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Abstract 15 

Associative learning depends on contingency, the degree to which a stimulus predicts an outcome. 16 
Despite its importance, the neural mechanisms linking contingency to behavior remain elusive. Here we 17 
examined the dopamine activity in the ventral striatum – a signal implicated in associative learning – in a 18 
Pavlovian contingency degradation task in mice. We show that both anticipatory licking and dopamine 19 
responses to a conditioned stimulus decreased when additional rewards were delivered uncued, but 20 
remained unchanged if additional rewards were cued. These results conflict with contingency-based 21 
accounts using a traditional definition of contingency or a novel causal learning model (ANCCR), but can 22 
be explained by temporal difference (TD) learning models equipped with an appropriate inter-trial-23 
interval (ITI) state representation. Recurrent neural networks trained within a TD framework develop 24 
state representations like our best ‘handcrafted’ model. Our findings suggest that the TD error can be a 25 
measure that describes both contingency and dopaminergic activity. [149 words]  26 
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Introduction 27 

 28 

The ability to discern predictive relationships between different events is crucial for adaptive behaviors. 29 
Early investigations into animal learning revealed that mere contiguity between two events (“pairing”) is 30 
insufficient for establishing enduring associations. To understand this, consider Pavlovian conditioning, 31 
where an initially neutral cue (conditioned stimulus, CS) is paired with an outcome (unconditioned 32 
stimulus, US), such as an electrical shock. Through repeated pairings, animals learn to anticipate the 33 
outcome in response to the presentation of just the CS, leading to heightened conditioned responses (e.g., 34 
freezing). Now, consider a scenario where the same number of pairings takes place, yet additional shocks 35 
occur in the absence of the CS, such that shocks happen with equal likelihood whether or not the CS is 36 
present. In such conditions, animals fail to display conditioned responses1–3. Moreover, when a CS 37 
predicts a decrease in the likelihood of the US, conditioned responses are reduced. Based on these 38 
experiments, Rescorla postulated that conditioning depends not on the contiguity between the CS and the 39 
US but rather on contingency – the degree to which the CS indicates an increase or decrease in the 40 
likelihood of the US occurring.  41 

Contingency indicates conditional relationships between different events and is thought to be an 42 
important quantity not only in conditioning, but also in causal inference in statistics and artificial 43 
intelligence. What is a good measure of contingency, however, remains to be clarified4–7. One commonly 44 
adopted definition in psychology and causal inference is ∆𝑃, the difference in the probability of one event 45 
occurring in the presence or absence of another8–10. In Pavlovian settings with trial-like structures, such as 46 
the present study, ∆𝑃 can be expressed as ∆𝑃 = 𝑃(𝑈𝑆|𝐶𝑆+) − 𝑃(𝑈𝑆|𝐶𝑆−), where 'CS+' and 'CS-' 47 
signify the presence and absence of a CS, respectively. While mere association does not inherently imply 48 
causality, these associations can give rise to perceived causal relationships, and it has been shown that the 49 
contingency (∆𝑃) correlates with its strength6,11,12. Although ΔP provides a simple definition, its 50 
application necessitates a trial-like structure or defined time intervals within which the probabilities of 51 
events such as CS and US can be determined7,13. Likewise, some behavioral observations cannot be 52 
explained by 𝛥𝑃, leading some to argue against the usefulness of contingency in explaining behavior14. 53 
As a result, efforts have been made to better define contingency4–7. 54 

Following Rescorla’s experiments discussed above, further experiments highlighted the crucial role of 55 
surprise in the establishment of associations15. To account for this, Rescorla and Wagner (1972) 56 
postulated that conditioning is driven by the discrepancy between the actual and predicted outcome 57 
(prediction error)16. Importantly, this contiguity-based model can explain the contingency degradation 58 
experiments described above, assuming that the context acts as another CS, which competes with the 59 
primary CS16. While this “cue-competition” account is attractive, and potentially replaces the classic 60 
contingency-based account, the validity of the cue-competition model remains contested17–20.  61 

Like 𝛥𝑃, the Rescorla-Wagner model also assumes a trial-based structure, as it does not consider the 62 
timing of events either within or outside a trial. To address this limitation, Sutton and Barto developed the 63 
temporal difference (TD) learning algorithm, now a fundamental algorithm in reinforcement learning21,22, 64 
as a prediction error-based model of associative learning23,24. TD learning as a model of associative 65 
learning in animals finds support in the striking resemblance observed between the activity of midbrain 66 
dopamine neurons and the prediction error (TD error) used in TD learning algorithms25–29.  67 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578961doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578961
http://creativecommons.org/licenses/by-nc/4.0/


 

3 
 

Despite the success of TD learning models in accounting for both associative learning and dopamine 68 
signals25,30, TD models has received various challenges from alternative models. For instance, a recent 69 
study31 proposed an alternative model for associative learning and dopamine, called an adjusted net 70 
contingency for causal relations (ANCCR) model. As the name implies, the ANCCR model posits 71 
contingency as a key driver of associative learning and causal inference. Conventional definitions of 72 
contingency as well as TD learning models rely on “prospective” predictive relationships between cues 73 
and outcomes, i.e. 𝑃(𝑈𝑆|𝐶𝑆). By contrast in the ANCCR model, learning is driven by “retrospective” 74 
relationships, that is the probability of a stimulus (CS) given the outcome (US), or 𝑃(𝐶𝑆|𝑈𝑆). The authors 75 
argued that ANCCR implements causal inference, and that dopamine signals convey a signal for causal 76 
learning (the “adjusted net contingency”), not TD errors. Evidence supporting these ideas came from their 77 
experiments in examining dopamine signals in mice31 and rats32 during Pavlovian tasks in which 78 
contingency was manipulated. The validity of ANCCR, as well as interpretations of the data presented in 79 
these studies, await further examination. 80 

The concept of contingency lies at the heart of learning predictive relationships. Recent work33,31 has 81 
raised the novel question of whether associations are learned looking forward (prospectively) or looking 82 
backward (retrospectively), and how dopamine is involved in these processes7,31. Yet how contingency 83 
affects dopamine signals and behavior, as well as how dopamine signals relate to causal inference, 84 
remains to be determined. To address these questions, we examined behavior and dopamine signals in the 85 
ventral striatum (VS) in mice performing Pavlovian conditioning tasks while manipulating stimulus-86 
outcome contingencies. We show that, contrary to previous claims31,32, dopamine signals could be 87 
comprehensively explained by TD learning models. Furthermore, we found that dopamine signals 88 
primarily reflected prospective stimulus-outcome relationships, and strongly violated predictions of the 89 
ANCCR model. We then discuss a conceptual framework for how dopamine signals can be related to 90 
contingency and causal inference. 91 

 92 

 93 

Results 94 

 95 

Contingency degradation attenuates Pavlovian conditioned responding  96 

To study the effects of contingency in a Pavlovian setting, we developed a task for head-fixed mice in 97 
which odor cues predicted a stochastic reward (Fig. 1a, b, c). All mice (n = 29), after being water 98 
restricted, were first trained on one reward-predicting odor (Odor A) that predicted a reward (9 µL water) 99 
with 75% probability and one odor (Odor B) that indicated no reward. In this phase (Phase 1), Odor A 100 
trials accounted for 40% of trials, Odor B for 20%, with the remaining 40% being blank trials, in which 101 
neither odor nor reward was delivered. The timing of task events (Fig. 1b) was chosen such that the trial 102 
length was relatively constant, so we could apply the classic ∆𝑃 definition to our design.  103 

In Phase 1, Odor A has positive stimulus outcome contingency, being predictive of reward (R; Fig. 1c). 104 
This can be quantified using the commonly applied ∆𝑃 definition of contingency: e.g., ∆𝑃(𝐴) =105 
𝑃(𝑅|𝐴+) − 𝑃(𝑅|𝐴−) = 0.75 − 0 = 0.75 in Phase 1. Conversely, Odor B has a negative stimulus-106 
outcome contingency: ∆𝑃(𝐵) = 𝑃(𝑅|𝐵+) − 𝑃(𝑅|𝐵−) = 0 − 0.375 = −0.375. Consistent with these 107 
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contingencies, all animals developed anticipatory licking to Odor A, but not Odor B, within five training 108 
sessions (Fig. 1e).  109 

In Phase 2, animals were split into groups (Fig. 1a). The first group (‘Cond’, n = 6) continued being 110 
trained on the identical conditioning task from Phase 1. With no change in contingency, the behavior did 111 
not significantly change in a further five sessions of training (Fig. 1d, e).  112 

The second group (‘Deg’, n = 11) experienced contingency degradation. To reduce the contingency of 113 
Odor A, either 𝑃(𝑅|𝐴+) can be decreased or 𝑃(𝑅|𝐴−) can be increased. We increased 𝑃(𝑅|𝐴−)  by 114 
introducing uncued rewards, an experimental design termed ‘contingency degradation’34. Blank trials 115 
from Phase 1 were replaced with ‘background water’ trials in which a reward was delivered on 75% of 116 
these trials. In this condition, 𝑃(𝑅|𝐴+) remains unchanged at 0.75, while 𝑃(𝑅|𝐴−) increases to 0.5 (2 117 
out of every 3 non-Odor A trials are background water trials, of which 75% are rewarded thus 118 
𝑃(𝑅|𝐴−) =  2/3 × 0.75 = 0.5). As a result, ∆𝑃(𝐴) is reduced to 0.25. Concomitant with this decreased 119 
contingency, the anticipatory licking to Odor A decreased across five sessions of Phase 2 in the Deg 120 
group (t11 = -4.78, P = 0.00074, paired t-test). Moreover, Deg group animals increased licking during the 121 
inter-trial intervals (ITIs, t11 = 3.34, P = 0.0074, paired t-test), potentially reflecting an increased baseline 122 
reward expectation. Additionally, the Deg group exhibited longer latencies to initiate licking and an 123 
increase in trials where mice did not lick before water delivery in Odor A trials (Extended Data Fig. 1d, 124 
e). 125 

The decrease in anticipatory licking, rather than reflecting the decreased contingency, could reflect satiety 126 
effects as animals in the Deg group receive twice as many rewards per session as the Cond group. We do 127 
not believe satiety explains this effect for at least two reasons: (1) all animals still received and drank 128 
about 1 ml supplementary water after each session, and (2) in all but the first degradation session, 129 
anticipatory licking was diminished compared to Cond controls in early trials (Extended Data Fig. 1f).  130 

Nevertheless, a third group (‘CuedRew’) was included as a control for satiety effects. This group received 131 
identical rewards to the Deg group, but rather than delivering uncued rewards during the previously blank 132 
trials, these rewards were delivered following a third odor (Odor C). Unlike animals in the Deg group, 133 
animals in the CuedRew group did not decrease anticipatory licking to Odor A. Furthermore, anticipatory 134 
licking, background licking and licking latency were similar to the Cond group (Fig. 1d, e; Extended Data 135 
Fig. 1).  136 

∆𝑃(𝐴) is 0.25 in the Cued Reward condition, for identical reasoning as the Deg group. This indicates that 137 
the ∆𝑃 definition of contingency cannot be the sole determinant of conditioned responding (Fig. 1c). This 138 
phenomenon has been previously noted in the behavioral responses in conditioning tasks during 139 
contingency degradation14,35. It is not resolved by considering a retrospective definition of contingency. 140 
Consider ∆𝑃𝑟𝑒𝑡𝑟𝑜(𝐴) = 𝑃(𝐴 + |𝑅) − 𝑃(𝐴 − |𝑅) in both the CuedRew and Deg groups, this quantity is 141 
identical, with Odor A preceding the reward 50% of the time in both conditions.  142 

