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ABSTRACT Reinforcement-learning theories provide a nor-
mative perspective on learning and decision-making. In the
1990s, neurophysiology experiments revealed an exceptional
correspondence between the activity of midbrain dopamine
neurons and the reward prediction error (RPE) signal used to
train computers in a reinforcement-learning algorithm called
temporal difference (TD) learning. Studies of midbrain dopa-
mine neurons play a pivotal role at the interface of empirical
and theoretical studies. A theoretical framework for reinforce-
ment learning has facilitated the interpretation of neuro-
physiology data and has guided the design of future studies.
Here we discuss recent developments in the interplay between
experimental findings and theories of dopamine signaling.
In particular, recent studies emphasize the importance of state
uncertainty in the neurobiological implementation of rein-
forcement learning.

An inexperienced shopper brings home a variegated
bag of plums. After finding that the green and red plums
are sour and the darker plums are sweet, she develops
an eye for deep purple plums. She selects only ripe plums
during future grocery trips. Animals learn to predict the
value of outcomes in order to adapt successfully to their
environments. The process of trial and error—and,
crucially, learning from errors—reinforces the pairing
of value with otherwise neutral sensory stimuli.

This chapter covers models and neural mechanisms
of reinforcement learning. We will focus on the mid-
brain dopaminergic system, thought to be at the center
of reinforcement learning in the mammalian brain.
Research on the dopamine system occupies a unique
space at the interface of empirical and theoretical stud-
ies. A theoretical framework for reinforcement learning
provides twofold utility: it has aided in the interpreta-
tion of neurophysiology data and guides the design of
future studies. In this spirit, we will frame this chapter
using these normative models.
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Pioneering Models and Neural Correlates
of Reinforcement Learning

Certain outcomes (unconditioned stimuli, or US) trigger
a biological response in the absence of learning, such
as salivation accompanying a bite of tasty food. During
Pavlovian conditioning, animals learn to predict a US,
following a neutral sensory stimulus that does not evoke
an automatic biological response (conditioned stimulus, or
CS). Evidence of this prediction is seen in the animal’s
level of conditioned responding. Classical-conditioning
tasks elicit conditioned responding that matches the
automatic reaction to the anticipated US. The level of
conditioned responding is measured during the time
between the CS and US (the interstimulus interval, or ISI)
and gradually increases across trials of learning.

An early theory describing the formation of a CS-US
association (Rescorla & Wagner, 1972) set the change
in associative strength between the CS and the US (Af})
directly proportional to the discrepancy between the
actual US level (V) and the predicted US level (17):

AV =a(V-V) (48.1)

In equation 48.1, ¢ris a constant with a value between
0 and 1 that reflects the animal’s learning rate. Prior to
learning, V is 0. Thus, (V—‘7) is large once an unex-
pected reward is received, driving large changes in 1%
during initial CS-US pairings. As V increases over
trials, smaller incremental changes in V occur on each
subsequent trial. No additional associative strength is
gained unless an existing prediction is violated. The
Rescorla-Wagner model formalized the idea that an
error between the actual and predicted outcome
V- 17) is needed in order to drive learning.

Subsequently, a learning theory was born in com-
puter science (Sutton, 1988; Sutton & Barto, 1990). This
theory, called temporal difference (TD) learning, also
used the discrepancy between actual and expected out-
come to drive learning, similar to the Rescorla-Wagner
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model. The model learns values, formally defined as
the discounted sum of future reward (Sutton & Barto,
1990) associated with each “state” (figure 48.1A):

oo

V(s)= Dy 1(7) (48.2)

7=l
=7(0) + yr(t+ 1) + y2r(t+2) + Y3+ 3) + -

where s,is the state at time ¢, ¢is the current time, 7(7)
is the reward at time 7, and yis a discount factor (0 < y<1)
that down weights future rewards. States represent the
environment, or task space, in a way that is useful to per-
forming the current task and here represent the world
at different moments in time following some observ-
able stimuli (although these may be used in other ways,
as seen later in this chapter). States s, and transitions
between these states, form a Markov process, allowing
equation 48.2 to be written recursively using the Bell-
man equation:

Vis) =r() + Wisi10)- (48.3)
After transitioning from the state t to the state ¢(+1,
the agent obtains new feedback, r(#). Both sides of equa-
tion 48.3 are the predicted value for s—that is, V(st).
Due to the new information (r({)) obtained by taking
the state transition, the right-hand side can be seen as
a more accurate prediction. The discrepancy between
the left-hand side and the right-hand side is called the
TD error because it corresponds to the discrepancy
between the predictions at consecutive time points:

W= 1) +yV(s.)=V(s,), (48.4)

where (/) is the TD error at time . The model then
updates the predicted value for state s, according to the
following update rule:

