspective of analysis-by-synthesis [24] and Bayesian generative modelling [53].859

For each neuron 𝑛, we impose a generative model on the neuron’s activity (i.e., the firing rate860

in the spiking setting) and model it as a function of a baseline mean activity level 𝑎𝑛,𝑗 and a set of 𝐾861

localized kernels {𝒉𝑛
𝑘}

𝐾
𝑘=1 characterizing the neuron’s response to events that occur sparsely in time.862
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We let the sparse vector 𝒙𝑛,𝑗
𝑘 encode the onsets of events associated with the kernel 𝑘 in trial 𝑗: its863

nonzero entries represent the times when events occur, and their amplitude the strength of the864

contribution of the 𝑘-th kernel to the neuron’s response. Similar to 𝒚𝑛,𝑗 , the entries of the sparse865

code 𝒙𝑛,𝑗
𝑘 ∈ ℝ𝑇−𝑇ℎ+1 and the filter 𝒉𝑛

𝑘 ∈ ℝ𝑇ℎ are both indexed across time. Mathematically, we can866

express this convolutional sparse coding model as follows867

𝝁𝑛,𝑗 = 𝑔

(

𝐾
∑

𝑘=1
𝒉𝑛
𝑘 ∗ 𝒙𝑛,𝑗

𝑘 + 𝑎𝑛,𝑗
)

(2)
Although the model results in an estimate of each neuron’s firing rate on a trial basis, the kernels868

capture characteristics that are shared among trials and can be distinct across neurons or shared869

across the neural population. At times, we may use the terminology dictionary element to refer to870

the kernels. For the scenariowherewe share the kernels across neurons, we simplify the dictionary871

notation to 𝒉𝑘.872

Smooth Sparse Deconvolutional Learning873

Optimization874

Given the set of observations from all trials {𝒚𝑛,𝑗}𝐽𝑗=1 for each neuron 𝑛, we learn the kernels and875

codes by minimizing the negative log-likelihood with a sparse prior on the codes, i.e.,876

min
{𝒉𝑛𝑘}

𝐾
𝑘=1 ,{𝒙

𝑛,𝑗
𝑘 }𝐾,𝐽

𝑘=1,𝑗=1

∑𝐽

𝑗=1
− log 𝑝(𝒚𝑛,𝑗 ∣ {𝒉𝑛

𝑘,𝒙
𝑛,𝑗
𝑘 }𝐾𝑘=1) +

∑𝐾

𝑘=1
𝜆𝑛𝑘‖𝒙

𝑛,𝑗
𝑘 ‖1 +

𝛽𝑛
𝑘

𝑇ℎ
‖∇𝑡𝒉𝑛

𝑘[𝑡]‖
2
2

subject to ‖𝒉𝑛
𝑘‖2 = 1 for 𝑘 = 1,… , 𝐾

(3)

where 𝜆𝑛𝑘 controls the sparsity of the codes (i.e. the frequency of onsets in time) for the kernel877

(event-type) 𝑘 and neuron 𝑛. Moreover, 𝛽𝑛
𝑘 controls the smoothness of the kernels, achieved by878

regularizing the first derivative of the kernel with respect to time samples 𝑡 [54, 86]. We call the879

above optimization smooth sparse deconvolutional learning (SSDL).880

SSDL is a variant of dictionary learning, also referred to as sparse coding, and has widespread881

application outside of neuroscience. Dictionary learning is widely known in statistics and signal pro-882

cessing communities [87, 88]. The sparse coding model was initially introduced by Olshausen and883

Field [89] to model early layers of visual processing. Prior works used sparse coding for modeling884

neural connectivity and dynamics of early sensory systems [79, 80, 90–92]. Moreover, for imaging885

transcriptomics, the model is used to learn representations of gene expression [93, 94].886

Alternating minimization887

Equation (3) is a bi-convex optimization problem and can be solved by an iterative alternating-888

minimization algorithm [95]. Letting 𝑙 denote its iterations, the algorithm alternates between a889

sparse-coding step, that computes an estimate of the codes 𝒙𝑛,𝑗(𝑙)
𝑘 given an estimate 𝒉𝑛(𝑙)

𝑘 of the dic-890

tionary, and a dictionary-update step, that uses this new estimate of the codes to obtain refined891

estimates 𝒉𝑛(𝑙+1)
𝑘 of the kernels. Mathematically, we can express the two steps as follows892

𝒙𝑛,𝑗(𝑙)
𝑘 = argmin

𝒙𝑛,𝑗𝑘

− log 𝑝(𝒚𝑛,𝑗 ∣ {𝒉𝑛(𝑙)
𝑘 ,𝒙𝑛,𝑗

𝑘 }𝐾𝑘=1) +
∑𝐾

𝑘=1
𝜆𝑛𝑘‖𝒙

𝑛,𝑗
𝑘 ‖1 for𝑗 = 1,… , 𝐽 (4)

893

{𝒉𝑛(𝑙+1)
𝑘 }𝐾𝑘=1 = argmin

{𝒉𝑛𝑘}
𝐾
𝑘=1

∑𝐽

𝑗=1
− log 𝑝(𝒚𝑛,𝑗 ∣ {𝒉𝑛

𝑘,𝒙
𝑛,𝑗(𝑙)
𝑘 }𝐾𝑘=1) +

𝛽𝑛
𝑘

𝑇ℎ
‖∇𝑡𝒉𝑛

𝑘[𝑡]‖
2
2

subject to ‖𝒉𝑛
𝑘‖2 = 1 for 𝑘 = 1,… , 𝐾

(5)

Compared to classical sparse coding, both our sparse-coding and dictionary-update steps have894

convolutional structure. Intuitively, the convolutional structure of our model enables the identifi-895

cation of patterns that occur across time.896
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Sparse coding step897

The sparse coding step can be solved using the iterative shrinkage-thresholding algorithm (ISTA)898

[96, 97]. One iteration of this proximal gradient descent algorithm proceeds as follows899

𝒙𝑛,𝑗
𝑘,𝑟 = 𝛼𝜆𝑛,𝑗𝑘

(

𝒙𝑛,𝑗
𝑘,𝑟−1 + 𝛼∇𝒙𝑛,𝑗𝑘,𝑟−1

log 𝑝(𝒚𝑛,𝑗 ∣ {𝒉𝑛(𝑙)
𝑘 ,𝒙𝑛,𝑗

𝑘,𝑟−1}
𝐾
𝑘=1)

)