In the subsequent stage of our investigation (Phase 3; 'Recovery 1'), we reinstated the original 143 
conditioning parameters for the Deg group, which increased the contingency back to 0.75 for Odor A, 144 
yielding an immediate recovery of the level of anticipatory licking (Extended Data Fig. 1g). 145 

To compare the behavior and neural correlates of contingency, we also introduced an Extinction phase 146 
(Phase 4) to the Deg group. In this phase, no reward was ever delivered following either odor cue. Over 147 
three sessions, anticipatory licking to Odor A gradually waned. Finally, during a second recovery phase 148 
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(Phase 5; Recovery 2), the anticipatory response to Odor A was effectively reinstated (Extended Data Fig. 149 
1g).  150 

Notably, apart from the Extinction phase, the probability of a reward following Odor A was constant at 151 
𝑃(𝑅|𝐴) = 0.75 throughout the experiment while behavior changes considerably. Clearly, the contrast 152 
against the probability of reward in the absence of a cue is an important consideration for anticipatory 153 
behaviors, with marked changes during contingency degradation. However, the Cued Reward control 154 
showed it is not as straightforward as the contrast between the absence and presence of a cue. 155 

 156 

Contingency degradation attenuates dopaminergic cue responses 157 

Given the well-documented role of dopamine in associative learning, we sought to characterize the 158 
activity of dopamine neurons in our Pavlovian contingency manipulation task. We monitored axonal 159 
calcium signals of dopamine neurons using a multi-fiber fluorometry system36 with optical fibers 160 
targeting 6 locations within the ventral striatum (VS), including the nucleus accumbens (NAc, medial and 161 
lateral) and the olfactory tubercle (OT, 4 locations; Fig. 2a, b). Recordings were made only in the Deg and 162 
CuedRew groups, with the final session of Phase 1 used as the within-animal conditioning control. To 163 
ensure similar levels of calcium sensor expression across the six recording locations, we employed a 164 
transgenic approach by crossing a transgenic mouse line expressing the Cre recombinase in dopamine 165 
neurons (DAT-Cre)37 and a reporter line that expresses a calcium sensor GCaMP6f in a Cre-dependent 166 
manner (Ai148)38. Fiber locations were verified using post-mortem histology (see Methods for exclusion 167 
criteria, Fig. 2b). All results presented in the main text are from the lateral nucleus accumbens (lNAc), 168 
where TD error-like dopamine signals have been observed most consistently39, though the main findings 169 
are consistent across all locations (minimum cosine similarity between any other area and lNAc’s DA 170 
signals during odor A rewarded trials: 0.92, Extended Data Fig. 2).  171 

During Phase 1 (initial conditioning) dopamine axons in lNAc initially responded strongly to water and 172 
weakly to Odor A (Fig. 2c, d). As learning progressed, the response to water gradually decreased, while 173 
the response to Odor A increased over the course of 5 sessions (t13 = 4.81, P = 0.0004, paired t-test, cue 174 
response first vs. last session of Phase 1), broadly consistent with previous reports of odor-conditioning 175 
on stochastic rewards29,40.  176 

During contingency degradation (Deg group, Phase 2), the response to Odor A decreased across sessions 177 
(t8 = -11.50, P = 8.4 ×10-6, paired t-test, cue response, session 6 versus 10) consistent with the changes in 178 
anticipatory licking and other recent reports of dopamine during contingency degradation10,31,32 (Fig. 2e, 179 
f). However, in the Cued Reward condition (CuedRew group, Phase 2), the response to Odor A did not 180 
decrease compared to the Phase 1 response (t5 = -1.12, P = 0.32, paired t-test, cue response first vs. last 181 
session of Phase 2), aligning with the behavioral results but conflicting with the idea that dopamine 182 
neurons encode contingency, at least so far as defined by ∆𝑃. 183 

In the additional phases (3-5) in the Deg group, dopamine also mirrored behavior: the response to Odor A 184 
quickly recovered in Recovery 1 (Phase 3), decreased during Extinction (Phase 4) and recovered again 185 
during Recovery 2 (Phase 5; Extended Data Fig. 3a). These results show that dopamine cue responses 186 
track the stimulus-outcome contingency in our Pavlovian contingency degradation and extinction 187 
paradigms although they deviated from the contingency in the CuedRew group. Still, in all groups and 188 
phases, dopamine tracked anticipatory licking.  189 
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 190 

TD learning models can explain dopamine responses in contingency degradation  191 

In both behavior and dopamine, the responses are not fully explained by contingency: there were 192 
diminished responses during contingency degradation, but not when the additional rewards are cued. 193 
Given the match between dopamine responses and behavior, rather than consider new definitions of 194 
contingency, we sought to test if temporal difference (TD) models, which so far have been highly 195 
successful in accounting for dopamine activity, are able to explain the discrepancies from the contingency 196 
account.  197 

Dopamine neurons are thought to convey TD errors, denoted by 𝛿 and defined by the equation: 𝛿𝑡 = 𝑟𝑡 +198 
𝛾𝑉(𝑠𝑡+1) − 𝑉(𝑠𝑡), with 𝑟𝑡 representing reward at time 𝑡, 𝑠𝑡 representing the state at time 𝑡,  𝑉(𝑠𝑡) is the 199 
value at state 𝑠𝑡, and 𝛾 is the temporal discount factor (0 < 𝛾 < 1). Value 𝑉(𝑠𝑡) is defined as the 200 
expected sum of all future rewards starting from time 𝑡, with each future reward discounted by the factor 201 
𝛾 at each time step. The role of the TD error in learning is to iteratively refine the value estimate (Fig. 3a), 202 
ultimately guiding behavior.  203 

The response to Odor A differed most between our three test conditions (Conditioning, Degradation, 204 
Cued Reward) and thus our modeling efforts initially focused on explaining these changes. Noting there 205 
was no reward at the time of Odor A, by the definition of TD error, the response to Odor A is 𝛾𝑉(𝑠𝑡+1) −206 
𝑉(𝑠𝑡), the difference between the value in the state immediately after Odor A (ISI) and the value in the 207 
state immediately before Odor A (pre-Odor ITI).  208 

Previous studies have indicated that the ability of TD learning models to explain dopamine responses and 209 
conditioned behaviors depends critically on what types of state representations the models use41–44. We 210 
therefore tested TD learning models (Fig. 3a) equipped with four different types of state representation 211 
(Fig. 3c).  212 

In the original application of TD models to dopamine activity, only the interval between a CS and a US, 213 
i.e. inter-stimulus interval (ISI), was considered, and was represented using a ‘complete serial compound’ 214 
(CSC) representation, sometimes known as a tapped delay line25,45. In this construction, a presentation of 215 
a stimulus triggers a sequential activation of sub-states, each of which represents a time step after the 216 
stimulus (Fig. 3c). At any given time after the stimulus, only one sub-state is active. The value estimate 217 

�̂�(𝑠𝑡) is then computed as the weighted sum of these substates which in CSC reduces to be the weight of 218 
the active substate.  219 

While this ISI-only CSC state representation is successful in explaining many properties of the dopamine 220 
response to conditioned stimuli, it fails to predict the result of our experiments. As the ISI period is 221 
identical between conditions and there is no representation of the ITI period, the TD error for Odor A is 222 
unchanged between conditions (Fig. 3f).  223 

An extension of this ISI-only model (CSC with ITI states model) models both the ISI and ITI using CSC, 224 
resetting with each odor. While this model predicts a decrease for Degradation, it also predicts a decrease 225 
in the Cued Reward condition (Fig. 3f), conflicting with our results.  226 

Rather than representing the ITI with many consecutive states, it is possible to represent it as a single 227 
state. This model, which we term the Cue-Context model, is functionally similar to the previously 228 
developed cue competition model16–19. Our Cue-Context model extends the original CSC model with a 229 
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state that is constantly on (the ‘context’) during both the ISI and ITI (Fig. 3b). This model successfully 230 
predicts the pattern of experimental results we observed, with a decrease in the Odor A response during 231 
Degradation and a smaller decrease during Cued Reward (Fig. 3f). This can be understood as the context 232 
acquiring value, lesser in the Cued Reward condition because the increased value (more rewards) is 233 
attributed to both the context and the new odor. On the other hand, in the Degradation condition, the 234 
increased value is attributed fully to the context. By increasing the context and thus value during the pre-235 
Odor ITI period, the TD error at Odor A is diminished. While this produces a qualitatively correct pattern 236 
of results, it requires a temporal discount factor that is well below previously reported values46–49 to 237 
produce the quantitatively correct pattern (Extended Data Fig. 4). 238 

We therefore considered whether further information about the experimental design could be used to 239 
refine the state representation. Inspired by previous work showing that dopamine neurons are sensitive to 240 
hidden state inference in a task with stochastically timed rewards50,51, we considered a ‘belief state’ 241 
representation, a vector of probabilities for each possible hidden state (Belief-State TD model; Fig. 3b): 242 
the ‘Wait’ state, which reflects early ITI (a minimum fixed amount of waiting period in which there is no 243 
chance of an uncued reward or odor being delivered), and the ‘pre-transition’ (Pre) state, in which there is 244 
an imminent chance of reward or odor being delivered. The transition and observation matrix, which are 245 
used to compute the probability of each state, were derived from the experimental settings, assuming a 246 
fixed probability of transition from the Wait to Pre state, modeling a growing anticipation of the next trial 247 
beginning. Using this state representation improved the quantitative accuracy of the model for a given 𝛾 248 
versus the Cue-Context, and accurately predicted the experimental data at a value of consistent with 249 
previously reported results46–49 (Fig 3f., Extended Data Fig. 4).  250 

To test which of these two models, Cue-Context or Belief-State, best describes the state representation 251 
driving dopamine responses and behavior, we focused our analysis on the ITI period: whereas the Cue-252 
Context representation models the ITI as a single, homogenous state (the context),  the Belief-State model 253 
captures temporal heterogeneity by modeling it as the gradual transition between two states – capturing a 254 
growing anticipation of the next trial or reward (Fig. 4a).  255 

In Pavlovian settings, anticipatory licking (as opposed to consummatory licking) has been used as a 256 
measure of current value – for example, animals will lick more to cues that predict greater rewards26. 257 
Odor B provides an opportunity to examine whether the ITI is a heterogenous interval. This is because 258 
Odor B predicts no reward within the current trial (and thus no consummatory licking) but also provides 259 
further information that no odor or uncued reward will be delivered for the length of one trial. In this way, 260 
Odor B provides 100% certainty to the animal that while they are in the ‘Wait’ state. Consistent with this 261 
understanding of the task structure, the delivery of Odor B during the Degradation condition prompted 262 
animals to stop licking. Both the Cue-Context and Belief-State models capture this effect. The crucial 263 
difference is how the lick rate recovers. In the Cue-Context model, ITI value is related to a single state, 264 
which without reward decreases at the rate of 𝛼 (learning rate). In the Belief-State model, value 265 
continually increases (Fig. 4c) across the entire ITI, as the increased belief that the next trial is imminent 266 
increases continuously. We find that the lick pattern following Odor B matches the pattern of the Belief-267 
State model and not the Cue-Context model, with a sudden decrease in licking followed by a gradual 268 
increase in the Degradation condition that is unrelated to the ISI length (Fig. 4c, summarized in Fig. 4d).  269 