V(s,) < V(s)+ ad(1), (48.5)

where « is the learning rate. We will illustrate how
TD learning would operate for a CS-US pairing, with a
constant time delay. Before learning, the TD model has
not learned any values. When the model experiences
US (reward) delivery at time ¢ following CS onset, this
produces a positive prediction error (f). This positive
prediction error increases the value associated with the
corresponding state s, resulting in a positive value esti-
mate at time ¢. During the subsequent CS-US pairing,
there is a positive TD error at time ¢— 1 because yf/(sm)
is now positive, producing a positive prediction error
6(t—1) and increasing the value associated with the pre-
vious state s,_,. In this way, the positive prediction errors
propagate back in time over trials, increasing the val-
ues of states that fully tile the ISI, until the only positive
prediction error occurs at the time of the CS (if CS
onset is unpredictable). The TD algorithm eventually
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learns a sustained value estimate that precisely spans
the time between the CS and US (figure 48.1B).

Although TD learning was originally developed for
computer science applications, neurophysiology experi-
ments in the 1990s by Schultz and colleagues revealed an
exceptional correspondence between the error signals
predicted by TD learning and those signaled by mid-
brain dopamine neurons (Bayer & Glimcher, 2005; Hol-
lerman & Schultz, 1998; Mirenowicz & Schultz, 1994;
Schultz, Dayan, & Montague, 1997; figure 48.1B, C). The
authors trained monkeys on a classical-conditioning task
in which a CS was followed by a US, roughly 1 s later.
Before learning, dopamine neurons showed phasic acti-
vation only at the time of the US. After learning, this
phasic dopamine response instead occurred at the time
of the CS, and the signal at the time of the US was much
smaller than before learning. Strikingly, if the US was
unexpectedly omitted, dopamine neurons briefly paused
their tonic firing exactly at the time of the usual US deliv-
ery. These signals, collectively referred to as reward pre-
diction error (RPE), match the error signals proposed by
the TD-learning algorithm (figure 48.1B, C):

(1) Before learning, the only positive TD error 6(z)
is at the time of the US due to positive excitation
from reward r(t).

(2) After learning, the sustained value signal com-
mences following the CS, resulting in a positive TD
error and therefore a positive TD error at CS onset.

(3) After learning, because the sustained value
prediction drops to zero at the time of the pre-
dicted US, the TD error is negative at the time of
the US and cancels out positive excitation from
reward r(¢), resulting in a smaller response at the
time of a predicted reward.

(4) After learning, if the US is not delivered at the
predicted time, the negative TD error is not
canceled out by the arrival of a reward, resulting
in a negative signal.

In these ways, dopamine signals recapitulate TD error
signals. While the Rescorla-Wagner model predicts a
smaller error signal at the time of a predicted US, it
lacks a timing mechanism within a trial and therefore
would not necessarily capture the CS response or the
time-locked negative signal observed on reward omis-
sion with a nonzero CS-US delay.

The idea that dopamine neurons convey TD error
signals has been substantiated by further experiments
in a variety of species, including rats (Flagel et al., 2011;
Hart, Rutledge, Glimcher, & Phillips, 2014; Pan, Schmidt,
Wickens, & Hyland, 2005; Roesch, Calu, & Schoenbaum,
2007; Stuber et al., 2008), mice (Cohen, Haesler, Vong,
Lowell, & Uchida, 2012; Eshel et al., 2015; Eshel, Tian,
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FIGURE 48.1 Temporal difference (TD) learning and dopa-
mine signaling. A, States can be modeled as each correspond-
ing to an arbitrary unit of time. B, Value signal, TD of value
signal, and error signal produced by a simple TD model. C,
Firing pattern of a putative dopaminergic neuron during a
classical-conditioning task. From Schultz, Dayan, and Mon-
tague (1997). D, Neural circuit hypothesis for implementing
TD learning in the brain, using the complete serial com-
pound (CSC) feature representation. Value is computed as
the linear sum of features (each “CSC” component, indexed
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(1998). F, CSC versus microstimulus features. G, Averaged
data from dopamine neurons showed a small dip in the tonic
rate of dopamine firing prior to reward delivery. From Tian
and Uchida (2015). H, Averaged data from dopamine neu-
rons showed a temporally spread dip upon reward omission
that lasted roughly 1 s. From Tian and Uchida (2015).
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Bukwich, & Uchida, 2016; Menegas, Babayan, Uchida,
& Watabe-Uchida, 2017; Parker et al., 2016), and humans
(D’Ardenne, McClure, Nystrom, & Cohen, 2008). Impor-
tantly, recent studies applied optogenetic methods to
unambiguously identify dopamine neurons while
recording both in mice (Cohen et al., 2012; Eshel et al.,
2015, 2016) and in monkeys (Stauffer et al., 2016). Eshel
et al. (2015, 2016) demonstrated that reward expecta-
tion reduces dopamine reward responses in a purely
subtractive fashion, and dopamine neurons in the lat-
eral ventral tegmental area (VTA) exhibit very similar
response properties, indicating that these neurons sig-
nal TD errors homogeneously. The correspondence
between TD errors and dopamine signals supports the
hypothesis that TD learning approximates how rein-
forcement learning is actually implemented in the brain.
This hypothesis is further supported by optogenetic
stimulation experiments, which show that the tempo-
rally precise manipulation of dopamine signaling at the
time of expected outcomes leads to increased behav-
ioral responding to preceding CSs, just as TD learning
would predict (Steinberg et al., 2013).