= 𝛼𝜆𝑛,𝑗𝑘

(

𝒙𝑛,𝑗
𝑘,𝑟−1 + 𝛼𝒉𝑛,𝑗

𝑘 ⋆ (𝒚𝑛,𝑗 − 𝑔(
𝐾
∑

𝑢=1
𝒉𝑛
𝑢 ∗ 𝒙𝑛,𝑗

𝑢,𝑟−1 + 𝑎𝑛,𝑗))

)

,
(6)

where the so-called shrinkage operator 𝑏(𝑧) ≜ sign(𝑧) max(|𝑧| − 𝑏, 0) is a nonlinear, sparsifying,900

thresholding operation, and 𝑟 denotes the sparse coding iteration 𝑟. For non-negative sparse cod-901

ing, i.e., when the entries of the sparse code can only take a non-negative value, the shrinkage902

operation (𝑧) reduces to the celebrated ReLU𝑏(𝑧) = (𝑧− 𝑏) ⋅ 𝟏𝑧≥𝑏 nonlinearity. The converged code903

estimate from the iterative update in (7) is aminimizer of the sparse coding step (6). In applications904

where the onsets of events are known (i.e., code support is given), we apply an additional indica-905

tor function of events 𝒆𝑛,𝑗𝑘 at every iteration. Thus, the iterative updates compute estimates of the906

strength of 𝑘-th kernel contribution to neural activity at known event-onset times.907

𝒙𝑛,𝑗
𝑘,𝑟 = 𝒆𝑛,𝑗𝑘 ⋅ 𝛼𝜆𝑛,𝑗𝑘

(

𝒙𝑛,𝑗
𝑘,𝑟−1 + 𝛼𝒉𝑛,𝑗

𝑘 ⋆ (𝒚𝑛,𝑗 − 𝑔(
𝐾
∑

𝑢=1
𝒉𝑛
𝑢 ∗ 𝒙𝑛,𝑗

𝑢,𝑟−1 + 𝑎𝑛,𝑗))

)

(7)

Dictionary learning step908

We use gradient-based methods to update the dictionary. In its simpler form, the update is of909

stochastic projected gradient descent.910

𝒉𝑛(𝑙+1)
𝑘 = 

(

𝒉𝑛(𝑙)
𝑘 − 𝜂∇{𝒉𝑛(𝑙)𝑘 }𝐾𝑘=1

(

− log 𝑝(𝒚𝑛,𝑗 ∣ {𝒉𝑛(𝑙)
𝑘 ,𝒙𝑛,𝑗(𝑙)

𝑘 }𝐾𝑘=1) +
𝛽𝑛
𝑘

𝑇ℎ
‖∇𝑡𝒉

𝑛(𝑙)
𝑘 [𝑡]‖22

))

(8)
where (𝒛) = 𝒛∕‖𝒛‖2 performs a norm projection, and 𝜂 is the learning rate.911

Interpretable deconvolutional unrolled neural learning (DUNL)912

Inference network913

The alternatingminimization procedure explained above can bemapped into an encoder/decoder914

neural architecture. Specifically, we use algorithm unrolling [38] to map the sparse coding step (4)915

into an encoder. This is similar to the network architectures proposed in [49, 98] for dictionary916

learning. In this architecture, each sparse coding iteration (6) is interpreted as one layer of a neural917

network with a particular recurrent convolutional structure and shrinkage or ReLU non-linearity.918

We refer to this encoder as an inference network that maps the single-neuron, single-trial time919

series 𝒚𝑛,𝑗 , into estimates of the time series sparse codes {𝒙𝑛,𝑗
𝑘 }𝑘=1, encoding event onsets and their920

contribution to explain the data (see Figure S1a).921

Generative decoder of DUNL922

Given the codes from the inference network, we construct a decoder based on the generative923

model (2) (Figure S1b). This decoder maps the estimated time series of sparse codes from a given924

neuron into a time-series observation estimate (e.g., a time series representing firing rate in the925

case of spiking data).926

Deconvolutional Unrolled Neural Learning (DUNL)927

We combine the inference network and the generative decoder to construct an interpretable net-928

work which can be trained by backpropagation. Training lets us learn the kernels {𝒉𝑛
𝑘}

𝐾
𝑘=1 that char-929

acterize the neural response to events coded by {𝑥𝑛,𝑗
𝑘 }𝐾𝑘=1. As detailed in the introduction, The inter-930

pretability of this network is two-fold: the network trainable parameters are directly related to the931

kernels {𝒉𝑛
𝑘}

𝐾
𝑘=1, and the encoder latent representation corresponds to the event onsets and their932

strengths.933
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𝒙𝑛,𝑗
𝑘,𝑟 = 𝛼𝜆𝑛,𝑗𝑘

(

𝒙𝑛,𝑗
𝑘,𝑟−1 + 𝛼∇𝒙𝑛,𝑗𝑘,𝑟−1

log 𝑝(𝒚𝑛,𝑗 ∣ {𝒉𝑛(𝑙)
𝑘 ,𝒙𝑛,𝑗

𝑘,𝑟−1}
𝐾
𝑘=1)

)

(one iteration is shown)
Recurrent inference performed 𝑅 iterations

𝒚𝑛,𝑗

Data observations

𝒙𝑛,𝑗
2,𝑅

𝒙𝑛,𝑗
1,𝑅

𝒙𝑛,𝑗
𝐾,𝑅

⋮

(event onsets)
Sparse codes

(a) Forward inference network for sparse coding. Given a choice of distribution from the exponential family, this recurrent
encoder uses unfolded iterations of the sparse-coding step from dictionary learning to map the time series of observations
𝒚𝑛,𝑗 to time series representing estimates of the sparse codes associated with each kernel. Given an estimate of the kernels
{𝒉𝑛

𝑘}
𝐾
𝑘=1, this network computes an estimate of their corresponding event onsets and amplitudes.

𝒙𝑛,𝑗
2,𝑅

𝒙𝑛,𝑗
1,𝑅

𝒙𝑛,𝑗
𝐾,𝑅

⋮

(event onsets)
Sparse codes

𝒉𝑛
1

𝒉𝑛
2

𝒉𝑛
𝐾

+

𝑎𝑛,𝑗

𝑔(⋅) 𝝁𝑛,𝑗

(firing rates)
Estimated observations

(b) Generative decoder.