This pattern of licking behavior also suggests that the animals do not develop more complex models of 270 
timing. Odor B predicts approximately ten seconds with no reward. An ideal agent would not lick during 271 
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this time, waiting until the transition to an uncued reward is possible. The mice instead resume licking 272 
within 2-3 seconds of Odor B delivery, with the lick rate increasing over several seconds.  273 

While the value from the Belief-State model explains the time course of licking following Odor B, this 274 
account does not, by itself, explain the decrease in anticipatory licking in response to Odor A (Fig. 1d). 275 
This decreased responding is a consistent feature of contingency degradation10,34. We show, in Extended 276 
Data Fig 5, that if licks carry a small effort cost and licks are distributed according to relative value, then 277 
the Belief-State model can account for the increased licking in the pre-odor period and decreased licking 278 
during the ISI. 279 

Having shown that the lick rate is explained by the changing value in the Belief-State model, we wished 280 
to test whether this could be used to explain trial-by-trial variance in the dopamine response. Continuing 281 
with the assumption that licking is a moment-by-moment measure of value, our Belief-State model 282 
predicts there should be an inverse correlation between the pre-odor lick rate and the Odor A dopamine 283 
response. To test this, we correlated the number of licks in the two seconds before the cue to the Odor A 284 
response on a trial-by-trial basis, regressing a linear model independently for each mouse (pooling the last 285 
two sessions of each condition under the assumption that the task was well-learnt in these sessions). 286 

Only in the Degradation condition was there a significant negative correlation between the pre-odor lick-287 
rate and the Odor A dopamine response for the population (Fig. 4f, g). This can be explained by the 288 
Belief-State model, as ITI value varies depending on the length of the ITI – with each timestep, there is an 289 
increasing belief they are in the ‘Pre’ state, with the current value estimate updating to reflect that. The 290 
data cannot be explained by the Cue-Context model, in which ITI value is fixed (Fig. 4g). The modeling 291 
suggests that the lack of a significant trend in the remaining two conditions is due to the lower variance in 292 
value in the pre-cue period, with an average of 0.28 ± 0.87 and 0.46 ± 1.11 licks (mean ± s.d.) in the 2 293 
second pre-cue period in Conditioning and Cued Reward respectively (versus 1.51 ± 1.52 in 294 
Degradation), leading to underpowered analysis.  295 

In summary, the ITI state representation is essential to explaining the relative effects of contingency 296 
degradation and additional cued rewards on the Odor A response. Complex ITI representations, such as 297 
CSC, are inefficient, whereas modeling it as a single state (Cue-Context), does not capture the 298 
heterogeneity of the ITI. Our Belief-State model, representing the ITI using two states, is sufficient to 299 
explain the experimental results.  300 

 301 

Additional aspects of dopamine responses and model predictions 302 

Having identified a sufficient model for explaining our contingency degradation results, we next 303 
examined how well this model matched additional experimental results.  Figure 5a visualizes the value as 304 
predicted by the Belief-State model across four conditions tested (Conditioning, including Recovery; 305 
Degradation, Cued Reward and Extinction). In the Odor A rewarded trial, the value during the ISI 306 
remained unchanged in the first three conditions, and significantly decreased in Extinction, closely 307 
mirroring the (prospective) reward probability 𝑃(𝑅|𝐴). For the reasons discussed above, the pre-ISI 308 
period, reflecting the pre-transition state (‘Pre’), showed a modest increase in the Cued Reward case and a 309 
significant rise in the Degradation condition. The TD errors upon Odor A presentation, reflective of the 310 
difference in value between Pre state and the first ISI substate, diminished in both Degradation and 311 
Extinction. In both these conditions, contingency is reduced by increasing 𝑃(𝑅|𝐴−) and decreasing 312 
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𝑃(𝑅|𝐴), respectively52. Notably, our model suggested two distinct mechanisms underlying these two 313 
processes: an increase in Pre state value in Degradation and a decrease in ISI value in Extinction (Fig. 5c). 314 
Our Belief-State TD learning model matched the experimental results well (Fig. 5b, d), including the 315 
Extinction data. 316 

The model predicts another distinct difference between degradation and extinction: degradation affects 317 
TD error for all cues due to changes in the shared Pre state value, while extinction impacts only the 318 
specific cue undergoing extinction. Accordingly, we examined the Odor B trials. In the Belief-State 319 
model, Odor B is a transition from the Pre to Wait state, and thus the TD error is the difference between 320 
these two state values. We expected the most negative response in the Deg group, owing to a higher Pre 321 
state value, and relatively unchanged ‘Wait’ value. We also expected an unchanged response in 322 
Extinction in comparison to Conditioning. Experimentally, the response to Odor B was biphasic, 323 
featuring an initial positive response followed by a later negative response. Such a biphasic response has 324 
been previously noted, with general agreement that the second phase is correlated with value53. By 325 
quantifying the later response (250ms-1s window), there was a close match between the model prediction 326 
and the data for Odor B responses (Fig. 5e, f).  327 

The Belief-State model shows that TD errors at reward omission are based on the difference between the 328 
final ISI substate and Wait state values. The Wait state value, generally lower than the Pre state value, has 329 
minor changes across conditions. This results in consistent TD errors at reward omission across 330 
Conditioning, Degradation, and Cued Reward conditions due to similar ISI values, but a significant 331 
reduction in Extinction due to a lower ISI value, which closely aligned with the experimental results 332 
(Extended Data Fig. 6). TD errors at predicted rewards, reflecting the difference between actual reward 333 
and ISI values, exhibit minimal changes across Conditioning, Degradation and Cued Reward conditions, 334 
which is also consistent with the data.  335 

In total, the above results indicate that the TD model with proper task states can effectively recapitulate 336 
nearly all aspects of phasic dopamine responses across various trial types and task events. 337 

 338 

Recurrent neural networks that learn to predict values through TD learning can explain 339 

dopamine responses 340 

The models discussed above, while effective, are ‘hand-crafted’ and tuned to our particular task setting. 341 
While there is evidence that dopamine neurons rely on belief-state inference in computing TD error50,51,54, 342 
the question of how the brain learns such a state-space is less well understood. Previous work has shown 343 
that RNNs, trained to estimate value directly from observations (‘value-RNNs’), develop belief-like 344 
representations despite not being explicitly trained to do so55. This approach substitutes hand-crafted 345 
states for an RNN that is simply given the same odor and reward observations as the animal      (Fig. 6a). 346 

Here, we applied the same value-RNN to our contingency manipulation experiments. We generated 347 
training sets, consisting only of the odor and reward timings, that matched the three conditions. The 348 
RNNs were first trained on the Phase 1 Conditioning task and then either on the Phase 2 contingency 349 
Degradation or Cued Reward conditions (Fig. 6b). Several RNNs were trained with different numbers of 350 
hidden units, from 5 to 50. 351 
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The trained RNNs closely matched the experimental results (example 50 unit RNN presented in Fig. 6c). 352 
Like the TD models used in the above section, the decrease in Odor A response is explained by an 353 
increase in the value during the ITI period, not a shift in the value during the ISI (example Fig. 6d). 354 

We were interested in understanding the inferred state spaces used by the RNN models. To visualize this, 355 
we applied canonical correlation analysis (CCA)56,57 to align the activity of the hidden units between the 356 
RNNs for each condition for all conditions.  357 

In all conditions, without any stimuli, the RNN’s activity will decay to a fixed point (here plotted as the 358 
origin, Extended Data – Video 1). This can be understood as the Pre-transition state. In all conditions, the 359 
Odor A trajectory is similar, indicating a shared representation of the ISI period (Fig. 6e). Furthermore, in 360 
the Cued Reward condition, the Odor C trajectory is nearly identical to that of Odor A, potentially 361 
reflecting generalization. In the Degradation condition, delivering Odor B causes a trajectory that is 362 
significantly longer than the other two conditions, potentially corresponding to the Wait state. 363 

To compare the state space of the value-RNN to the Belief-State model, we calculated the beliefs at each 364 
given time point in the simulated experiment and used a linear regression to relate the hidden unit activity. 365 
As previously noted55, the unit activity became more belief-like with more hidden units (Fig. 6f). Notably, 366 
the regression performance, as quantified by R2 (see Methods), was higher for the Degradation condition 367 
at each hidden layer size. This is explained by better performance on the Wait state (Fig. 6f, right panel). 368 
As evident in the visualized activity in the state spaces, the RNNs trained on the Degradation condition 369 
developed distinct trajectories in the ITI compared to the other two conditions (Fig. 6g), taking a longer 370 
period of time to return to the fixed ITI point and following a similar pattern regardless of the particular 371 
trial type. In all RNNs that successfully predicted degradation effect, the Wait state readout had a 372 

minimum performance of 𝑅2 = 0.57. This suggests that it is the delivery of rewards during the ITI that 373 
reshapes the state space to be heterogeneous, while in the other conditions this is not necessary and thus 374 
the ITI has a relatively fixed state space representation. That the RNN can learn a belief-like 375 
representation from limited information, using only the TD error as feedback, suggests a generalized 376 
method by which the brain can construct state spaces using TD algorithms. 377 

 378 

A retrospective learning model, ANCCR, cannot explain the dopamine responses 379 

While our analysis using the TD learning models with explicit state representations and the value-RNNs 380 
suggest that TD learning models are sufficient to explain our experimental results, we have not yet 381 
considered whether alternative definitions of contingency would also provide an account of our results. 382 
The ANCCR (adjusted net contingency for causal relations) is a recently described new model, proposed 383 
as an alternative account of the TD explanation of dopamine activity (Fig. 7a)31. The authors have 384 
previously shown that this model can account for contingency degradation31,32 and suggested that TD 385 
accounts could not. 386 

ANCCR builds upon the authors’ previous observation that the retrospective information (‘which cues 387 
precede reward?’) can be used to explain animal behavior previously unexplained by prospective 388 
accounts33. Accordingly, the ANCCR model begins with the calculation of the retrospective contingency, 389 
using eligibility traces as a principled method to compute contingency in continuous time, rather from 390 
trial-by-trial probabilities. At the time of a reward (or a ‘meaningful event’), the difference between the 391 
eligibility of cues at the time of reward and the average cue eligibility is computed. This generalizes the 392 
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trial-based definition of ∆𝑃𝑟𝑒𝑡𝑟𝑜(𝐴) to continuous time. From this retrospective contingency and the 393 
average event rates, the model proposes the prospective contingencies are inferred using a Bayes-like 394 
computation.  395 

From the prospective and retrospective contingencies, a weighted sum (‘net’) contingency is calculated 396 
for all pairs of events. This map can be used to calculate the change in expectation of reward for a given 397 
event, considering other explanations. It is this ‘adjusted net contingency’ that ANCCR proposes is 398 
represented in the dopamine signal.  399 