A classic adaptation of TD learning to a biological
circuit model utilizes a complete serial compound (CSC)
feature representation that tracks elapsed time relative
to observable stimuli (Schultz, Dayan, & Montague,
1997). Each CSC feature x,() is a vector of zeros, except
for a value of 1 at timepoint i relative to cue onset (fig-
ure 48.1B). Each CSC feature can be conceived as rep-
resenting the occupancy of a single state s described in
the example above. x,(f) would have a value of 1 at time
point 1, corresponding to occupancy of state s;. A neu-
ron corresponding to x;(¢) would only fire at time point
1. A population of analogous neurons could show
sequential activations and represent the entire interval
between the CS and US. The value function estimate is
modeled as a linear combination of these features

(figure 48.1D):
V(t)= Ywx,(t), (48.6)

where x(f) represents CSC features, and w;is a predic-
tive weight associated with feature i. The weights are
updated according to the following learning rule:

Aw;= ax,(t) (1), (48.7)
where o is a learning rate (0<a<1), and &(/) is the
prediction error in the value signal. The discrepancy

between actual and predicted value is computed simi-
lar to that above (48.4), according to

S =r@)+yV+1)-V(0), (48.8)

where 7(f) represents reward at time ¢{. The TD error
increases the weights of sequential neural activations
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(modeled as CSC features) such that a downstream area
can compute an accurate value prediction. In line with
this algorithmic hypothesis, other theoretical works
speculated that the cortex conveys the CSC temporal
features into the striatum, where value is computed
(Houk, Adams, & Barto, 1995). By modulating the
weights of corticostriatal synapses, dopamine signals
could plausibly shape the striatal value representation.
The TD-learning model provided a cornerstone for
understanding how reinforcement learning could be
biologically implemented.

Timing in Temporal Difference Models

The CSC TD model captures the exquisite temporal
specificity of dopamine RPEs. First, dopamine neurons
show a negative prediction error exactly at the time of
an expected reward. Second, dopamine responses to
reward are suppressed only at the time of the expected
reward. In a 1998 study, Hollerman and Schultz (1998)
occasionally shifted the timing of reward by just 500 ms
earlier or later than the time of the usual reward deliv-
ery (figure 48.1F). This small temporal jitter evoked a
larger dopamine response than if the reward were deliv-
ered atits usual time. This finding is consistent with the
errors produced by the TD model because the tempo-
ral difference of the value signal is most negative at the
cue-reward delay time that the animal was trained on
(thereby canceling excitation from reward only at that
time; see figure 48.1B). Another timing-related charac-
teristic of dopamine RPEs, captured by the TD model,
is delay discounting. Because value corresponds to the
discounted sum of future rewards (equation 48.2), the
magnitude of the value signal at cue onset is inversely
related to the delay between cue and reward. Consistent
with this, several studies in both rodents and primates
have observed delay discounting in the cue response of
dopamine neurons (Fiorillo, Newsome, & Schultz, 2008;
Kobayashi & Schultz, 2008; Roesch, Calu, & Schoen-
baum, 2007; Starkweather, Babayan, Uchida, & Gersh-
man, 2017). Cues followed by late rewards result in
smaller dopamine responses than cues followed by early
rewards. Thus, the TD framework matches several find-
ings relating to timing and the dopamine system.
However, additional experimental observations
suggest that the TD model—particularly, the CSC
implementation—does not provide a complete account
of timing in the dopamine system. The first observation
is that dopamine responses are not thoroughly sup-
pressed at the time of expected rewards, particularly
for CS-US pairings involving long ISIs (Fiorillo et al.,
2008; Kobayashi & Schultz, 2008). A CSC TD model
would suppress the US responses equally irrespective of
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the delay time. The second observation is that the “dip”
observed upon reward omission is temporally extended
for up to 1 s (Cohen etal., 2012; Matsumoto & Hikosaka,
2007; Schultz, Dayan, & Montague, 1997; Tian & Uchida,
2015). In contrast, a CSC TD model produces a sharp dip
only at the time of the expected reward (figure 48.1B).