Recurrent inference network𝒚𝑛,𝑗 𝒙𝑛,𝑗
2,𝑅

𝒙𝑛,𝑗
1,𝑅

𝒙𝑛,𝑗
𝐾,𝑅

⋮

𝒉𝑛
1

𝒉𝑛
2

𝒉𝑛
𝐾

+

𝑎𝑛,𝑗

𝑔(⋅) 𝝁𝑛,𝑗

Encoder Decoder

Forward inference

Learn kernels {𝒉𝑛
𝑘}

𝐾
𝑘=1 by backpropagation

(c) Encoder and decoder architecture of deconvolutional unrolled neural learning.
Figure S1. Deconvolutional unrolled neural learning (DUNL).
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Training this network involves both a forward pass (inference) and a backward pass (training934

to learn the dictionary), both of which are embarrassingly parallelizable over neurons and trials.935

Therefore, the interpretation of the sparse-coding and dictionary-update steps as a network en-936

ables to seamlessly take advantage of the parallelism offered by GPUs.937

Structured representation938

Motivated by biological constraints/prior knowledge, we may want to impose structure on the939

codes in addition to sparsity. Calcium fluorescence, for instance, does not encode electrical ac-940

tivity linearly: the signal exhibits different dynamics when the firing rate of a neuron increases941

than when it decreases. Even though the dynamics of the underlying firing rate might be the same,942

the measured calcium signal will be different, but these dynamics can be captured through the943

addition of structured representations in our framework. Consider a version of our model for944

fluorescence data, with one kernel for each neuron. This model could not capture such a nonlin-945

ear relationship because both positive (increased activity above baseline) and negative (decreased946

activity) codes would need to use the same filter/kernel. To overcome this challenge, we can intro-947

duce an additional filter and a prior on the codes of both filters that prevent the co-occurrence of948

event onsets, i.e., that prevents both filters from contributing to neural activity at the same onset949

times. As we will demonstrate in our analyses of fluorescence data from dopamine neurons, such950

priors allow us to capture the nonlinear relation between activity level and fluorescence. We can951

either enforce such latent structure on the codes or learn it by incorporating an additional term952

into the original optimization. Mathematically, our modified optimization solves953

min
{𝒉𝑛𝑘}

𝐾
𝑘=1 ,{𝒙

𝑛,𝑗
𝑘 }𝐾,𝐽

𝑘=1,𝑗=1

∑𝐽

𝑗=1
− log 𝑝(𝒚𝑛,𝑗 ∣ {𝒉𝑛

𝑘,𝒙
𝑛,𝑗
𝑘 }𝐾𝑘=1) +

∑𝐾

𝑘=1
𝜆𝑛𝑘‖𝒙

𝑛,𝑗
𝑘 ‖1 +

1
2
𝛽𝑛𝒙𝑛,𝑗T𝑸𝒙𝑛,𝑗

subject to ‖𝒉𝑛
𝑘‖2 = 1 for 𝑘 = 1,… , 𝐾

(9)

where 𝒙𝑛,𝑗 = [𝒙𝑛,𝑗T
1 ,𝒙𝑛,𝑗T

2 ,… ,𝒙𝑛,𝑗T
𝐾 ]T, and𝑸 ∈ ℝ𝐾(𝑇−𝑇𝑘+1)×𝐾(𝑇−𝑇𝑘+1) is a symmetric matrix with block struc-954

ture. For example, given two kernels (𝐾 = 2) when codes are non-negative, 𝑸 =

[

𝟎 𝑰
𝑰 𝟎

]

enforces955

a structure such that the kernels 𝒉1 and 𝒉2 are discouraged to get activated simultaneously. Vari-956

ations of such latent regularization are �̃�𝑛,𝑗T𝑸�̃�𝑛,𝑗 where 𝑸 ∈ ℝ𝐾×𝐾 , and �̃�𝑛,𝑗
𝑘 captures the energy of957

the code 𝒙𝑛,𝑗
𝑘 (e.g., ‖𝒙𝑛,𝑗

𝑘 ‖2, ‖𝒙
𝑛,𝑗
𝑘 ‖

2
2, ‖𝒙

𝑛,𝑗
𝑘 ‖1, etc.). Although we treat 𝑸 as a hyperparameter, it can be958

related and is proportional to the negative inverse covariance matrix of the code 𝒙𝑛,𝑗 , hence it can959

be learned. Overall, this regularization modifies the recurrent inference network to960

𝒙𝑛,𝑗
𝑘,𝑟 = 𝛼𝜆𝑛,𝑗𝑘

(

𝒙𝑛,𝑗
𝑘,𝑟−1 + 𝛼𝒉𝑛,𝑗

𝑘 ⋆ (𝒚𝑛,𝑗 − 𝑔(
𝐾
∑

𝑢=1
𝒉𝑛
𝑢 ∗ 𝒙𝑛,𝑗

𝑢,𝑟−1 + 𝑎𝑛,𝑗) − 𝛼𝛽𝑛
𝐾
∑

𝑣=1
𝑸𝑘𝒙𝑛,𝑗

𝑣,𝑟)

)

(10)
where 𝑸𝑘 is the 𝑘th column block of 𝑸. Our source code is written such that this regularization can961

be enforced not at every unrolled layer but with an occurring period. In addition to the residuals,962

the kernel codes are now interconnected to one another through 𝑸. From (10), we see that the963

amplitudes of 𝒙𝑛,𝑗
𝑘,𝑟 is damped when 𝑸𝑘,𝑣 is positive, and 𝒙𝑛,𝑗

𝑣,𝑟 has high activity.964

Network parameters965

In this section, we explain the network parameters and the effect of each in the training. Addi-966

tionally, we specify which parameters are hyperparameters (i.e., to be set by the user), which are967

learned during training, and which are estimated per inference.968

Unrolled step size 𝛼: This is the step size inside the unrolled network. For stability purposes,969

𝛼 < 1∕𝜎max(𝑯), where 𝜎max is themaximum singular value,𝑯 = [𝑯1|𝑯2|⋯ |𝑯𝐾 ], and𝑯𝑘 is the linear970

Toeplitz matrix corresponding to the convolution kernels 𝒉𝑘. An upper bound on the step size 𝛼971

can be approximated by the iterative power method shown in Algorithm 1.972

Sparse regularizer 𝜆: This is the regularization parameter to enforce sparsity on the latent973

representation estimated at the encoder. This parameter can be set to 0 or a small value when the974
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Algorithm 1: Iterative power method to approximate unrolled step size 𝛼.
Input: Input size 𝑇 , initial estimate or randomly initialized {𝒉𝑘}𝐾𝑘=1, the inverse link function

𝑔(⋅)
Initialize: 𝒙(0) = [𝒙T(0)1 ,𝒙T(0)2 ,… ,𝒙T(0)𝐾 ]T using Normal distribution
Repeat: 𝑚 = 0, 1,… ,𝑀 − 1

𝒙(𝑚) = 𝒙(𝑚)∕‖𝒙(𝑚)
‖2

𝒙(𝑚+1) = 𝑯T𝑔(𝑯𝒙(𝑚))
Output: ‖𝒙(𝑀)