To test the ANCCR model, we used the authors’ published code to model the same 25 simulated 400 
experiments used in our TD modeling. For this experiment, ANCCR has 12 parameters, at least 6 of 401 
which have a significant impact on the modeled response. We first tried using the parameters published in 402 
Garr et al. (2023) and Jeong et al. (2022); we present results using the Garr parameters because they are 403 
closer to our experimental results. While the ANCCR model accurately predicted a decreased response 404 
for Odor A during contingency degradation, it predicted a similar response in the Cued Reward condition, 405 
conflicting with the experimental results (Fig. 7b). We varied the parameter (𝑤) which controls the 406 
relative amount of retrospective and prospective information used to calculate the contingency. This 407 
parameter controlled the relative size of the decrease, while sensitive to parameter choice governing the 408 
eligibility decay rate and learning rates; in general the halving of 𝑃(𝐴|𝑅) produces a large decrease in the 409 
retrospective contingency, 𝑃(𝐴|𝑅) − 𝑃(𝐴), whereas the increase in 𝑃(𝑅) slightly decreases the 410 
prospective contingency, 𝑃(𝑅|𝐴) − 𝑃(𝑅).  411 

We next considered whether this was a problem of parameter selection, and therefore simulated the first 5 412 
virtual experiments for the parameter search space used in Garr et al. (2023), trying a total of 21,000 413 
parameter combinations, including those in the two previous studies31,32 (indicated as 1, 2 and 3). Fig. 7c 414 
plots the Odor A dopamine response in the Degradation and Cued Reward case for each of these 415 
combinations, normalized by the response during Conditioning. No parameter combination predicted the 416 
correct pattern of experimental results, quantitatively or qualitatively (Fig. 7c). 417 

 418 

 419 

Discussion 420 

Here we examined behaviors and VS dopamine signals in a Pavlovian contingency degradation paradigm, 421 
including a pivotal control. Our results show that dopamine cue responses, like behavioral conditioned 422 
responses, were attenuated when stimulus-outcome contingency was degraded by the uncued delivery of 423 
additional rewards. Crucially, neither dopamine signals nor conditioned responses were affected in a 424 
control condition in which the delivery of additional rewards were cued by a different stimulus despite a 425 
similar number of rewards being administered. Our findings not only demonstrate that the above results 426 
were not due to satiety, but also provide key insights into possible mechanisms underlying contingency 427 
degradation. 428 

Contrary to claims from previous studies31,32, our modeling showed that many aspects of dopamine 429 
responses can be comprehensively explained by TD learning models, if the model is equipped with proper 430 
state representations reflecting the task structure. These TD learning models also readily explained 431 
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dopamine cue responses in the control condition with cued rewards – results which strongly violated the 432 
predictions of a contingency-based retrospective causal learning model (ANCCR) and the ∆𝑃 definition 433 
of contingency. The results indicate that dopamine signals, as well as conditioned responses, primarily 434 
reflected the prospective, but not retrospective, stimulus-outcome relations. Rather than discarding the 435 
notion of contingency altogether, we propose that these results point toward a novel definition of 436 
contingency grounded in the TD learning framework. These results bear significant implications for the 437 
theory of associative learning and the nature of dopamine signals, which help resolve some of previously 438 
unresolved controversies.  439 

TD learning model as a model of associative learning 440 

Historically, Pavlovian contingency degradation paradigms have played a pivotal role in the development 441 
of animal learning theories3,16, yet the exact underlying mechanisms remain to be determined17,19. Here we 442 
show that the effect of contingency manipulations, both on behavior and dopamine responses, can be 443 
explained by TD learning models. As our systematic investigation revealed, the failure of previous efforts 444 
to explaining contingency degradation with TD learning models is due to the use of inappropriate state 445 
representations, either not considering the ITI period at all, or modeling it in a simplistic way. We show 446 
two types of TD learning models that explain the basic behavioral and dopamine results. The first model 447 
(Cue-Context model) uses a contextual stimulus as one of the states that continuously exists throughout 448 
the task period, which is equivalent to the cue-competition model traditionally considered in the animal 449 
learning theory literature16,17,19. The second model (Belief-State model) explicitly models the task 450 
structure as transitions across the ISI and the two ITI states (“wait” and “pre-transition”), and TD learning 451 
operates on beliefs (posterior probabilities) over these discrete states.  452 

In both models, the reduction in dopamine cue responses occurs due to an increase in the value preceding 453 
a cue presentation, which decreases the change in value (reward expectation) induced by the cue, rather 454 
than due to a decrease in the absolute level of the value induced by the cue. This raises the question of 455 
why cue-induced anticipatory licking is reduced during contingency degradation. We provide a potential 456 
mechanism: the animal distributes anticipatory behavior depending on the relative values across different 457 
states.  458 

Our results favor the Belief-State model over the Cue-Context model; both the dopamine and behavioral 459 
data were better explained by the Belief-State model. One could argue that it is unclear whether the 460 
animal can learn “sophisticated” state representations such as those used in our Belief-State model. In 461 
support of a Belief-State TD learning model, our analysis of anticipatory licking indicated that the reward 462 
expectation was modulated in a manner intricately linked to different task states: the ISI, wait, and pre-463 
transition states. Furthermore, we show that recurrent neural networks, trained to predict values (value-464 
RNNs), acquired the activity patterns that can be seen as representing beliefs, merely from observations, 465 
without explicitly instructed to develop such representations, similar to our previous work using different 466 
behavioral tasks55. Critically, when trained on contingency degradation sessions, the value-RNNs 467 
developed more heterogenous representations of the ITI, capturing the same phenomenon as the Belief-468 
State model. 469 

It has been shown that TD learning models can explain a wealth of phenomena studied in the animal 470 
learning theory literature30,58. The present study adds to this list Pavlovian contingency degradation – a 471 
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classic phenomenon long studied in psychology and now in neurobiology. These results indicate that TD 472 
learning models provide a foundation with which to understand associative learning while the RNN-based 473 
approach provides a principled way to apply TD learning with minimal assumptions about state 474 
representations.  475 

State representations as population activity dynamics 476 

In RL, the “state” is a critical component which represents the set of observable and inferred variables 477 
necessary to compute value and policy. The artifice of the state representations used in neurobiological 478 
RL modeling has been criticized59. For instance, it is implausible to have separate sets of neurons 479 
activated sequentially (i.e. CSCs) for separate cues, particularly if they are to completely tile the ITI, as in 480 
the CSC with ITI states model59. Furthermore, states are often defined within each “trial”; how can states 481 
be defined when there are no obvious trial structures59? The success of value-RNNs in replicating aspects 482 
of dopamine signals and the acquisition of belief-like representations provides two crucial insights into 483 
how biological circuits may represent states. 484 

First, the recent successes of RL on complex machine learning tasks, containing many stimuli and often 485 
lacking obvious trial structure, suggests that it is possible to achieve high performance with standard RL 486 
techniques22. A key ingredient lies in the use of neural networks capable of autonomously learning 487 
representations appropriate for specific tasks. Our results with value-RNNs agree with this observation. 488 
As shown in our previous work55 and in the present work, value-RNNs have a stable fixed point 489 
(attractor) corresponding to the ITI state (the Pre-transition state in our Belief-State model). The ITI state 490 
is thus an emergent property of training to predict reward. Furthermore, different stimuli induce stimulus-491 
specific trajectories in the population activity state space. We found a close correspondence between 492 
population dynamics and the hand-crafted states assumed in Belief-State TD learning models. These 493 
results indicate that the population activity patterns in a network, including attractors and stimulus-494 
specific trajectories, represent distinct states such as those assumed in our Belief-State TD learning 495 
models. Although the activity representing different trajectories likely involves overlapping sets of 496 
neurons, they can be trained to compute values properly by adjusting downstream synaptic weights (as 497 
long as the activity patterns for different states are discriminable). 498 

Second, while TD learning models with hand-crafted state representations help develop conceptual 499 
understanding, the RNN-based approach can provide insights into how hand-crafted state representations 500 
could be implemented in neural networks. In the future, it is of great interest to examine whether neural 501 
activity in the brain exhibits patterns of activity predicted by the value-RNN models. The prefrontal 502 
cortex is a strong candidate area, receiving dopaminergic innervation from the VTA necessary for 503 
appropriate adaptation to contingency degradation in instrumental conditioning60. However other areas, 504 
such as the hippocampus, also contribute task-relevant information during degradation to the prefrontal 505 
cortex61 and neural network modeling approaches that reflect the brain’s functional organization (e.g. 62) 506 
might provide more insight than our model which treats the state-machinery of the brain as a single 507 
recurrent neural network.  508 

Limitations of the ANCCR model as a model of associative learning and dopamine 509 
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The present study unveiled limitations of the recently proposed causal learning model, ANCCR31,32. The 510 
Degradation and Cued Reward conditions are minimally different and thus provide a strong test of the 511 
algorithm design. Our results indicate that the ANCCR model fails to explain the observed results despite 512 
our extensive examination of its parameter space. Crucially, the ANCCR model suffers from the same 513 
flaw as the ∆𝑃 definition of contingency. While extending the definition to continuous time and 514 
considering multiple cues, ANCCR still calculates contingency by subtracting the background event rate, 515 
losing information, precluding it from attributing increased value to the background in the same manner 516 
as the TD models. Given the similarity in event rate between the conditions, the retrospective 517 
representations (and average eligibility trace) remain similar, with the computed retrospective 518 
contingencies in the Degradation condition being a subset of the Cued Reward contingencies (Fig 7d). 519 
This explains why ANCCR predictions are similar for the two conditions independent of the parameter 520 
choice, as the rest of the model depends on this computed retrospective contingency as input. Thus, the 521 
failure of the ANCCR to explain the Cued Reward condition reflects the fundamental construction of the 522 
ANCCR model.  523 

The failure of the ANCCR model here does not exclude some of the interesting ideas integrated into 524 
ANCCR, including how it uses retrospective information to learn the state space. Rather, it is its reliance 525 
on contingency that constitutes its core deficit. Other theoretical work has considered how TD algorithms 526 
that consider retrospective information may enhance learning performance without explicitly invoking 527 
contingency. A recent report32 demonstrated that ANCCR is able to explain the dopamine response in 528 
outcome-selective contingency degradation. This is a result of the multidimensional tracking of cue-529 
outcome contingencies in ANCCR. We show that both the Belief-State model and the value-RNN, if 530 
trained on each reward separately and with total value taken to be the absolute difference of the two 531 
separate values, successfully predicts the experimental results of Garr et al. (2023) (Extended Data Fig. 532 
7). A similar approach using “multi-threaded predictive models” was used to successfully explain 533 
dopamine data in a different multi-outcome task44. While this proposal leaves open questions about how 534 
such abstract state representation is implemented biologically (the same being true for ANCCR), it does 535 
demonstrate that more complex contingency manipulations can still be explained by TD models. In fact, 536 
recent studies have provided evidence for heterogeneous responses to different types of rewards in 537 
dopamine neurons63–65. While further evidence is required to solidify this understanding, the provisional 538 
assumption of multiple value channels shows how TD models for multiple outcomes can potentially be 539 
achieved in neural circuitry by concurrently running parallel circuits. 540 