Based on these experimental observations, Ludvig,
Sutton, and Kehoe (2008) proposed a TD model that
swaps the CSC representation for Gaussian distribu-
tions, whose widths increase over elapsed time, called
microstimuli (figure 48.1F). The increasing widths of the
microstimuli respect Weber’s law, which stipulates that
the variance of timing estimation increases linearly with
elapsed time (Balsam & Gallistel, 2009). If a reward
occurs at a long delay from the CS onset, the reward
increases the weights of more than one microstimulus
feature (contrasting with the CSC TD model) because
the Gaussian distribution of multiple features will have
nonzero values at the moment a reward is received.
Accordingly, the TD model increases the weights of
multiple microstimulus features that are active at that
time. Over many trials this produces a value signal that
is less sharply resolved in time than the CSC TD model
(figure 48.1F). Specifically, the value function will be
positive at more time points than just the exact moment
that reward is received, and it will have a smaller ampli-
tude (later microstimuli are modeled as having smaller
heights). Therefore, the TD error, )/V(t+l)—17(t), will
be shallower and more spread out over time. As a con-
sequence, when a reward is given, the response cannot
be completely canceled out. The reward response is
greater for longer delays because the model’s ability to
cancel out excitation from the reward becomes less
precise for longer intervals. Furthermore, if a predicted
reward is omitted, the “dip” is more spread out across
time than predicted by the TD model with the CSC
(figure 48.1H). Finally, a common observation from our
lab is that the baseline tonic firing rate of dopamine
neurons decreases slightly before a reward is received
(figure 48.1G; Starkweather et al., 2017; Tian et al.,
2016; Tian & Uchida, 2015). This prereward decrease
in firing is reproduced by the microstimulus model
because the temporal imprecision results in a negative
prediction error commencing prior to the exact time of
the reward. Therefore, the microstimulus TD model
explains common observations of dopamine record-
ings, which were inconsistent with the CSC.

Other updates to the TD model have been proposed,
which we will discuss in the next section. However, it is
important to keep in mind that all these models possess
a timekeeping mechanism. Dopamine RPEs are likely
computed on an imperfect and noisy timing mecha-
nism. Therefore, any modeling refinements proposed

in future work should also contain a timing representa-
tion constrained by scalar timing uncertainty.

State Inference in the Temporal Difference Model

In 1998 Hollerman and Schultz made another impor-
tant experimental observation in monkeys trained on a
CS-US pairing separated by a constant delay time. In a
small proportion of probe trials, rewards were given
earlier than predicted. As predicted by the TD model,
this early reward produced a large dopamine response
because the timing of the reward was unexpected. How-
ever, there was no omission response (i.e., negative RPE)
at the time of the usual reward (figure 48.1F). In con-
trast, the CSC TD model produced an omission response
at the time of the usual reward (figure 48.24). Based
on this experimental observation, two main categories
of modifications were proposed to the TD model.

The first proposal was that the TD model simply
“resets” after a reward is received. Future errors could
be fixed at zero after a reward is received (Suri & Schultz,
1998, 1999). Alternatively, a reward receipt could termi-
nate the set of CSC features activated during the ISI
and trigger a new set of CSC features activated during
the intertrial interval, or ITI (Brown, Bullock, & Gross-
berg, 1999). Implicit in this reset model is that the ani-
mal knows (upon reward) that a reward is no longer
expected. This means that the animal infers the “state”
of the task based on observable stimuli (the reward). If
one imagines the task is divided into two states—the
ISI state during which a reward is expected and the ITI
state during which a reward is not expected—the receipt
of a reward initiates CSC features that correspond to
the ITI state and terminates those that correspond to
the ISI state. However, this is an ad hoc modification to
the TD model with the CSC. It adds a simple form of
state inference to the TD model to match the data but
does not acknowledge other instances in which state
inference comes into play. For example, what if reward
were omitted? Would the ISI features simply continue
on indefinitely because no reward is received? Or would
the animal infer over time that a reward is not coming,
thereby terminating the ISI features? These issues
remain unresolved with the reset model.