‖2

event onsets are known and enforced by the indicator 𝒆𝑛,𝑗𝑘 at the unrolled iterations. However, its975

presence is crucial in the absence of known support (event onsets).976

Baseline 𝑎𝑛,𝑗 : Our model assumes that there is a baseline activity constant over time in each977

trial for each neuron. This can be estimated by taking the mean activity at the beginning of each978

trial prior to the appearance of events of interest, followed by the link function 𝑔−1(⋅).979

Unrolled layers 𝑅: The inference network (Figure S1a) is equivalent to the optimization (4)980

when𝑅 → ∞. However, given computational limitation𝑅 is finite. We recommend setting𝑅 on the981

order of 100 when the code support is known, and 1000 when the support is not known.982

Evaluation983

We note that in simultaneous learning of the kernels and sparse codes in DUNL, it is possible to fit984

the very same neural firing rate with a right/left-shifted kernel in time along with a left/right-shifted985

sparse code. Indeed, for kernels with decaying ends to baseline, this can frequently happen and986

the two rate models are equivalent. Thus, when we evaluate DUNL, we account for this by using987

cross-correlation as a metric for kernel recovery, and by using a tolerance when computing the988

event detection hit rate.989

Supplementary Methods - Training990

Dopamine spiking experiment991

There are 𝑁 = 40 optogenetically identified dopamine neurons. Across neurons, the number of992

trials ranges from 𝐽 = 121 to 𝐽 = 302. For surprise trials, we analyze the data from 1 s before the993

reward onset and 2.1 s after the onset. Similarly, for expected trials, we consider the data from 1 s994

before the cue onset up to 0.6 s after the reward onset. For expected trials, the reward is delivered995

after 1.5 s from the cue onset. We refer the reader to [69] for more information on data acquisition.996

We use the Binomial distribution with time-bin resolution of 25 ms for data modeling. We set997

𝐾 = 3 to learn three non-negative kernels shared across all neurons and all trials; one to charac-998

terize the neural response to the cue, and the other two to characterize salience and value for the999

reward prediction error responses. Each kernel is 600ms long in time, and the baseline firing rate1000

𝑎𝑛,𝑗 is estimated for a single trial using the 1 s data prior to the event onset (bins with estimated1001

baseline lower than 0.001 are set to 0.001 for stability purposes prior passing through the log link1002

function. Given the learned kernels, from each neuron at each trial, we infer three codes to identify1003

the neural strength response to cue (𝑘 = 1) and reward (𝑘 = 2, 3).1004

In addition to the norm projection (⋅), we apply element-wise ReLU0(⋅) projection after every1005

backpropagation (kernel updates) to enforce kernel non-negativity. To enforce the known support1006

for each kernel, the indicator vector for cue code 𝒆𝑛,𝑗1 is set to 1 at the cue onset. Similarly, 𝒆𝑛,𝑗2 and1007

𝒆𝑛,𝑗3 are set to 1 at the reward onset for each neuron 𝑛 at each trial 𝑗 (the event indicators are zero1008

at other time-points). The data, model, and training parameters are summarized in Table S2. For1009

the data-limited scenario, only 685 out of 8,786 total number of trials are used for training; in this1010

case, the kernel smoother penalty is set to 0.0005.1011
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Table S2. Parameters for dopamine spiking experiment.
Data

Sampling rate 1 ms Trial length [121, 302]
Number of neurons 40 Number of Trials [60-156]
Total number of neurons 40 Total number of examples 8,786

Code Kernel
Non-negativity False Non-negativity True
Sparse regularizer 𝜆 (network) 0 Normalization True
Sparse regularizer 𝜆 (loss) 0 Numbers 3
Code support knowledge True Length 600 ms (24)
Code Q regularization False Smoother False
Code Q regularization matrix - Smoother penalty -
Code Q regularization period - Initialization Random Normal
Q regularization scale - Share among neurons True
Q regularization norm type -
Top k sparsity -
Top k period -

Adam optimizer Other network parameters
Number of epochs 15 Model distribution Binomial
Batch size 32 Time bin resolution 25 ms
Learning rate 0.01 Unrolling non15lin Shrinkage
Learning rate decay False Unrolling number 100
Learning rate decay step - Unrolling mode FISTA
Adam eps 0.001 Unrolling alpha 0.1
Backpropagation type Truncated
Truncated iterations 10

Dopamine calcium experiment1012

The data is captured from 3 different sessions, each with 𝑁 = 6, 20, and 30 neurons. Data, model,1013

and training information are summarized in Table S3. Below, we explain the modeling in detail.1014

Given the continuous domain of calcium imaging, we model the data using Gaussian distribu-1015

tion. We learn 𝐾 = 5 kernels; one kernel to characterize the neural activity in response to the1016

odor cue without reward (we call this regret), another kernel for the odor cue in the expected trial1017

prior to the appearance of the reward, and three kernels to model RPEs. Specifically, for RPEs, we1018

use one kernel with non-negative code to model salience, two kernels to model value (one with1019

non-negative and another with non-positive code). We note that we do not enforce any other1020

constraint for the kernels to explicitly model salience or value; the decomposition is natural upon1021

training. Each kernel is 4 s long in time. The baseline firing rate is estimated from the 1 s data1022

interval prior to the first event onset for every trial.1023

To attribute the kernels to the specific event of interest, we set the indicator vector for cue1024

regret code 𝒆𝑛,𝑗1 to 1 at the cue onset on regret trials, and zero, otherwise. Similarly, 𝒆𝑛,𝑗2 is set to 11025

on expected trials at the cue onset, and zero, otherwise. This attribute kernel 𝒉1 characterizes the1026

neural response to cue in the absence of a reward, and 𝒉2 represents the neural response to cue1027

in expected trials. Furthermore, 𝒆𝑛,𝑗3 , 𝒆𝑛,𝑗4 , and 𝒆𝑛,𝑗5 are all 1-sparse for trials with reward, and they are1028

non-zero at the reward onset.1029

We use the structured representation optimization formulation described earlier to discourage1030

codes 𝒙4 and 𝒙5 to be active at the same time. We use �̃�𝑛,𝑗T𝑸�̃�𝑛,𝑗 regularization variation with �̃�𝑛,𝑗 ∈1031
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Table S3. Parameters for dopamine calcium experiment. For code non-negativity, -1,1,2 are for negative,positive, and two-sided, respectively. For kernel non-negativity flag, 0 is for negative/positive, and 1 is forpositive.
Data