TD error, contingency and causal inference 541 

Learning predictive or causal relationships requires properly assigning credits to those events that are 542 
responsible for the outcomes observed. A key to this process is considering counterfactuals66 – would a 543 
particular outcome occur had I not seen that cue, or had I not taken that action? In the present study, we 544 
show that TD learning models with ITI representations learn and predict value in the time before cue 545 
presentation. The cue-associated TD error is then calculated as the difference in value in the presence and 546 
absence of that cue. Consequently, computation of TD errors effectively subtracts the prediction of value 547 
in the absence of the cue – i.e. the counterfactual prediction. More generally, the computation of TD error 548 
or its variants can be seen as subtracting out counterfactuals. In a class of RL algorithms commonly used 549 
in artificial intelligence applications (advantage actor-critic algorithms), the actor decides which action to 550 
take for a given state and the critic evaluates the action by computing the advantage function, defined as: 551 
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𝐴(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) − 𝑉(𝑠𝑡) 552 

where 𝑄(𝑠𝑡 , 𝑎𝑡) is the state-action value function67,68. If this is taken to be the immediate reward of the 553 
action plus the expected return of the new state, 𝑄(𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1) then the advantage function 554 

can be approximated by the TD error 𝐴(𝑠𝑡 , 𝑎𝑡) = 𝑄(𝑠𝑡 , 𝑎𝑡) − 𝑉(𝑠𝑡) = (𝑟𝑡 + 𝛾𝑉(𝑠𝑡+1)) − 𝑉(𝑠𝑡) = 𝐸[𝛿𝑡] 555 

(ref. 69,70). 556 

As discussed in recent work70, in fully observable environments without confounds, the advantage 557 
function is exactly equivalent to the Neyman-Rubin definition of causal effect of an action: the difference 558 
in outcomes given an action versus outcomes otherwise. In this context, the definitions of causality, 559 
contingency and TD error align – all emphasizing the consideration of counterfactual prediction: that is, 560 
the difference between potential future outcomes (following action) and the alternative when the action is 561 
not taken. TD error can therefore be both a measure of contingency and useful in establishing causal 562 
relationships, without invoking retrospective computations.  563 

TD errors improve over the ANCCR and Δ𝑃 definitions because the comparison to the reward probability 564 
of US given CS is not simply the reward probability given absence of CS, but to 𝑉(𝑠), which is the γ-565 
discounted sum of all future rewards given the current state, with the state encapsulating all 566 
environmental information. As demonstrated by our modeling, the heterogeneous state representation 567 
during the absence of events (the ITI) is critical to the accuracy of our models to match the experimental 568 
data.  569 

While these relationships between TD error and contingency hold in fully observable environment, our 570 
value-RNN approach may extend these results to more complex/realistic environments. Veitch et al. 571 
(2019) has demonstrated network embeddings, like our value-RNN, can reduce the problem of inferring 572 
causality to a problem of predicting outcomes71. These networks do not require full knowledge of the 573 
environment to succeed but rather learn to extract sufficient information to establish causality. Ultimately, 574 
TD error could provide pivotal signals for contingency – the essential quantity for causal inference. 575 

Conclusions 576 

Our results indicate that TD learning models can explain contingency degradation – a phenomenon that 577 
was thought to be difficult to explain based on TD learning31,32,72. The Belief-State TD model that we 578 
used here is “model-free” in the sense that the values are “cached” to each state based on direct 579 
experiences, although these states reflect the animal’s knowledge of the transition structure between states 580 
which can be regarded as a “world model”41,43,73. This suggests that the distinction between “model-free” 581 
and “model-based” mechanisms is not as hard-lined as often assumed. The sensitivity to contingency 582 
degradation in instrumental behaviors has been used to support the behavior being goal-directed or 583 
model-based. Yet, the same type of Belief-State TD model can, in principle, be applied to explain such an 584 
effect. In any case, further biological investigations will be needed to constrain mechanisms linking 585 
behavior and contingency – the critical variable thought to underlie learning predictive and/or causal 586 
relationships. The experimental results and models presented in this study would aid such efforts.  587 
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Methods 588 

 589 

Animals  590 

A total of 31 mice were used. 18 wildtype mice (8 males and 10 females) at 3-6 months of age were used 591 
to collect only behavioral data. For fiber photometry experiments, 13 double transgenic mice resulting 592 
from the crossing of DAT-Cre (Slc6a3tm1.1(cre)Bkmn; Jackson Laboratory, 006660)37 with  Ai148D 593 
(B6.Cg-Igs7tm148.1(tetO-GCaMP6f,CAG-tTA2)Hze/J; Jackson Laboratory, 030328)38 (DAT::cre x 594 
Ai148, 7 males and 6 females) at 3–6 months of age were used. Mice were housed on a 12 hr /12 hr 595 
dark/light cycle. Ambient temperature was kept at 75 ± 5 °F and humidity below 50%. All procedures 596 
were performed in accordance with the National Institutes of Health Guide for the Care and Use of 597 
Laboratory Animals and approved by the Harvard Animal Care and Use Committee.  598 

 599 

Surgery 600 

Mice used for fiber photometry recordings underwent a single surgery to implant a multifiber cannula and 601 
a head fixation plate 2-3 weeks prior to the beginning of the behavioral experiment. All surgeries were 602 
performed under aseptic conditions. Briefly, mice were anesthetized with an intraperitoneal injection of a 603 
mixture of xylazine (10 mg/kg) and ketamine (80 mg/kg) and placed in a stereotaxic apparatus in a flat 604 
skull position. During surgery, the bone above the Ventral Striatum area was removed using a high-speed 605 
drill. A custom multifiber cannula (6 fibers, 200 µm core diameter, 0.37 NA, Doric Lenses) was lowered 606 
over the course of 10 min to target 6 subregions in the Ventral Striatum. The regions’ coordinates relative 607 
to Bregma (in mm) were: Lateral nucleus accumbens (lNAc, AP:1.42, ML:1.5, DV:-4.5); Medial NAc 608 
(mNAc, AP:1.42, ML:1, DV:-4.5); anterior lateral olfactory tubercle (alOT, AP:1.62 , ML:1.3, DV:-4.8); 609 
posterior lateral OT (plOT, AP:1.00, ML:1.3, DV:-5.0); anterior medial OT (amOT, AP:1.62, ML:0.8, 610 
DV:-4.8); posterior medial OT (pmOT, AP:1.00, ML:0.8, DV:-5.0). Dental cement (MetaBond, Parkell) 611 
was then used to secure the implant and custom headplate and to cover the skull. Mice were singly housed 612 
after surgery and post-operative analgesia was administered for 3 days (buprenorphine ER-LAB 0.5 613 
mg/ml). Mice used for behavioral training underwent a similar surgical process, but only a head fixation 614 
plate was implanted. 615 

 616 

Behavioral training 617 

After recovery from headplate-implantation surgery, animals were given ad libitum access to food and 618 
water for 1 week. Before experiments and throughout the duration of the experiments, mice were water 619 
restricted to reach 85–90% of their initial body weight and provided approximately 1–1.5 mL water per 620 
day in order to maintain the desired weight and were handled every day. Mice were habituated to head 621 
fixation and drinking from a waterspout 2-3 days prior to the first training session. All tasks were run on a 622 
custom-designed head-fixed behavior set-up, with software written in MATLAB and hardware control 623 
achieved using a BPod state machine (1027, Sanworks). A mouse lickometer (1020, Sanworks) was used 624 
to measure licking as infra-red beam breaks. The water valve (LHDA1233115H, The Lee Company) was 625 
calibrated, and a custom-made olfactometer was used for odor delivery. The odor valves 626 
(LHDA1221111H, The Lee Company) were controlled by a valve driver module (1015, Sanworks) and a 627 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578961doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578961
http://creativecommons.org/licenses/by-nc/4.0/


 

17 
 

valve mount manifold (LFMX0510528B, The Lee Company). All components were controlled through 628 
the Bpod state machine. Odors (1-hexanol, d-limonene, and ethyl butyrate, Sigma-Aldrich) were diluted 629 
in mineral oil (Sigma-Aldrich) 1:10, and 30 µL of each diluted odor was placed on a syringe filter (2.7-630 
µm pore size, 6823-1327, GE Healthcare). Odorized air was further diluted with filtered air by 1:8 to 631 
produce a 1 liter/min total flow rate. The identity of the rewarded and non-rewarded odors were 632 
randomized for each animal.  633 

In Conditioning sessions, there are three types of trials: (1) trials of Odor A (40% of all trials) associated 634 
with a 75% chance of water delivery after a fixed delay (2.5 s), (2) trials of unrewarded Odor B (20% of 635 
all trials) as control to ensure that the animals learned the task, and (3) background trials (40% of all 636 
trials) without odor presentation. Rewarded odor A trials consists of 2s pre-cue period, 1s Odor A 637 
presentation, 2.5s fixed delay prior to a 9 µL water reward and 8s post-reward period. Unrewarded Odor 638 
B trials consist of a 2s pre-cue period, 1s Odor B presentation, and 10.5s post-odor period. Background 639 
trials in the Conditioning phase span a 13.5s eventless period.  Trial type was drawn pseudo-randomly 640 
from a scrambled array of trial types maintaining a constant trial type proportion. Inter-trial-intervals (ITI) 641 
following the post-reward period were drawn from an exponential distribution (mean: 2s).  642 

Learning was assessed principally by anticipatory licking detected at the waterspout for each trial type, 643 
with mice performing 100-160 trials per session until they reach an asymptotic task performance, 644 
typically after 5 sessions. 645 

After the Conditioning phase, the mice were divided into three groups to undergo different conditions: 646 
Degradation (Deg group), Cued Reward (CuedRew group), and Conditioning (Cond group). The Deg 647 
group experienced contingency decrease during the Degradation phase. In the Degradation phase, Odor A 648 
still delivers water reward with 75% probability, and Odor B remains unrewarded. The difference was the 649 
introduction of uncued rewards (9 µL water) in 75% of background trials to diminish the contingency. 650 
Animals underwent 5 sessions, each with 100-160 trials, to adapt their conditioned and neural responses 651 
to the new contingency. Degradation changed the cue value relative to the background trial but did not 652 
impact the reward identity, reward magnitude, or delay to/probability of expected reward. 653 

The CuedRew group was included to account for potential satiety effects due to the extra rewards the Deg 654 
group mice received in the background trials. Unlike the Deg group, the CuedRew group's background 655 
trials were substituted with rewarded Odor C trials, where mice received additional rewards signaled by a 656 
distinct odor (Odor C).  Rewarded odor C trials have the same trial structure as the rewarded odor A trials 657 
and animals were given 5 sessions, with 100-160 trials each, to adapt their conditioned response and 658 
neural responses to this manipulation. 659 

The Cond group proceeded with an additional five Conditioning sessions, keeping the trial structure and 660 
parameters unchanged as in the Conditioning phase. 661 

Post-degradation: eight mice were randomly chosen from the Deg group for the reinstatement phase, 662 
replicating the initial Conditioning conditions. After three reinstatement sessions, once the animals' 663 
performance rebounded to pre-degradation levels, we initiated the extinction process. This involved the 664 
delivery of both odors A and B without rewards, effectively extinguishing the cue-reward pairing. To 665 
mitigate the likelihood of animals generating a new state to account for the sudden reward absence, a 666 
shorter reinstatement session was conducted prior to the Extinction session on the extinction day. 667 
Extinction was conducted over three days, each day featuring 100-160 trials. After Extinction, a second 668 
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reinstatement session was implemented, re-introducing the 75% reward contingency for odor A. All eight 669 
animals resumed anticipatory licking within ten trials during this reinstatement. 670 