The second proposed modification is that the TD
model’s features themselves represent the inferred state
of the environment (Daw, Courville, & Touretzky, 2006;
Rao, 2010). We will refer to this as a belief-state TD model.
The temporal CSC or microstimulus representation is
swapped with a belief state, which is an inferred prob-
ability distribution over possible states. Value is no lon-
ger proportional to the weight assigned to a particular
active state. Rather, value is equal to the weight assigned
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FIGURE 48.2 Belief-state features for reinforcement learn-
ing. A, Schematic for values and error signals produced by
early reward delivery, in the belief-state TD model versus
CSC TD model. CSC TD model produces a spurious reward
omission “dip” after an early reward delivery, which is not
observed in the data shown in figure 48.1E. B, Semi-Markov
schematic for computing the belief state under fully observ-
able task conditions. Adapted from Daw et al. (2006). C,
Semi-Markov schematic for computing the belief state under
partially observable task conditions. Adapted from Daw et al.
(2006). D, In a task invoking variable delay times and partic-
ular reward contingencies (illustrated for 100%—and
90%-rewarded contingencies), the agent uses its observation
of time passed since cue onset in addition to its knowledge of
reward timing/contingency to compute a probability distri-
bution over possible states from figure 48.2B, C. This
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neurons produced smaller error signals as a function of time
when reward is delivered if the task illustrated in figure 48.2D
is 100% rewarded. F, Dopamine neurons produced larger
error signals as a function of time when reward is delivered if
the task illustrated in figure 48.2Dis 90% rewarded. This can
be explained by taking the belief state into account—as
belief favors the possibility of a reward omission trial at later
time points, reward evokes a larger error signal if it is actually
delivered. G, Based on ambiguous sensory stimuli (random
dot motion), the agent may compute a belief state over possi-
ble coherences and direction of movement. Adapted from
Lak et al. (2017). H Based on observation of the first trial
type within a block, an agent may use its knowledge of the
task structure to compute a belief state. Schematized based
on Bromberg-Martin et al. (2010).
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to a state, scaled by the probability (from the belief
state) allotted to that state, summed over all states:

V(i)=Y wbt), (48.9)

where b(t) represents the belief state (i.e., the proba-
bility of being in each state i) at time ¢, with 7 indexing
individual states, and w; is a predictive weight associated
with state 7. Furthermore, weights are updated propor-
tionally to the probability with which the agent “believes”
it occupies a particular state:

Aw,= ab;(t) 6(1) (48.10)

The belief-state TD model was originally conceived
as a semi-Markov process involving just two states: the
ISI and the ITT (figure 48.2B5). Semi-Markov dynamics
imply that the time spent in a state is probabilistic and
is defined by a probability distribution called a dwell time
distribution (contrasting with a Markov process, where
each “state” represents one arbitrary unit of time). For
that reason, rewards are discounted by however much
time elapses within a state once received because this
time interval varies from task to task: prediction errors
should be larger, therefore driving up the value of a
particular state more if the reward arrives early, whereas
the opposite should be true if the reward arrives late.

The belief-state TD model accounts for the Holler-
man and Schultz result and captures other experimen-
tal findings (Daw, Courville, & Touretzky, 2006). The
Hollerman and Schultz experiment was rewarded in
100% of trials, meaning that the task is fully observable
because the state of the task (ISI or ITI) can be deci-
phered based on sensory cues alone. Upon observing
the CS, the belief state allots 100% probability into the
ISI state and 0% probability into the ITI state. Upon
observing the US, the belief state allots 100% probabil-
ity into the ITI state and 0% probability into the ISI
state (figure 48.2D). If the ISI accrues a larger weight
(as it should, because rewards are only received when
the belief state favors the ISI), a transition into the ITI
upon receiving the US would eliminate future reward
expectation. This would abolish the spurious reward
omission response reported by the CSC TD model
upon receiving an early reward (figure 48.24). A sec-
ond set of experimental results, compatible with the
belief-state TD model, consists of dopamine responses
recorded in 100%-rewarded task contingencies with
variable delay times. In these experiments, on any given
trial, the delay between the CS and US (or a reward-
predicting CS) was drawn from a uniform distribution
(Fiorillo et al., 2008; Nomoto, Schultz, Watanabe, &
Sakagami, 2010; Pasquereau & Turner, 2015). Rewards
delivered earliest in the variable delay interval produced

the largest dopamine responses, and rewards delivered
later in the interval produced smaller dopamine
responses. While the authors argued that these results
are explained by expectancy over time resembling a
hazard function (the momentary likelihood that an
event will occur, given that it hasn’t occurred yet), this
result is also compatible with the belief-state TD model
(Starkweather et al., 2017). Because late rewards within
a particular state are discounted more heavily in a semi-
Markov framework, the belief-state TD model also cap-
tures this pattern of prediction errors across time. In
contrast, a CSC TD model, which lacks an explicit
representation of state space (ISI vs. ITI), would pro-
duce the same prediction error at each possible time of
reward delivery because the uniform distribution of
timings teaches the model to apply the same value pre-
diction at each time point.