Sampling rate 15 Hz Trial length 4.53 - 15.2 s
Number of neurons {6, 20, 30} Number of Trials {252, 299, 195}
Total number of neurons 56 Total number of examples 13,342

Code Kernel
Non-negativity [2,2,1,1,-1] Non-negativity [0,0,0,1,1]
Sparse regularizer 𝜆 (network) 0 Normalization True
Sparse regularizer 𝜆 (loss) 0 Numbers 5
Support knowledge True Length 4 s (60)
Q regularization True Smoother False
Q regularization matrix see text Smoother penalty -
Q regularization period 1 Initialization Random Normal
Q regularization scale 2.5 Share among neurons True
Q regularization norm type 2
Top k sparsity -
Top k period -

Adam optimizer Other network parameters
Number of epochs 15 Model distribution Gaussian
Batch size 8 Time bin resolution 1 ms
Learning rate 0.01 Unrolling nonlin Shrinkage
Learning rate decay False Unrolling number 100
Learning rate decay step - Unrolling mode FISTA
Adam eps 0.001 Unrolling alpha 0.1
Backpropagation type Truncated
Truncated iterations 10

ℝ5 capturing the amplitude of the non-zero entry of each code, i.e.,1032

�̃�𝑛,𝑗T = [‖𝒙𝑛,𝑗T
1 ‖2, ‖𝒙

𝑛,𝑗T
2 ‖2, ‖𝒙

𝑛,𝑗T
3 ‖2, ‖𝒙

𝑛,𝑗T
4 ‖2, ‖𝒙

𝑛,𝑗T
5 ‖2]. (11)

Moreover, we set 𝑸4,5 = 𝑸5,4 = 2.5 and other entries of 𝑸 is set to 0.1033

Whisker thalamus spiking experiment1034

The training and modeling parameters of the whisker spiking experiment are summarized in Ta-1035

ble S4. The original data contains data from 17 pairs of neurons and their activities in response to1036

three types of stimuli. Consideredneurons are frompair/neuronof 1∕2, 2∕1, 4∕1, 5∕1, 6∕1, 8∕2, 10∕2, 16∕2, 17∕1, 17∕2,1037

excluding non-responsive neurons or those with very low signal-to-noise ratio [71]. Additionally,1038

the neural characterization is done for stimulus number 3, where the deflection velocity is constant.1039

In our analysis, we characterized the response of neurons to the stimuli by one kernel. For1040

more re-fined characterization, one may choose to learn two kernels; prior work discussed that1041

each whisker cycle could evoke two response types (one that encodes the caudal direction whisker1042

movement and another that captures the rostral direction movement on the way back to the neu-1043

tral whisker position) [71].1044

Olfactory experiment1045

An experimental session consists of ≈ 250 trials. In each trial, a custom device delivered 50ms odor1046

pulses of the same peak concentration to the animal’s nose at a Poisson-distributed pulse rate be-1047
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Table S4. Parameters for whisker thalamus experiment.
Data

Sampling rate 1 ms Trial length 4000
Number of neurons 10 Number of Trials (25 train, 25 test)
Total number of neurons 10 Total number of examples (250 train, 250 test)

Code Kernel
Non-negativity True Non-negativity False
Sparse regularizer 𝜆 (network) 0.03 Normalization True
Sparse regularizer 𝜆 (loss) 0.03 Numbers 1
Support knowledge False Length 125 ms (25)
Q regularization False Smoother True
Q regularization matrix - Smoother penalty 0.003
Q regularization period - Initialization Stimuli velocity
Q regularization scale - Share among neurons True
Q regularization norm type -
Top k sparsity 18
Top k period 10

Adam optimizer Other network parameters
Number of epochs 120 Model distribution Binomial
Batch size 30 Time bin resolution 5 ms
Learning rate 0.01 Unrolling nonlin Shrinkage
Learning rate decay False Unrolling number 800
Learning rate decay step - Unrolling mode FISTA
Adam eps 0.001 Unrolling alpha 0.5
Backpropagation type Truncated
Truncated iterations 0

tween 0.5-4pulse∕s for 5 s. Neural activity in the animal’s anterior piriform cortexwas recordedwith1048

a custom-built 32-channel tetrode drive at a 30 kHz sampling rate using the Open Ephys recording1049

system [99]. The data are downsampled to 1 ms resolution for analysis. Single-unit spiking activi-1050

ties were isolated using Kilosort2 [100]. We isolated 5-40 single units in each recording session. At1051

the end of each session, the entire bundle of tetrodes was lowered by 40 𝜇𝑚 to obtain a new set1052

of neurons for the subsequent session. We recorded 𝐶 = 770 neurons during 𝑆 = 17 behavioural1053

sessions from 3 mice. The data and model parameters for this experiment are summarized in1054

Table S5.1055

The clustering analysis is based on K-means. Figure S8 shows K-means with 3, 4, 5, 6 clusters.1056

We have used 90% of the neurons at random (repeated 40 times) to compute the adjusted random1057

index (ARI); on average, ARI is 0.94, 0.96, 0.95, 0.77, for 3, 4, 5, 6 clusters, respectively. We observed1058

similar clustering effect using spectral clustering with a Radial Basis Function (RBF) kernel.1059

Simulated model characterization experiment1060

Table S6 summarized all the modeling and training parameters for simulation on DUNL character-1061

ization.1062

Simulated dopamine spiking experiment1063

The dopamine spiking simulation follows closely the data from the dopamine spiking real experi-1064

ment. Table S7 summarizes the parameters of this experiment.1065
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Table S5. Parameters for olfaction experiment.
Data

Sampling rate reduced to 1 ms Trial length 4500 ms
Number of neurons 770 Number of Trials ≈ 250
Total number of neurons - Total number of examples -

Code Kernel
Non-negativity True Non-negativity False
Sparse regularizer 𝜆 (network) varies Normalization True
Sparse regularizer 𝜆 (loss) 0 Numbers 1
Support knowledge True Length 1000 ms (20)
Q regularization False Smoother True
Q regularization matrix - Smoother penalty 0.1
Q regularization period - Initialization Aligned raster
Q regularization scale - Share among neurons False
Q regularization norm type -
Top k sparsity -
Top k period -

Adam optimizer Other network parameters
Number of epochs 500 Model distribution Poisson
Batch size Full-batch Time bin resolution 50 ms
Learning rate 0.01 Unrolling nonlin Shrinkage
Learning rate decay False Unrolling number 100
Learning rate decay step - Unrolling mode FISTA
Adam eps 0.001 Unrolling alpha 0.1
Backpropagation type Full
Truncated iterations -