 671 

Fiber photometry 672 

Fiber photometry allows for recording of the activity of genetically defined neural populations in mice by 673 
expressing a genetically encoded calcium indicator and chronically implanting optic fiber(s). The fiber 674 
photometry experiment was performed using a bundle-imaging fiber photometry setup 675 
(BFMC6_LED(410-420)_LED(460-490)_CAM(500-550)_LED(555-570)_CAM(580-680)_FC, Doric 676 
Lenses) that collected the fluorescence from a flexible optic fiber bundle (HDP(19)_200/245/LWMJ-677 
0.37_2.0m_FCM-HDC(19), Doric Lenses) connected to a custom multifiber cannula containing 6 fibers 678 
with 200-μm core diameter implanted during surgery. This system allowed chronic, stable, minimally 679 
disruptive access to deep brain regions by imaging the top of the patch cord fiber bundle that was attached 680 
to the implant. Interleaved delivery 473 nm excitation light and 405 nm isosbestic light (using LEDs from 681 
Doric Lenses) allows for independent collection of calcium-bound and calcium-free GCaMP fluorescence 682 
emission in two CMOS cameras. The effective acquisition rate for GCaMP and isosbestic emissions was 683 
20Hz. The signal was recorded during each session when the animals were performing the task. 684 
Recording sites which had weak or no viral expression or signal were excluded from analysis. 685 

The global change of signals within a session was corrected by a linear fitting of dopamine signals 686 
(473nm channel) using signals in the isosbestic channel during ITI and subtracting the fitted line from 687 
dopamine signals in the whole session. The baseline activity for each trial (F0 each) was calculated by 688 
averaging activity in the pre-stimulus period between -2 to 0 seconds before an odor onset for odor trials 689 
or water onset for uncued reward trials. Z-score was calculated as (F − F0 each)/STD_ITI with STD_ITI the 690 
standard deviation of the signal during the ITI. 691 

To quantify Odor A responses, we looked for ‘peak responses’ by finding the point with the maximum 692 
absolute value during the 1-s window following the stimulus onset in each trial. To quantify Odor B 693 
responses, we measured area under curve by summing the value during the 250 ms to 1s window 694 
following the stimulus onset in each trial. This is to separate out the initial activation (odor response) that 695 
we consistently observed, and which may carry salience or surprise information independent of value. To 696 
quantify reward responses, we looked for ‘peak responses’ by finding the point with the maximum 697 
absolute value during the 1-s window following the reward onset in each trial. To quantify reward 698 
omission responses, we looked for area under curve by summing the value during the 0-1.5s window 699 
following the reward omission in each trial. 700 

 701 

Histology 702 

To verify the optical fiber placement and GCaMP expression, mice were deeply anesthetized with an 703 
overdose of ketamine-medetomidine, and perfused transcardially with 0.9% saline followed by 4% 704 
paraformaldehyde (PFA) in PBS at the end of all experiments. Brains were removed from the skull and 705 
stored in PFA overnight followed by 0.9% saline for 48 hours. Coronal sections were cut using a 706 
vibratome (Leica VT1000S). Brain sections were imaged using fluorescent microscopy (AxioScan slide 707 
scanner, Zeiss) to confirm GCaMP expression and the location of fiber tips. Brain section images were 708 
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matched and overlaid with the Paxinos and Franklin Mouse Brain Atlas cross-sections to identify imaging 709 
location. 710 

 711 

Computational Modeling 712 

Simulated Experiments 713 

To compare the various models, we generated 25 simulated experiments of Cond, Deg and CuedRew 714 
groups, matching trial statistics to the experimental settings, but increasing the number of trials to 4,000 715 
in each phase to allow to test for steady-state response in both these TD simulations and the ANCCR 716 
simulations. We then calculated the state representation of the simulated experiments for each of four 717 
state representations (CSC with and without ITI states, Context-TD, Belief-State model, detailed below) 718 
and ran the TD learning algorithm with no eligibility trace, called TD(0), using these state representations 719 
(Fig. 3a). While TD(0) has a learning rate parameter (𝛼), it did not influence the steady-state results, 720 
which are presented, and thus the only parameter which influenced the result was 𝛾, the temporal discount 721 
factor, set to 0.925 for all simulations using a timestep of Δt = 0.2s (Extended Data Fig. 4 shows the 𝛾 722 
parameter search space). Code for generating the simulated experiments and implementing the 723 
simulations can be found at: https://github.com/mhburrell/Qian-Burrell-2024 724 

CSC-TD model with and without ITI states 725 

We initially simulated the Conditioning, Degradation, and Cued Reward experimental conditions using 726 
the CSC-TD model, adapted from Schultz et al.25. The cue length was fixed at 1 unit of time, with time 727 
unit size set to 0.2 s, and the ISI was matched to experimental parameters at 3.5 s. Simulated cue and 728 
reward frequencies were matched to experimental parameters, separately simulating Conditioning then 729 
Degradation and Conditioning then Cued Reward. In complete serial compound, also known as tapped-730 
delay line, each cue results in a cascade of discrete substates that completely tile the ISI. TD error and 731 
value were then modelled using a standard TD(0) implementation21, using 𝛼 = 0.1, 𝛾 = 0.925. Reported 732 
values are the average of the last 200 instances averaged for 25 simulations. The model was run with 733 
states tiling the ISI only (CSC) or tiling the ISI and ITI until the next cue presentation (CSC with ITI 734 
states). 735 

Context-TD model 736 

The Context-TD model, which is an extension of the CSC-TD model, includes context as an additional 737 
cue, but otherwise identical to the CSC simulations. For each phase (Conditioning, Degradation, Cued 738 
Reward) a separate context state was active for the entire phase, including the ISI and ITI. This 739 
corresponds to the additive Cue-Context model previously described16,17,19. TD errors reported are the 740 
average of the last 200 instances averaged for 25 simulations, except for Extinction which corresponded 741 
to third day of training.  742 

Belief-State model 743 

We simulated the TD error signaling in all four conditions (Conditioning, Degradation, Cued Reward, 744 
Extinction) using a previously described belief-state TD model50. For comparison to the CSC based 745 
models described above, we had a total of 19 states, 17 capturing the ISI substates (3.5s in 0.2s 746 
increments, as in the CSC model). State 18 we termed the ‘Wait’ state and state 19 the ‘pre-transition’ or 747 
‘pre’ state. In the Belief-State model it is assumed the animal has learned a state transition distribution. 748 
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We computed the transition matrix by labelling the simulated experiments with state, labelling the fixed 749 
post-US period as the Wait state and the variable ITI as the Pre state and then empirically calculating the 750 
transition matrix for that simulation. While the post-US and variable ITI periods were used to estimate the 751 
rate of transition between the Wait and Pre states, because we assumed a fixed probability of transition, 752 
these should not be considered identical – rather the implicit assumption in modeling with a fixed 753 
probability is that the time in the Wait state is a geometric random variable.   754 

The belief-state model also assumes that the animal has learned a probability of distributions given the 755 
current state, encoded in an observation matrix. In our implementation there are five possible 756 
observations: Odor A, B, C, reward and null (no event). Like the transition matrix, the observation matrix 757 
was calculated empirically from the simulated experiments. Fig 3b represents schematically the state-758 
space of the Belief-State model:Odor A (and C in Cued Reward) are observed when transitioning from 759 
Pre to the first ISI state; reward is observed in transition from the last ISI state to Wait, Odor B (and 760 
reward in Deg) are observed when transitioning from Pre to Wait. We did not consider how the details of 761 
how the transition and observation matrices may be learnt on a trial-by-trial basis as the steady-state TD 762 
errors are not dependent on this implementation. As for the other models, the TD errors reported are the 763 
average of the last 200 instances averaged over 25 simulations, except for Extinction which corresponded 764 
to the third day of training.  765 

A relative value metric was used as a potential explanation of the decrease in licking during the ISI in the 766 
Degradation condition (Extended Data Fig 5). Relative value at time t was computed as value at time t (as 767 
defined and simulated by the Belief-State TD model) divided by the total value of the entire session, 768 
multiplied by the total number of rewards in a session.  769 

 770 

RNN Modeling 771 

We implemented value-RNNs, as described previously55, to model the responses in the three conditions 772 
(Conditioning, Degradation, Cued Reward). Briefly, simulated tasks were generated to match 773 
experimental parameters using a time step of 0.5s. We then trained recurrent network models, in PyTorch, 774 
to estimate value. Each value-RNN consisted of between 5 and 50 GRU cells, followed by a linear 775 
readout of value. The hidden unit activity, taken to be the RNN’s state representation, can be written as 776 
𝑧𝑡 = 𝑓𝜙(𝑜𝑡 , 𝑧𝑡−1) given parameters ϕ. The RNN’s output was the value estimate 𝑉𝑡 =  𝑤⊤𝑧𝑡 +  𝑤0, for 777 

𝑧𝑡 , 𝑤 ∈  ℝ𝐻 (where H is the number of hidden units) and 𝑉𝑡, 𝑤0 ∈  ℝ. The full parameter vector 𝜃 =778 
 [𝜙 𝑤 𝑤0]was learned using TD learning. This involved backpropagating the gradient of the squared error 779 

loss 𝛿𝑡
2 =  (𝑟𝑡  +  𝛾𝑉𝑡+1 – 𝑉𝑡)2 with respect to 𝑉𝑡 on episodes composed of 20 concatenated trials. The 780 

timestep size was 0.5 s and γ was 0.83 to match the 0.925 for 0.2 s timesteps used in the TD simulations, 781 
such that both had a discount rate of 0.67 per second.  782 

Prior t o training, the weights and biases were initialized with the PyTorch default. To replicate the actual 783 
training process, we initially trained the RNNs on the Cond simulations, then on either the Degradation or 784 
Cued Reward conditions (Fig 6b). Training  on the Cond simulations for 300 epochs on a session of 785 
10,000 trials, with a batch size of 12 episodes. Parameter updates used Adam with an initial learning rate 786 
of 0.001. To replicate the actual training process, we initially trained the RNNs on the Cond simulations, 787 
then on either the Degradation or Cued Reward conditions (Fig 6b). To simulate animals’ internal timing 788 
uncertainty, the reward timing was jittered 0.5 seconds on a random selection of trials. The model 789 
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summary plots (Fig 6c, Extended Data Fig 6) presents mean RPE for each event. Exemplar trials shown 790 
in Fig 6 have the jitter removed for display purposes.  791 

To visualize the state space used, we performed a two-step canonical correlation analysis process 792 
adapting methods used to identify long-term representation stability in the cortex74.  Briefly, in each 793 
condition, we applied principal component analysis (PCA) to identify the principal components (PCs) that 794 
explained 80% of the variance (mean number of components = 4.26), then used CCA (Python package 795 
pyrcca) to project the PCs into a single space for all conditions. CCA finds linear combinations of each of 796 
the PCs that maximally correlate – allowing us to identify hidden units encoding the same information in 797 
the different RNNs. We then used the combination of PCA and CCA to create a map from hidden unit 798 
activity to a common state. 799 

We measured belief 𝑅2 as previously described55. For each simulation, we calculated the beliefs from the 800 
observations of cues and rewards. We then used multivariate linear regression to decode these beliefs 801 
from hidden unit activity. To evaluate model fit, calculate the total variance explained as: 𝑅2 = 1 −802 
𝑉𝑎𝑟(𝐵−𝐵𝑒𝑠𝑡)