The belief-state TD model captures experimental
findings from tasks that jitter the timing of reward rela-
tive to cue. However, these tasks do not implicate state
uncertainty, which is a core tenant of the belief-state
TD model. A simple modification that renders the task
states partially observable is reducing the probability of
reward from 100% to 90% (Starkweather et al., 2017;
Starkweather, Gershman, & Uchida, 2018). Once the
cue comes on, the animal no longer knows for certain
whether it is in the ISI or the ITI. This is because in
10% of trials (the unrewarded trials), a cue onset leads
to a hidden state transition from the ITI to the ITI (fig-
ure 48.2C). Whereas the belief state was uniform, fol-
lowing cue onset, under deterministic task conditions,
the belief state evolves over time as the animal gathers
evidence in favor of one hidden state over the other.
After cue onset, the belief state is 90%—-10%, with 90%
allotted to the ISI. As time elapses and the animal does
not receive a reward, the belief state shifts more prob-
ability into the ITI state, yielding to the possibility of a
reward omission trial (figure 48.2D). Because the belief
state shifts toward the ITI state, the value prediction is
low, and thus, the prediction error is high if a reward is
actually received at a later time point. This has been
demonstrated experimentally and is a key prediction of
the belief-state TD model: state uncertainty should dra-
matically affect how reward expectation evolves over
time. In a 100%-rewarded deterministic scenario (fig-
ure 48.2C), later rewards evoke smaller prediction errors
due to discounting over a lengthy dwell time, whereas
in a 90%-rewarded nondeterministic scenario, later
rewards evoke larger prediction errors due to the belief
favoring the unrewarded state (figure 48.2F).

Experimental results in other tasks implicating state
uncertainty are also explained by the belief-state TD
model. One study used a belief-state TD model to

STARKWEATHER AND UCHIDA: DOPAMINE REWARD PREDICTION ERRORS 583

78951_11442_ch03_1P.indd 583

6/15/19 2:44 AM

—

—+1



capture dopamine signals observed in primates during
a perceptual decision-making task (Lak, Nomoto, Kera-
mati, Sakagami, & Kepecs, 2017; figure 48.2G). In this
task a random-dot motion stimulus with variable coher-
ence was presented following a fixation cue. Based on
the perceived direction of the random dot motion, the
animal made an action that if correct resulted in reward.
The belief state was modeled as a probability distribu-
tion over a range of motion directions and coherences.
On average the belief state should be centered at the
true motion direction and coherence. However, the
belief state would be different from trial to trial, as it
was assumed there was sampling noise in the perception
of the stimulus. Action value was computed based on
the belief state, with the model choosing the action on
the higher-valued side of the left-versus-right decision
boundary. The value prediction was proportional to
the probability of receiving a reward on a particular
trial, given the belief state and corresponding choice—
equivalent to a confidence signal—and would produce
a difference in dopamine signals between correct
(higher confidence) and error (lower confidence) trials.
In contrast, the CSC TD model does not have access to
a distribution representing the uncertainty in percep-
tual stimuli and would therefore predict dopamine sig-
nals of similar magnitude for “correct” and “error”
trials. The authors found that dopamine signals were
well matched by a belief-state TD model.

While both of the studies discussed above invoke a
belief state that is computed on every trial, a belief state
could pertain to more global aspects of task structure
involving a block of trials. In one study (figure 48.27),
the cued side (left vs. right) on which a reward was pre-
sented switched between blocks (Bromberg-Martin,
Matsumoto, Hong, & Hikosaka, 2010). So, if a formerly
rewarded side went unrewarded, this signaled a block
change. On a subsequent trial, animals should infer that
the formerly unrewarded side was now rewarded. This
inferred switch was reflected in dopamine signals. Dopa-
mine responses to the inferred rewarded cue were larger
than in the previous block, indicating a higher value
prediction even if the animal had not yet experienced a
reward on the newly rewarded side. This finding can-
not be explained by a simple cached-value system (cached,
meaning that the value must be assigned to a state based
on direct experience) because the dopamine response
reflected the new inferred value without the animal
directly experiencing the new cue-outcome pairing.
However, it may be explained by a belief state that shifts
to reflect the rewarded side of the new block (Costa,
Tran, Turchi, & Averbeck, 2015; Fuhs & Touretzky,
2007; Hampton, Bossaerts, & O’Doherty, 2006). Finally,
arecentstudy similarly showed that dopamine responses
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reflect the inferred value of cues (Babayan, Uchida, &
Gershman, 2018). In this study, blocks consisted of
identical trials of a cue followed either by “big” or
“small” rewards. On rare blocks, rewards were of inter-
mediate size. After experiencing one of these interme-
diate rewards, the dopamine signal at the time of the
reward on the subsequent trial appeared to subtract
either the value of the “big” or “small” reward from the
value of the received intermediate reward, as if the
value prediction conveyed to dopamine neurons
reflected whether the current block was inferred to be
either “big” or “small,” the two states in this task.

The belief-state TD model is needed to account for a
growing number of empirical observations. In addition,
belief-state TD models solve other existing controver-
sies. For instance, in the original CSC model the value
signal and the TD error signal propagate backward from
the time of reward to the time of cue only gradually dur-
ing learning. Neurophysiology data have not supported
this gradual shift (Menegas etal., 2017; Pan etal., 2005).
These results have been taken as evidence against TD
models. However, belief-state models do not require
this gradual shift because they must learn whether a
cue is associated with a reward to begin with (in theo-
retical terms, learning about the state space), separately
from when exactly the reward will occur.