Simulated structured spiking experiment with non-overlapping events1066

This section summarizes the information on the data used for the comparison of DUNL and LFADS1067

in their ability to capture local characteristics from single trials. Table S8 summarizes the parame-1068

ters of this experiment.1069

Simulated unstructured spiking experiment with overlapping events1070

This section summarizes the information on the experiment demonstrating the ability of DUNL1071

to detect and locally characterize events appearing at random. In this experiment, there are two1072

types of events, each happening three times in a trial. While there is a 200 ms minimum distance1073

between events of the same type, events of different types are allowed to fully overlap. Table S91074

summarizes the parameters of this experiment.1075

Supplementary Methods - Two-photon Calcium Imaging Data Acquisition1076

Surgeries1077

Stereotaxic viral injections and GRIN lens implantation: Surgeries were performed under aseptic1078

conditions. Mice were anesthetized with isoflurane (1–2 at 0.5–1 L.min−1), and local anesthetic (li-1079

docaine (2%)/bupivacaine (0.5%) 1:1 mixture, subcutaneous (s.c.)) was applied at the incision site.1080

Analgesia (buprenorphine for pre-operative treatment, 0.1 mg.kg−1, intraperitoneal (i.p.); ketopro-1081

fen for post-operative treatment, 5 mg.kg−1, i.p.) was administered for 3 days after surgery. A1082

custom-made head plate was placed on the well-cleaned and dried skull with adhesive cement1083
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Table S6. Parameters for simulated model characterization experiment. The information in the parenthesisare for different time bin resolution scenario of (5ms, 10ms, 25ms, 50ms).
Data

Sampling rate 1 ms Trial length 4000
Number of neurons 1 Number of Trials 25, 50, 100, 250, 500
Total number of neurons 1 Total number of examples 25, 50, 100, 250, 500

Code Kernel
Non-negativity True Non-negativity False
Sparse regularizer 𝜆 (network) 0.03 Normalization True
Sparse regularizer 𝜆 (loss) 0.03 Numbers 1
Support knowledge - Length 500 ms (100, 50, 20, 10)
Q regularization False Smoother True
Q regularization matrix - Smoother penalty (0.2, 0.01, 0.004, 0.0002)
Q regularization period - Initialization Sinusoidal shape
Q regularization scale - Share among neurons True
Q regularization norm type -
Top k sparsity 5
Top k period 10

Adam optimizer Other network parameters
Number of epochs 15-100 Model distribution Binomial
Batch size 128 Time bin resolution (5, 10, 25, 50) ms
Learning rate 0.01 Unrolling nonlin Shrinkage
Learning rate decay False Unrolling number 800
Learning rate decay step - Unrolling mode FISTA
Adam eps 0.001 Unrolling alpha 0.25
Backpropagation type Truncated
Truncated iterations 20

(C&B Metabond, Parkell) containing a small amount of charcoal powder. To express the calcium1084

indicator GCaMP in dopamine neurons, AAV5-CAG-FLEX-GCaMP7f (1.8 × 1013 particles per ml) was1085

injected unilaterally in the VTA (300 nl, bregma - 3.0mmAP, 0.5mmML, 4.6mmDV fromdura) in two1086

DAT-Cre mice (Slc6a3𝑡𝑚1.1(𝑐𝑟𝑒)𝐵𝑘𝑚𝑛, Jackson Laboratory, 006660) [101] respectively. A third mouse was1087

adouble transgenic resulting fromcrossingDAT-Crewith Ai148D (B6.Cg-Igs7𝑡𝑚148.1(𝑡𝑒𝑡𝑂−𝐺𝐶𝑎𝑀𝑃6𝑓,𝐶𝐴𝐺−𝑡𝑇𝐴2)𝐻𝑧𝑒∕𝐽 ,1088

Jackson Laboratory, 030328) [102] for expression of GCaMP6f in dopamine neurons. The injection1089

was done at a rate of approximately 20 nl.min−1 for a total of 300 nl using amanual plunger injector1090

(Narishige). For both DAT-Cre and DAT-Cre;Ai148 double transgenic mice, a GRIN lens (0.6 mm in1091

diameter, 7.3 mm length; 1050-004597, Inscopix) was slowly inserted above the VTA after inser-1092

tion and removal of a 25-gauge needle. The implants were secured with C&B Metabond adhesive1093

cement (Parkell) and dental acrylic (Lang Dental).1094

Behavioral training and testing protocol1095

Mice were water-deprived in their home cage 1–2 days before the start of behavioral training, two1096

or more weeks after surgery. During water deprivation, each mouse’s weight was maintained1097

above 85% of its original value. Mice were habituated to the head-fixed setup by receiving wa-1098

ter every 4 s (6 𝜇l drops) for 3 days, after which association between odors and outcomes started.1099

A mouse lickometer (1020, Sanworks) was used to measure licking as infrared beam breaks. Wa-1100

ter valves (LHDA1233115H, The Lee Company) were calibrated, and a custom-made olfactometer1101

based on a valve driver module (1015, Sanworks) and a valve mount manifold (LFMX0510528B and1102
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Table S7. Parameters for simulated dopamine spiking experiment.
Data

Sampling rate 1 ms Trial length 3100 ms
Number of neurons 40 Number of Trials [14 - 300]
Total number of neurons 40 Total number of examples [560 - 1200]

Code Kernel
Non-negativity False Non-negativity True
Sparse regularizer 𝜆 (network) 0 Normalization True
Sparse regularizer 𝜆 (loss) 0 Numbers 3
Support knowledge True Length 600 ms (24)
Q regularization False Smoother False
Q regularization matrix - Smoother penalty -
Q regularization period - Initialization Random Normal
Q regularization scale - Share among neurons True
Q regularization norm type -
Top k sparsity -
Top k period -

Adam optimizer Other network parameters
Number of epochs 200 Model distribution Binomial
Batch size 2 Time bin resolution 25 ms
Learning rate 0.01 Unrolling nonlin Shrinkage
Learning rate decay False Unrolling number 100
Learning rate decay step - Unrolling mode FISTA
Adam eps 0.001 Unrolling alpha 0.1
Backpropagation type Truncated
Truncated iterations 10

LHDA1221111H valves, The Lee Company) was used for odor delivery. All components were con-1103

trolled through a Bpod state machine (1027, Sanworks). Odors were diluted in mineral oil (Sigma-1104

Aldrich) at 1:10, and 30 𝜇l of each diluted odor was placed inside a syringe filter (2.7-𝜇m pore size,1105

6823-1327, GE Healthcare). Odorized air was further diluted at 1:10 and delivered at 1,000ml.min−1.1106