𝑉𝑎𝑟(𝐵)
 ,where 𝐵𝑒𝑠𝑡 is the estimate from the regression and 𝑉𝑎𝑟(𝑋) =

1

𝑇
∑ ‖𝑥𝑡 − �̅�‖2𝑇

𝑡=1 . 803 

 804 

ANCCR model 805 

The ANCCR model is a recent alternative explanation of dopamine function31. While two previous 806 
studies have tested contingency degradation with ANCCR, they did not include the cued-reward controls. 807 
We implemented the ANCCR model using the code provided on the repository site 808 
(https://github.com/namboodirilab/ANCCR) and matching the simulation parameters to the experiment. 809 
We used the set of parameter values used in the previous studies, trying both Jeong et al., (2022) and Garr 810 
et al. (2023). The total parameter space searched was: T ratio = 0.2-2, α = 0.01-0.3, k = 0.01-1 or 1/(mean 811 
inter-reward interval), w =0-1, threshold = 0.1-0.7, αR = 0.1-0.3.  The presented results use the 812 
parameters from Garr et al. (2023), as they were a better fit (T ratio = 1, α = 0.2, k = 0.01, w = 0.4, 813 
threshold = 0.7, αR = 0.1). Additionally, we varied the weight of prospective and retrospective processes 814 
(w) to examine whether the data can be explained better by choosing a specific weight. Data presented are 815 
the last 200 instances averaged for the same 25 simulations used in the TD simulations. 816 

 817 

Outcome Specific Degradation Modeling 818 

To model outcome-specific degradation we adapted both our Belief-State model and RNN models. For 819 
the Belief-State, we estimated the transition and observation matrix for the experiments described in Garr 820 
et al., 2023 (depicted in Extended Data Fig 8a) as described for our experiment, using a time step of 1s. 821 
As there were two rewarded trial types, we had representations of two ISI periods (termed ISI 1 and ISI 2, 822 
depicted in Extended Data Fig 8). The model was initially trained on the liquid reward (setting r =1 when 823 
observing liquid reward, r=0 when observing food reward) and the average TD error calculated for each 824 
trial type. We then trained on only the food reward. The total TD error was calculated as the absolute 825 
difference between the TD error on each reward type. 826 

For the RNN models, we similarly adjusted the timestep to 1s and trained on simulated experiments to 827 
match the experimental parameters. Rather than training separately, the model was trained on both 828 
simultaneously, training to produce an estimate of the value of the liquid reward and an estimate of the 829 
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food reward, then using the 2-dimensional vector TD error to train the model. This ensures a single state 830 
space is used to solve for both reward types. Total TD error was calculated as the absolute difference on 831 
each reward type post-hoc. 832 

 833 

Statistical analysis 834 

Data analysis was performed using third party packages (e.g. Scipy, Statsmodel, etc.) in Python. All code 835 
used for analysis is available on request. Our behavioral data and dopamine response data have passed the 836 
normality test. For statistical comparisons of the mean, we used Student’s t-test with a significance 837 
threshold of 0.05, adjusted with the Bonferroni correction. We used Welch’s test for dopamine response 838 
to various events due to inequal variance between groups. Paired t-tests were conducted when the same 839 
mouse’s performance was being compared across two different sessions. No statistical methods were used 840 
to predetermine sample sizes, but our sample sizes are similar to those reported in previous publications. 841 
The assumptions of the t-test were tested using the Shapiro-Wilk test to check for normality and Levene’s 842 
test to check for equal variance.  843 
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Material availability.  844 

 845 

Data availability. The behavioral and fluorometry data will be shared at a public deposit source.  846 

 847 

Code availability. The model code will be attached as Supplementary Data. All other conventional codes 848 
used to obtain the results will be available from a public deposit source.  849 
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   1042 

 1043 

Figure 1 | Dynamic changes in lick response to olfactory cues across different phases of Pavlovian contingency 1044 
learning task.  1045 

(a)  Experimental design. Three groups of mice subjected to four unique conditions of contingency learning. All 1046 
animals underwent Phases 1 and 2. Deg group additionally underwent Phases 3-5.  1047 

(b)  Trial timing. 1048 

(c)  Trial parameters per condition. In Conditioning, Degradation and Cued Reward, Odor A predicts 75% chance of 1049 
reward (9 µL water) delivery, Odor B indicates no reward. In Degradation, blank trials were replaced with 1050 
uncued rewards (75% reward probability). In Cued Reward, these additional rewards were cued by Odor C. In 1051 
Extinction, no rewards were delivered. 1052 

(d)  PSTH of average licking response of mice in three groups to the onset of Odor A and Odor B from the last 1053 
session of Phase 1 (session 5) and Phase 2 (session 10). Shaded area is standard error of the mean (SEM). 1054 
Notably, the decreased licking response during ISI and increased during ITI in Deg group. (green, Cond group, 1055 
n = 6; orange, Deg group, n = 11; purple, CuedRew group, n = 12 mice).  1056 

(e)  Average lick rate in 3s post-cue (Odor A or B) by session. Error bars represent SEM.  1057 

(f)  Average lick rate in 3s post Odor A in final session of each condition. Asterisks denote statistical significance: 1058 
ns, P > 0.05; **, P < 0.01, Student's t-test, indicating a significant change in licking behavior to Odor A in Deg 1059 
group across sessions. 1060 
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 1064 

Figure 2 | Dopamine axonal activity recordings show different responses to rewarding cues in Degradation 1065 
and Cued Reward conditions 1066 

(a) Configuration of multifiber photometry recordings. Coronal section from one DAT::cre x Ai148 mouse showing 1067 
tracts for multiple fibers in the VS. Data recorded from lNAc is used in the following analysis. lNAc, Lateral 1068 
nucleus accumbens; mNAc, Medial NAc; a lot, anterior lateral olfactory tubercle; plot, posterior lateral OT; 1069 
amOT, anterior medial OT; pmOT, posterior medial OT. 1070 

(b) Heatmap from two example mice (mouse 1, left two panels, mouse 2, right panel) illustrating the z-scored 1071 
dopamine axonal signals in Odor A rewarded trials (rows), aligned to the onset of Odor A for three conditions. 1072 

(c) Population average z-scored dopamine axonal signals in response to Odor A and water delivery. Shaded areas 1073 
represent SEM. 1074 

(d) Mean peak dopamine axonal signal (z-scored) of Odor A response by sessions for the Deg group (orange) and 1075 
the CuedRew group (purple). Error bars are SEM. *, P < 0.05; ***, P < 0.001, Welch's t-test. 1076 

(e) Mean peak dopamine axonal signal (z-scored) for the last session in Phase 1 (Conditioning) and 2 (Degradation 1077 
and Cued Reward) for both Deg and CuedRew groups. Error bars represent SEM. ns, P >0.05; ***, P < 0.001, 1078 
Welch's t-test. 1079 
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  1081 

Figure 3 | TD learning models can explain dopamine responses in contingency degradation with appropriate 1082 
ITI representation. 1083 

(a) Temporal Difference Zero, TD(0), model – The state representation determines value. The difference in value 1084 
between the current and gamma-discounted future state plus the reward determines the reward prediction error 1085 
or dopamine. This error drives updates in the weights. 1086 

(b) Belief-State Model: After the ISI, the animal is in the Wait state, transitioning to the pre-transition (‘Pre’) state 1087 
with fixed probability p. Animal only leaves Pre state following the observation of odor or reward.  1088 

(c) State representations: from the left, Complete Serial Compound (CSC) with no ITI representation, CSC with ITI 1089 
states, Cue-Context model and the Belief-State model. 1090 

(d) Value in Odor A trials of each state representation using TD(0) for Conditioning and Degradation conditions 1091 

(e) TD error is the difference in value plus the reward. 1092 

(f) Mean normalized TD error of Odor A response from 25 simulated experiments. Error bars are SD. 1093 
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  1095 

 1096 

Figure 4 | Belief-State model, but not Cue-Context model, explains variance in behavior and dopamine 1097 
responses. 1098 

(a) Cue-Context model and Belief-State model differ in their representation of the ITI. 1099 

(b) Odor B predicts no reward and at least 10 s before the start of the next trial. 1100 

(c) Odor B induces a reduction in licking, particularly in the Degradation condition, which matches the pattern of 1101 
value in the Belief-State model better than the Cue-Context model. 1102 

(d) Quantified licks (top) from experimental data in early (3.5-5s) and late (7-8s) post cue period. Error bars are 1103 
SEM, *, P < 0.05, paired t-test. Value from Cue-Context and Belief-State model for the same time period, error 1104 
bars are SD.  1105 

(e) If licking is taken as a readout of value, then ITI licking should be inversely correlated with dopamine.  1106 

(f) Per animal linear regression of Odor A dopamine response (z-score axonal calcium) on lick rate in 2s before cue 1107 
delivery.  1108 

(g) Summarized slope coefficients from experimental data (left) and models (right). Boxplot shows median and 1109 
IQR, one sample t-test. 1110 
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   1112 

Figure 5 | Belief-State model’s predictions recapitulate additional experimental data 1113 

(a) Plots averaged from one representative simulation of Odor A rewarded trial (n = 4,000 simulated trials) for four 1114 
distinct conditions using the Belief-State model. Graphs are for the corresponding value function (left) and TD 1115 
error (right) of cue response for Odor A rewarded trials.  1116 

(b) Signals from dopamine axons (mean) across multiple sessions of each condition (left). Mean peak dopamine 1117 
axonal calcium signal (z-scored) for the first to last session in Phase 2 for four contingency conditions (right). 1118 
Error bars represent SEM. ns, P >0.05; **, P < 0.01, Student's paired t-test. The Belief-State model captures the 1119 
modulation of Odor A dopamine response in all conditions. 1120 

(c) Degradation, Cued Reward and Extinction conditions differ in how their ITI and ISI values change compared to 1121 
Conditioning phase. 1122 
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(d) Mean peak TD error by Belief-State model and dopamine axonal signal (z-scored) to Odor A for four distinct 1123 
conditions. Error bars represent SEM. ns, P > 0.05; *, P < 0.05; ***, P < 0.001, Welch's t-test. The model’s 1124 
prediction captured well the pattern in the dopamine data. 1125 

(e) Averaged traces from a representative simulation of Odor B trial (n = 4,000 simulated trials) across four distinct 1126 
conditions using the Belief-State model. Graphs are for the value function and TD errors of cue response for 1127 
Odor B trials.  1128 

(f) Z-scored dopamine axonal signals to Odor B quantified from the red shaded area to quantify the later response 1129 
only. Bar graph (left) shows mean z-scored Odor B AUC from 0.25s-1s response from the last session of each 1130 
condition. Error bars are SEM. * P < 0.05; ***, P < 0.001, Welch’s t-test. Line graph (right) shows mean z-1131 
scored AUC over multiple sessions for each condition. Statistical analysis was performed on data from the first 1132 
and last sessions of these conditions. Error bars are SEM. 1133 

 1134 

 1135 

 1136 

 1137 

 1138 

 1139 

 1140 
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 1141 

 1142 

Figure 6 | Value-RNNs recapitulate experimental results using state-spaces akin to hand-crafted Belief-State 1143 
model 1144 

(a) The Value-RNN replaces the hand-crafted state space representation with an RNN that is trained only on the 1145 
observations of cues and rewards. The TD error is used to train the network. 1146 

(b) RNNs were initially trained on simulated Conditioning experiments, before being retrained on either 1147 
Degradation or Cued Reward conditions.  1148 

(c) The predictions of the RNN models (mean, error bars: SD) closely match the experimental results. 1149 
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(d) Example value, TD error, and corresponding average experimental data from a single RNN simulation. Notably, 1150 
decreased Odor A response is explained by increased value in the pre-cue period. 1151 

(e) Hidden neuron activity projected into 3D space using CCA from the same RNNs used in (d). The Odor A ISI 1152 
representation is similar in each of the three conditions, and similar to the Odor C representation. Odor B 1153 
representation is significantly changed in the Degradation condition. 1154 