Model-Based Feature Representation
Jfor Reinforcement Learning

Model-free systems predict discounted future reward with-
out an explicit model of the environment. For instance,
the CSC TD model lacks knowledge that a reward signi-
fies a state transition into the ITI, hence the spurious
“reward omission” dip after an early reward was deliv-
ered. Knowledge of the transition structure between
states, and of the corresponding observations and
probabilities of triggering these state occupancies, con-
stitute model-based information. Therefore, the feature
representation for the belief-state TD model is model-
based. However, the TD-learning rules, including the
computation of the TD error and the update of “states”
weights, remain model-free. This model-free component
means that the belief-state TD model stores, or “caches,”
weights for particular states, to be deployed every time
a particular state is occupied (meaning that the belief
state allots a nonzero probability to that state). These
weights must be learned through the direct experience
of occupying certain states.

The belief-state TD model differs from fully model-
based reinforcement learning, which uses a forward
model of the environment to compute values for various
states. Consider a maze in which an animal receives
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different rewards at each possible exit (Niv, Joel, &
Dayan, 2006). The animal may be hungry and there-
fore place greater value on food versus liquid rewards
at the end of the maze. The animal simulates mental
paths through the maze and computes values for states
(each corresponding to various locations in the maze).
States forming trajectories leading to food rewards
would have higher values than other states perhaps lead-
ing to liquid rewards. If the animal was thirsty, a differ-
ent set of state values would be simulated based on the
higher utility of paths leading to liquid rewards. Impor-
tantly, the animal would not have to be trained while it
was thirsty in order to use its model of the environment
to reassign values for various states. This contrasts with
the belief-state TD model, or any system that uses a
model-free-learning rule, in which a state must be
directly experienced in order to update its value (cached
value). Work utilizing a two-step decision-making task
has shown that humans, to varying degrees, combine
model-based and model-free value computation (Daw,
Gershman, Seymour, Dayan, & Dolan, 2011). Blood
oxygen level-dependent signals in the ventral striatum,
thought to correlate with dopamine activity, signal pre-
diction errors in value predictions that reflect both
model-based and model-free computation. Furthermore,
while the computations that feed into the value predic-
tion may involve a complex cognitive model of the envi-
ronment, fully model-based accounts still endorse the
idea that dopamine signals errors in value prediction.
Some recent studies argue that dopamine may not
exclusively signal discrepancies in value prediction. In
one experiment rats were trained to associate a cue
with a reward. Characteristics of the reward (e.g., flavor
of milk) were varied across blocks (Takahashi et al.,
2017). Changes in milk flavor—even though rats pre-
ferred chocolate and vanilla equally—evoked a positive
dopamine signal at the beginning of a block switch. In
another experiment (Sharpe et al., 2017) an otherwise
blocked sensory association between two cues could be
“unblocked” by optogenetically activating dopamine
neurons. These studies lead to the proposal that dopa-
mine signals carry prediction errors along axes other
than value (Langdon, Sharpe, Schoenbaum, & Niv,
2018). This differs from the belief-state TD model, which
maintains the model-free computation of the TD error
and update rules and places model-based, belief-state
computations upstream of the value function. We chose
to focus on the belief-state TD model, which contains
model-free prediction errors, because it is widely
accepted that dopamine signals are sensitive to errors
in value prediction and drive learning about value. Fur-
thermore, dopaminergic axons in the ventral striatum
convey canonical model-free TD errors (Menegas et al.,

2017; Parker et al., 2016). The unpredicted presentation
of neutral stimuli caused no response from these axons
(Menegas et al., 2017), incongruent with a pure “sen-
sory” surprise signal. Furthermore, the activation or
inactivation of dopamine signals exerts effects consis-
tent with positive or negative RPEs (Chang et al., 2016;
Steinberg et al., 2013). In these ways the model-free
“value” axis of dopamine’s role in learning is well estab-
lished. By contrast, while it is possible that errors in
sensory prediction (such as chocolate vs. vanilla milk)
drive learning about state space, it is unclear how these
errors could be separated along multiple axes by down-
stream circuitry. While recent work has shown that dopa-
mine signals broadcast different types of information
to subregions of the striatum (Howe & Dombeck, 2016;
Menegas et al., 2017; Parker et al., 2016), it remains
unknown whether dopamine signals containing state
prediction errors can be separated downstream to drive
learning about a world model. This is an important
experimental hurdle that must be addressed before the-
ories further integrate model-based prediction errors.