Odors used for each association were randomly assigned from the following list of odors: isoamyl1107

acetate, p-cymene, ethyl butyrate, (+)-carvone, (±)-citronellal, 𝛼-ionone, L-fenchone. One of these1108

odors was associated with a distribution of reward sizes while a second odor was not paired with1109

any outcome (nothing). For the rewarded odor, after a 2-s trace period, a reward was delivered1110

whose size was taken randomly from a uniform distribution of the following sizes: 0.3, 0.5, 1.2, 2.5,1111

5.0, 8.0, 11.0 𝜇l. Variable-size non-cued rewards taken from the same distribution were also deliv-1112

ered throughout the sessions. Mice completed one session per day.1113

Image acquisition1114

Imagingwasperformedusing a custom-built two-photonmicroscope. Themicroscopewas equipped1115

with a diode-pumped, mode-locked Ti:sapphire laser (Mai-Tai, Spectra-Physics). All imaging was1116

done with the laser tuned to 920 nm. Scanning was achieved using a galvanometer and an 8-kHz1117

resonant scanning mirror (adapted confocal microscopy head, Thorlabs). Laser power was con-1118

trolled using a Pockels Cell (ConOptics 305 with M302RM driver). The average beam power used1119

for imaging was 40–120 mW at the tip of the objective (Plan Fluorite ×20, 0.5 NA, Nikon). Fluo-1120

rescence photons were reflected using two dichroic beamsplitters (FF757-Di01-55×60 and FF568-1121

Di01-55×73, Semrock), were filtered using a bandpass filter (FF01-525/50-50, Semrock), and were1122
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Table S8. Parameters for simulated structured spiking experiment for comparison of DUNL with LFADS fortheir ability to learn local characterization from data.
Data

Sampling rate 1 ms Trial length 2000 ms
Number of neurons 1 Number of Trials 25 - 1600
Total number of neurons 1 Total number of examples 25 - 1600

Code Kernel
Non-negativity True Non-negativity False
Sparse regularizer 𝜆 (network) 0.1 Normalization True
Sparse regularizer 𝜆 (loss) 0.1 Numbers 2
Support knowledge False Length 400 ms (16)
Q regularization False Smoother True
Q regularization matrix - Smoother penalty 0.015
Q regularization period - Initialization Random Normal
Q regularization scale - Share among neurons True
Q regularization norm type -
Top k sparsity 1
Top k period 10

Adam optimizer Other network parameters
Number of epochs 125-1500 Model distribution Binomial
Batch size 128 Time bin resolution 25 ms
Learning rate 0.01 Unrolling nonlin Shrinkage
Learning rate decay False Unrolling number 800
Learning rate decay step - Unrolling mode FISTA
Adam eps 0.001 Unrolling alpha 0.25
Backpropagation type Truncated
Truncated iterations 5

collected using GaAsP photomultiplier tubes (H7422PA-40, Hamamatsu), whose signal was ampli-1123

fied using transimpedance amplifiers (TIA60, Thorlabs). Microscope control and image acquisition1124

were done using ScanImage 4.0 (Vidrio Technologies). Frameswith 512×512 pixels were acquired at1125

15 Hz. Synchronization between behavioral and imaging acquisitions were achieved by triggering1126

microscope acquisition in each trial to minimize photobleaching using a mechanical shutter (SC10,1127

Thorlabs).1128

Data pre-processing1129

Acquired images were pre-processed in the following manner. (1) Movement correction was per-1130

formed using phase correlation image registration implemented in Suite2P[103]. (2) Region-of-1131

interest (ROI) selection was performed manually in FIJI from the mean and standard deviation pro-1132

jections of a subset of frames from the entire acquisition, as well as a movie of the frames used to1133

build those projections. (3) Neuropil decontamination was performed with FISSA[104] using four1134

regions around each ROI. The neuropil decontaminated fluorescent signal was then filtered with1135

a 12 point Gaussian kernel with 0.6875 standard deviation. Drift along the session was corrected1136

using the running maximum of the running minimum of a 120 s time window. Then Δ𝐹∕𝐹0 was1137

calculated as Δ𝐹∕𝐹 (𝑡) = 𝐹 (𝑡)−𝐹0(𝑡)
𝐹0(𝑡)

using as 𝐹0 the 6𝑡ℎ running percentile in a window of 40 s. This1138

fluorescent trace was used for further data processing and analysis in the network.1139

Supplementary Figures1140
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Table S9. Parameters for simulated unstructured spiking experiment for detection and deconvolution of twoevent types.
Data

Sampling rate 1 ms Trial length 6000 ms
Number of neurons 1 Number of Trials 25 - 1600
Total number of neurons 1 Total number of examples 25 - 1600

Code Kernel
Non-negativity True Non-negativity False
Sparse regularizer 𝜆 (network) 0.1 Normalization True
Sparse regularizer 𝜆 (loss) 0.1 Numbers 2
Support knowledge False Length 400 ms (16)
Q regularization False Smoother True
Q regularization matrix - Smoother penalty 0.015
Q regularization period - Initialization Random Normal
Q regularization scale - Share among neurons True
Q regularization norm type -
Top k sparsity 3
Top k period 10