(f) Correspondence between RNN state space and Belief-State model. A linear decoder was trained to predict 1155 
beliefs using RNN hidden unit activity. With increasing hidden layer size, the RNN becomes increasingly 1156 
belief-like. The improved performance of the decoder for the Degradation condition is explained by better 1157 
decoding of the Wait state. Better Wait state decoding is explained by altered ITI representation: 1158 

(g) Same RNNs as in (d) and (e), hidden unit activity projected into state-space as (e) for the ITI period only 1159 
reveals ITI representation is significantly different in the Degradation case. 1160 

 1161 

  1162 
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  1163 

Figure 7 | ANCCR does not explain the experimental results: 1164 

(a) Simplified representation of ANCCR model. Notably the first step is to estimate retrospective contingency 1165 
using eligibility traces. 1166 

(b) Simulations of the same virtual experiments used in Figure 3 using ANCCR, using the parameters in Garr et al., 1167 
2023 varying the prospective-retrospective weighting parameter (w). Error bars are SD. In all cases the 1168 
predicted odor A response is similar in the Degradation and Cued Reward conditions. 1169 

(c) No parameter combination explains the experimental result. Searching 21,000 parameter combinations across 1170 
six parameters (T ratio = 0.2-2, α = 0.01-0.3, k = 0.01-1 or 1/(mean inter-reward interval), w =0-1, 1171 
threshold = 0.1-0.7, αR = 0.1-0.3). Experimental result plotted as a star. Previously used parameters (Garr et 1172 
al., 2023 as 1, Jeong et al., 2022 as 2 and 3) indicated. Dots are colored by the prospective-retrospective 1173 
weighting parameter (w), which has a strong effect on the magnitude of Phase 2 response relative to Phase 1. 1174 

(d) As the contingency is calculated as the first step, and the contingencies are similar in Degradation and Cued 1175 
Reward conditions, there is little difference in the retrospective contingency representation between the two 1176 
conditions, explaining why regardless of parameter choice ANCCR predicts similar responses.  1177 

  1178 
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Extended Data Figures 1179 

 1180 

Extended Data Fig. 1 | Population Average Behavior per session 1181 

(a, b, c, d) Bar graphs comparing the average number of licks to Odor A during the first 3s post-stimulus (a) and during 1182 
ITI (b), latency to lick (c), and fraction correct (d) in the final sessions of phase 1 and phase 2 for Deg, Cond, and 1183 
CuedRew groups. Error bars represent SEM. Asterisks denote statistical significance: ns p > 0.05, **p < 0.01, 1184 
paired Student's t-test 1185 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578961doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578961
http://creativecommons.org/licenses/by-nc/4.0/


 

41 
 

(e)  Session-wise variation in anticipatory licking for Odor A trials, broken down into early, middle, and late blocks, 1186 
for all groups. 1187 

(f, g, h). Line graphs showing the average number of licks to Odor A (colored) during ITI (g), latency to lick after 1188 
Odor A and fraction correct in Odor A trials for each session in the Conditioning, Degradation, and Cued Reward 1189 
phase (Deg group – orange, n = 11; Cond group – green, n = 6; CuedRew – purple, n=12 mice).  1190 

(i)  Anticipatory licking rate in Odor A trials (colored) and in Odor B trials (grey) across multiple phases: Conditioning 1191 
(Phase I), Degradation (Phase II), Recovery (Phase III), Extinction (Phase IV), and post-Extinction Recovery 1192 
(Phase V). 1193 

(j)  Anticipatory licking to Odor C develops quickly compared to Odor A, potentially reflecting generalization. 1194 
(k, l)  PSTH showing the average licking response of mice in Deg group (k) and CuedRew group (l) to the various 1195 

events. The response is time-locked to the odor presentation (time 0). The shaded area indicates the standard error 1196 
of the mean (SEM).  1197 
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Extended Data Fig. 2 | Dopamine responses are highly correlated across recording sites 1199 

(a)  Averaged dopamine axonal responses to Odor A during rewarded trials for both Deg group and CuedRew group, 1200 
depicted for Phase I session 5 and Phase II session 10 across all recorded sites.  1201 

(b)  Correlation matrix for averaged dopamine responses to Odor A during rewarded trials, comparing across sites 1202 
from the Deg groups during sessions 5 and 10. Cosine similarity was calculated by averaging z-scored 1203 
responses across trials within animals, then across animals and then computing the cosine similarity between 1204 
each recording site.  1205 

(c)  Population average dopamine responses to Odor A in rewarded trials across sessions 1 to 10 for both Deg and 1206 
CuedRew groups, detailing the changes in response through Phase I and Phase II.  1207 

 1208 
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Extended Data Fig. 3 | Population Average Dopamine Response per session 1210 

(a) Mean peak dopamine axonal signal (z-scored) of cue response (orange) and reward response (cyan) in Odor A 1211 
rewarded trial by sessions for the Deg group across multiple phases: Conditioning (Phase I), Degradation (Phase 1212 
II), Recovery (Phase III), Extinction (Phase IV), and post-Extinction Recovery (Phase V). Error bars are SEM.  1213 

(b) Mean peak dopamine axonal signal (z-scored) of reward response in Odor A trials by sessions for the Deg group 1214 
(orange) and the CuedRew group (purple). Error bars are SEM. ns P < 0.05, **P < 0.001, Student's t-test . 1215 

(c) Mean peak dopamine axonal signal (z-scored) for the last session in Phase 1 and 2 for both Deg and CuedRew 1216 
groups. Error bars represent SEM. ns, P >0.05; ***, P < 0.001, paired t-test. 1217 

(d, e, f) Mean peak dopamine axonal signal (z-scored) across sessions for four distinct conditions, represented for 1218 
various events.  1219 

(g) Response to Odor C (rewarded) and (h) Odor C (omission), population average per session 1220 
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 1222 

 1223 

Extended Data Fig. 4 | Discount Factor determines modeled contingency degradation effect size 1224 

Influence of discount factor (γ) on relative predicted odor A response relative to Conditioning (a) or absolute (b), 1225 
where reward size = 1 for four models presented in Figure 3. Bottom right scale showing discount factor converted to 1226 
step size (0.2s), other axes use per second discount. Tested range: 0.5-0.975 discount per 0.2s in 0.025 steps.  1227 

 1228 
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 1229 

Extended Data Fig. 5 | Relative value explains decreased anticipatory licking during ISI during contingency 1230 
degradation 1231 

 1232 

(a) If each lick carries a small, fixed effort cost, a rational agent will lick proportionally to the total amount 1233 
of rewards75,76. Plot show mean non-consummatory lick rate normalized to the Conditioning phase, suggesting 1234 
that the Degradation and Cued Reward conditions elicit approximately twice the lick rate of the Conditioning 1235 
condition, and thus proportional to the total reward quantity. Consummatory licks were considered any licks 1236 
occuring in the 2 seconds following reward delivery.  1237 

(b) Summary of lick rate changes relative to the Conditioning phase during the pre-odor period  and the inter-stimulus 1238 
interval (ISI).  1239 

(c) Average relative value (current value/session total value, scaled by total reward) during odor A trial derived from 1240 
the Belief-State model. Relative value, which is increased in the pre-odor period and thus decreased during the 1241 
ISI, accounts for the change in licking pattern during unrewarded (and thus without consummatory licks) odor A 1242 
trials. 1243 

(d) Experimental data showing the actual lick rates recorded during Odor A unrewarded trials, compared over time, 1244 
which aligns with the assumptions and predictions made in a,b, and c. 1245 
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 1246 

Extended Data Fig. 6 | Comparison of reward and omission responses between experimental data, Belief-State 1247 
model and value-RNN predictions 1248 
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(a) Plots averaged from one representative simulation of Odor A rewarded trial (n = 4,000 simulated trials) for four 1249 
distinct conditions using the Belief-State model. Graphs are for the corresponding value function of Odor A 1250 
rewarded trials, with Pre state, ISI state and Wait state annotated. 1251 

(b) Z-scored DA axonal signals to reward omission and predicted reward following Odor A quantified from the red 1252 
shaded area. Line graphs (right) shows mean z-scored response over multiple sessions for each condition. 1253 
Statistical analysis was performed on data from the first and last session of these conditions. Error bars are 1254 
SEM. ns, P > 0.05; **, P < 0.01, paired t-test. 1255 

(c) The predictions of the Belief-State model for reward omission and predicted reward (mean, error bars: SD). 1256 

(d) The experimental data for reward omission and predicted reward (mean, error bars: SEM). ns, P > 0.05; **, P < 1257 
0.01; ***, P < 0.001, Welch’s  t-test. 1258 

(e) The predictions of the Value-RNN models for reward omission and predicted reward (mean, error bars: SD). 1259 

(f) The experimental data, TD error prediction by Belief-State model and Value-RNN model for uncued reward 1260 
response in Degradation condition. While the Belief-State model captured the downward trend in response 1261 
magnitude, none of the three statistical tests showed significant changes. 1262 

 1263 
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 1265 

 1266 

Extended Data Fig. 7 | Methodology for visualizing state space from hidden unit activity 1267 

Illustration for visualizing common state space of RNN models. RNN hidden unit activity was first projected into 1268 
principal component space, then canonical correlation analysis was used to align between different conditions.  1269 
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 1271 

Extended Data Fig. 8 | Outcome-specific contingency degradation explained by Belief-State model and Value-1272 
RNN model. 1273 

(a) Experimental design of Garr et al., two cues predicted either a liquid or food reward. During degradation, every 1274 
20 s the liquid reward was delivered with 50% probability. The ITI length was drawn from an exponential 1275 
distribution with mean of 4 minutes.  1276 

(b) Belief-State model design. The Belief-State model was extended to include a second series of ISI substates to 1277 
reflect the two types of rewarded trials. The model was then independently trained on the liquid reward and food 1278 
reward. 1279 

(c) The value-RNN model design – as (b) but replacing the Belief-State model with the value-RNN, using a vector-1280 
valued RPE as feedback, with each channel reflecting one of the reward types.  1281 

(d-f) Summary of predicted RPE responses from Belief-State Model and Value-RNN (vRNN). The RPE was 1282 
calculated as the absolute difference between the liquid RPE and food RPE. Other readout functions (e.g. weighted 1283 
sum) produce similar results. Both model predictions match experimental results with degraded (D) cue (panel d) 1284 
and degraded reward (e) having a reduced dopamine response versus non-degraded (ND). Furthermore, average 1285 
RPE during ISI (3 seconds after cue on) and ITI (3 seconds before ITI) capture measured experimental trend. 1286 
Error bars are SEM. 1287 

 1288 

  1289 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 6, 2024. ; https://doi.org/10.1101/2024.02.05.578961doi: bioRxiv preprint 

https://doi.org/10.1101/2024.02.05.578961
http://creativecommons.org/licenses/by-nc/4.0/


 

52 
 

Extended Data Video 1: State Space trajectories 1290 

Animation of trajectories in CCA space from RNN presented Figure 6e. In sequence, trajectories showing Odor A 1291 
(rewarded), Odor A (unrewarded), Odor A (Rewarded and Unrewarded), Odor B and then all at once for the three 1292 
conditions. Real time speed multiple indicated top right. ITI length is extended from training/actual experiment to 1293 
demonstrate the return to original (‘Pre’) state in Conditioning and Cued Reward but the delayed return in Degradation 1294 
condition.  1295 
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