Implementing a Belief-State Temporal
Difference Model

Neural implementations of a belief state may be mod-
eled as partially observable Markov decision processes
(POMDP; Daw et al., 2006; Lak et al., 2017; Rao, 2010;
Starkweather et al., 2017). While the resulting belief
state derived from a POMDP is equivalent to a belief
state in the semi-Markov model, a benefit of a POMDP
is that the belief state will propagate between nodes of
the model as time elapses, potentially providing a closer
analogy to neural activity. Rao (2010) harnessed this
property to propose a simple implementation of a belief
state using a recurrent neural network. The belief state
is computed as follows:

bi(t) o< plo(®)]i) X;p(ilj) bt~ 1), (48.11)

where 0,(t) is the posterior probability that the ani-
mal is in substate i at time ¢, p(o(¢)|7) is the likelihood of
the observation o(¢) under hypothetical substate i, and
p(ily) is the probability of transitioning from substate j
to substate ¢. It is possible to compute the belief state
recursively from the belief state computed at (t—1)
because of the Markov property. In this way, a simple
recurrent circuit that maintains feedback from the pre-
vious time point (in addition to incorporating feedfor-
ward information for new observations) could implement
a belief state. We illustrated how the Starkweather et al.
(2017) task could map onto this proposed implementa-
tion (figure 48.3A). Individual units of the feedforward
layer would convey the likelihood of each observation,
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FIGURE 48.3 Recurrent network implementation of a belief
state. A, A simple network with feedforward connections and
arecurrently connected layer, adapted to computing a belief
state for the task described in figure 48.2D. B, Predicted fir-
ing rates for output layer neurons in the task described in
figure 48.2A if these neurons each signal one value within

given a particular state occupancy; individuals units of
the output recurrent layer would each correspond to a
particular state and would each fire in proportion to
the probability allotted to that state, collectively read-
ing out the belief state (figure 48.3B). These output
units would provide inputs to the striatum, where they
could shape value predictions.

One important question in reinforcement learning is
how an agent knows in the first place which features, or
“states,” to learn. Even in a simple TD model such as the
CSC TD model, time could be tracked from the onset
of any observable stimuli, meaning that the number of
temporal “states” the TD model could erroneously assign
weight is enormous. The same sort of problem exists
when considering the belief-state TD model: there are
an unconstrained number of possible states to compute
inferences over in any given environment. How does
the brain select the right belief state appropriate to
maximizing reward in the current task? One possibility
is that units projecting from cortex to striatum are
maximally active when they represent higher belief in a
particular state—and, critically, only in states that are
relevant to the task. One way the cortex may be able to
accomplish this is by using spike-timing-dependent syn-
aptic mechanisms to hone a state representation based
on temporal coincidences during a task. This was
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the belief-state vector. C, Revised neural circuit hypothesis of
TD-learning implementation. Belief-state features could be
represented by a recurrent network. The outputs from this
recurrent network, multiplied by their weights, would be
linearly summed to produce the value estimate. (See color
plate 63.)
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postulated as a mechanism for learning about state
space during vocal learning in the songbird (Mackevi-
cius & Fee, 2018). If the brain actively anticipates state
transitions (e.g., tries to predict reward timing), tempo-
ral coincidences that commonly occur during the task
may automatically hone the belief state representation
into only that relevant for the current task. A second
possibility is that the cortex uses the dopamine signal
to compute a lower-dimensional belief state that helps
the animal maximize discounted future reward. Rao
proposed feeding the belief state outputs into a hidden
layer containing fewer units and computing value using
the outputs of this smaller hidden layer (Rao, 2010).
The weights for inputs into this “hidden” layer would be
tuned to the relevant belief-state representation by being
trained on dopamine-like TD error signals. A third pos-
sibility is that the cortex simultaneously computes many
belief states (some of these irrelevant for the current
task) and feeds all of these into the striatum. Then,
only those cortical inputs carrying belief states relevant
to value prediction on the current task achieve synaptic
potentiation with their striatal targets. One mechanism
by which this could occur is dopamine-dependent mod-
ulation of the spike-timing-dependent plasticity (STDP)
rule (Brzosko, Zannone, Schultz, Clopath, & Paulsen,
2017). The timing of dopamine release itself also
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modulates the strength of STDP-evoked dendritic spine
enlargement in the striatum (Yagishita et al., 2014). In
these ways, dopamine itself may play a role in strength-
ening only the belief-state inputs into the striatum that
are temporally coincident with rewards, leading to
greater weights for only the subset of belief-state inputs
that allow the animal to maximize future rewards.

The belief-state TD model extends the theoretical
framework for reinforcement learning in the brain. It
connects the cortex’s ability to represent probabilistic
models of the environment with the goal of computing
accurate future values. Further experiments should
probe the neural implementation of a belief state and
identify ways in which the brain efficiently knows which
belief state to use in order to maximize expected future
reward.
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