Adam optimizer Other network parameters
Number of epochs 200-2000 Model distribution Binomial
Batch size 128 Time bin resolution 25 ms
Learning rate 0.01 Unrolling nonlin Shrinkage
Learning rate decay False Unrolling number 800
Learning rate decay step - Unrolling mode FISTA
Adam eps 0.001 Unrolling alpha 0.25
Backpropagation type Truncated
Truncated iterations 5
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Figure S2. Decomposition of a single dopamine neuron spiking activity. Averaged trial activity for eachreward size (a-g), for unexpected (left) and expected (right) trials (gray traces), were decomposed into RewardI (salience-like, blue) and Reward II (value-like, red) components. The salience kernel contributes in rateestimation of the burst right after the reward onset, and the value kernel contributes in representation of thespikes appearing with around a 100ms delay. The dip in the neural activity for low reward amount is capturedby a negative value code and highlights a negative RPE. h, Summary of mean neural response for each trialtype and reward size (solid lines) and the corresponding DUNL-reconstructed activity trace (dashed lines).
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Figure S3. Additional analysis for dopamine spiking data results (Figure 2). Neural code amplitudes as afunction of reward size for unexpected (a) and expected trials (b): each line represents one neuron.Compared to Figure 2g, the curves are not normalized here.
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Figure S4. Result of training DUNL with a limited number of trials from dopamine spiking data [69]: a,Learned kernels shared across neurons. b, Neural code amplitudes as a function of reward size; the figuredemonstrates diversity of neural encodings with each line corresponding to one neuron. c, Spearman’s rankcorrelation between codes and reward size (x-axis) vs. the windowed average firing rates and reward sizes(y-axis). d, Histogram of distance of dots from the diagonal in Spearman’s rank correlation from c; positivedistance means below the diagonal and colorbar shows the normalized probability density function at eachbin, such that the integral over the shown range in x-axis is 1.
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Figure S5. Analysis of kernel quality with the number of trials in simulated dopamine data: a, The experimentsetup used to generate the data. b, PSTH of simulated neurons over each trial type. c, The kernel recoveryerror (i.e.,√1 − (cosine similarity)2. d, Visualization of the learned kernels in color (the true underlying kernelsare shown in gray). e, DUNL’s code estimates as a function of reward sizes (top), and the true underlying code(bottom).
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Figure S6. DUNL decomposition of responses from one dopamine neuron recorded using two-photoncalcium imaging across reward sizes a-g in unexpected (left) and expected (right) trials. The trial average rawdata (gray) and its reconstruction in 4 kernels. Blue models the salience response, red models a positiveresponse for value, and green represents a negative activity for value. h, Summary of mean neural responsefor each trial type and reward size (solid lines) and the corresponding DUNL-reconstructed activity trace(dashed lines).
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Figure S7. Additional analysis for dopamine calcium signals results (Figure 3). a, Neural code amplitudes as afunction of reward amounts for unexpected. b, Neural code amplitudes as a function of reward amounts forexpected trials: each line represents one neuron. Compared to Figure 3f, the curves are not normalized here.
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Figure S8. k-means clustering on the DUNL kernels obtained from the piriform cortex neural recordings. a, 3clusters. d, 4 clusters. g, 5 clusters. j, 6 clusters. b, e, h, k. Their corresponding similarity matrices using cosinedistance. c, f, i, k. Cluster visualizations on the first versus second principal components. We observed similarclustering results when using spectral clustering.
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Figure S9. Model characterization with 2 kernels (blue and red). a-d, Rate estimation and decomposition of 4example trials. e, The underlying code onsets from both kernels across trials. f, The estimated code onsets byDUNL.
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Figure S10. Model characterization. Code hit rate for event identification as a function of bin-size (columns)and time-tolerance (rows).
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Figure S11. a, Code hit rate for event identification as a function of the number of trials (columns) andtime-tolerance (rows). b, Kernel recovery error as a function of number of trials available for training forknown support (top) and unknown support (bottom) scenarios.
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Figure S12. Kernel visualization as a function of trials (columns) and bin-size (rows). a, Known event onsets(support). b, Unknown event onsets.
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Figure S13. Comparison of DUNL with classical dimensionality reduction (a-d) and a deep learning frameworkfor the dopamine spiking data (e-h). These methods are applied on windowed data of size 600ms startingfrom the reward onset from dopamine spiking dataset (Figure 2). PCA is applied to standardized data, NMF isapplied to the raw binned data, and LFADS is applied to the raw data. a-b PCA. a, PCA kernels with PC1 in blueand PC2 in red color. b, Scatter plot of Spearman’s rank correlation of DUNL codes for the Reward I(salience-like) and Reward II (value-like) kernels (left and right, respectively) in the x-axis and of Spearman’srank correlation of PCs and reward size on the y-axis. Salience-prone region for both methods is shaded ingray-blue (low correlation with reward size) while value-prone region for both methods is shaded inmountbatten pink (larger values for the correlation with reward-size). The blue PC contains value informationsimilar to DUNL’s Reward II but the red PC contains salience and an anti-correlation with value. c-d NMF. c,NMF kernels. d, Scatter plot of Spearman’s rank correlation of DUNL codes for the Reward I and Reward IIkernels (left and right, respectively) in the x-axis and of Spearman’s rank correlation of NMF coefficients andreward size on the x-axis. The blue kernel is salience-like, and the red kernel is value-like, but DUNL’s RewardII kernel still outperforms the red NMF kernel at representing value. e-f LFADS. e, The average of two factorsover the dataset learned by LFADS (the factors are zero-mean and normalized for visualization purposes). f,Spearman’s rank correlation of DUNL codes and reward size (x-axis) in comparison to Spearman’s rankcorrelation of the temporal average of the LFADS factors and reward size (y-axis). The comparison ofSpearman correlations from DUNL and LFADS shows that both LFADS factors capture similar statistics, onlysimilar to the Reward II kernel in DUNL (value-like); LFADS fails to deconvolve the reward response intosalience and value. g-h, Same as e-f for LFADS run on the limited dataset using < 8% of the data (samedataset as Figure S4). Compared to the full dataset scenario, Spearman correlation results hold; however,certain details on the factors such as the local bump around 200ms is not captured.

Tolooshams et al. 2024 | Interpretable deep learning for deconvolutional analysis of neural signals, Preprint. bioR𝜒 iv

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 23, 2024. ; https://doi.org/10.1101/2024.01.05.574379doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.05.574379
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure S14. Comparison of DUNL with GLM [58], performing Poisson GLM regression using a set ofpre-defined family of basis functions, for the dopamine spiking data. Similar to the comparison with thedimensionality reduction, the methods are applied on windowed data of size 600ms starting from the rewardonset from dopamine spiking data (Figure 2). a-c, Raised cosine basis case. a, Raised cosine bases(normalized bases with 0/1 min/max are shown). The bias is shown as the first base (blue). b, An example oftrial reconstruction by GLM averaged over trial types. c, The Spearman’s rank correlation of DUNL value codeand reward size (x-axis) in comparison to Spearman’s rank correlation of coefficients of each of the GLM basisand reward size (y-axis). The comparison shows that neither of the bases is representative of value response;The predefined bases do not offer interpretability from the point of view of deconvolving the reward responseinto salience and value. The yellow and green markers show the average across unexpected and expected trials.
d-f, Nonlinear raised cosine basis case. d, Nonlinear raised cosine bases (normalized bases with 0/1 min/maxare shown). The first (blue) bases represents the constant bias term. e, An example of trial reconstruction byGLM averaged over trial types using the nonlinear raised cosines. f, The Spearman’s rank correlation of DUNLvalue code and reward size (x-axis) in comparison to Spearman’s rank correlation of coefficients of each ofthe GLM bases and reward size (y-axis) for the nonlinear raised cosine case. The presence of dots below thediagonal line indicates that the value code offered by DUNL is a better representative of the reward amount.Overall, this emphasizes the lack of interpretability of GLM with pre-defined family of basis functions withinthe context of deconvolving the single-trial spiking data into interpretable components.
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