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Abstract

Crowdsourcing enables the solicitation of forecasts on a va-
riety of prediction tasks from distributed groups of people.
How to aggregate the solicited forecasts, which may vary in
quality, into an accurate final prediction remains a challeng-
ing yet critical question. Studies have found that weighing
expert forecasts more in aggregation can improve the accu-
racy of the aggregated prediction. However, this approach
usually requires access to the historical performance data of
the forecasters, which are often not available. In this paper,
we study the problem of aggregating forecasts without hav-
ing historical performance data. We propose using peer pre-
diction methods, a family of mechanisms initially designed to
truthfully elicit private information in the absence of ground
truth verification, to assess the expertise of forecasters, and
then using this assessment to improve forecast aggregation.
We evaluate our peer-prediction-aided aggregators on a di-
verse collection of 14 human forecast datasets. Compared
with a variety of existing aggregators, our aggregators achieve
a significant and consistent improvement on aggregation ac-
curacy measured by the Brier score and the log score. Our
results reveal the effectiveness of identifying experts to im-
prove aggregation even without historical data.

Introduction
Forecasting is one of the main areas where collective in-
telligence is frequently garnered. In crowd forecasting, a
pool of human participants are invited to make forecasts on
a set of prediction questions of interest and the solicited
forecasts are then aggregated to obtain final predictions.
Crowd forecasting has been widely applied in solving chal-
lenging forecasting tasks such as forecasting geopolitical
events (Atanasov et al. 2016), predicting the replicability of
social science studies (Liu et al. 2020), diagnosing skin le-
sions (Prelec, Seung, and McCoy 2017) and labeling train-
ing sets for machine classifiers (Liu, Peng, and Ihler 2012).

Aiming to more effectively leverage collective intelli-
gence in forecasting, we focus on improving multi-task
forecast aggregation in this paper. We consider a minimal-
information setting where each participant offers a single
prediction to each forecasting question of a subset of to-
tal forecasting questions, and no other information such
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as participants’ historical performance is available. By ex-
ploring only hidden information in participants’ predictions
over multiple questions, we develop a family of aggregation
methods that robustly improves the accuracy of the final pre-
dictions across a variety of datasets.

The minimal-information setting requires the least ef-
fort to collect information and put almost no constraints
on crowdsourcing workflow. Our methods can be used dur-
ing the cold-start stage of long-term forecasting (Atanasov
et al. 2016), where no event has been resolved yet to evalu-
ate participants’ performance. They can also serve as elegant
benchmarks for developing more complex aggregators when
additional information is available.

Our approach is to leverage peer forecasts to generate a
proxy evaluation of each forecaster’s performance that po-
tentially positively correlates with her true performance. We
call such proxy evaluations peer assessment scores (PAS).
We then develop PAS-aided aggregators that build upon sim-
ple aggregators, such as mean. Our PAS-aided aggregators
set larger weights in the simple aggregators on predictions
from forecasters who obtain higher PAS.

The question then boils down to how to generate credible
PAS evaluations. We are blessed by recent advances in the
peer prediction literature. Peer prediction mechanisms are
a family of reward mechanisms designed to use only peer
reports on forecasting questions to motivate crowd forecast-
ers to provide truthful or high-quality forecasts in the ab-
sence of the ground truth (Miller, Resnick, and Zeckhauser
2005). While they are primarily developed for the purpose of
forecast elicitation, Liu, Wang, and Chen (2020) and Kong
(2020) revealed theoretically that the rewards given by their
mechanisms correlate positively with the prediction accu-
racy (defined using the ground truth) under certain condi-
tions. Liu, Wang, and Chen (2020) also showed empirical
evidence of this correlation for several other peer prediction
mechanisms.These mechanisms are potentially tools to use
to construct the PAS-aided aggregators.

In this paper, we explore the use of five recently proposed
peer prediction mechanisms (Radanovic, Faltings, and Ju-
rca 2016; Shnayder et al. 2016; Witkowski et al. 2017; Liu,
Wang, and Chen 2020; Kong 2020) as PAS. After showing
their theoretical properties in recovering the forecasters’ true
performance, we thoroughly examine the empirical perfor-
mance of PAS-aided aggregators built upon them. We em-
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ploy 14 real-world human forecast datasets and two widely-
adopted accuracy metrics, the Brier score and the log score.
We compare the performance of these PAS-aided aggrega-
tors with four representative existing aggregators that nei-
ther require knowing the ground truth of resolved historical
forecasting questions: the mean aggregator (Jose and Win-
kler 2008; Mannes, Larrick, and Soll 2012), the logit-mean
aggregator, which is based on the idea of extremization of
predictions (Allard, Comunian, and Renard 2012; Satopää
et al. 2014; Baron et al. 2014), a statistical-inference-based
aggregator (Liu, Peng, and Ihler 2012), and the minimal piv-
oting aggregator, which is based on “surprising popularity.”
(Prelec, Seung, and McCoy 2017; Palley and Soll 2019)

Our results reveal: 1) Though each of the above four exist-
ing aggregators has strong performance on specific datasets,
none of them has consistent, robust performance across all
datasets. 2) In contrast, our PAS-aided aggregators demon-
strate a significant and consistent improvement in the ag-
gregation accuracy compared to the four existing aggrega-
tors. 3) These PAS-aided aggregators adopt a very intuitive
(explainable) and straightforward (generically applicable)
strategy to incorporate PAS: select top forecasters accord-
ing to their PAS and apply the mean or the logit-mean ag-
gregator to the predictions of these selected forecasters. 4)
Moreover, this improvement is observed when any one of
the five peer prediction mechanisms is used as PAS, and
there is no statistically significant difference found in the
improvements when different PAS are used. 5) The above
results demonstrate the possibility of discovering a smaller
but smarter crowd in real-time forecast aggregation without
accessing any ground truth outcomes.

We want to emphasize that aggregation without access to
historical ground truth information is an incredibly challeng-
ing problem. One cannot expect that there is a universal ag-
gregator that has the best performance on all datasets. There
isn’t. Instead, we hope to devise aggregators that perform
well and robustly on different datasets. The significance of
our work is three-fold. First, it provides a framework to se-
lect forecasts to achieve more robust and accurate aggrega-
tion.Second, our method can be used as a booster to aggre-
gators in almost all multi-task forecast aggregation scenarios
since it has minimal information requirements. Third, our
work reveals a new and meaningful application of peer pre-
diction methods - as scoring mechanisms to identify top ex-
perts and to improve forecast aggregation.

We present additional information about the datasets, al-
gorithms and experimental results in the full version of this
paper (Wang, Liu, and Chen 2019).

Related Work
The research of forecast aggregation with no additional in-
formation dates back to early studies about simple aggrega-
tors, such as mean, median, and their trimmed variants (Gal-
ton 1907; Clemen 1989; Jose and Winkler 2008; Mannes,
Larrick, and Soll 2012). These simple aggregators have ro-
bust empirical performance and are still widely adopted
in practice. They sometimes give conservative predictions
(e.g. lean toward 0.5 for binary events), hence extremify-
ing techniques that bring predictions toward 0 or 1 are ex-

plored to mitigate this issue (e.g., Satopää et al. 2014; Baron
et al. 2014). More recently, several statistical-inference-
based methods have been developed to use cross-task infor-
mation to improve aggregation accuracy further when there
exist multiple a priori similar forecasting tasks (e.g., Liu,
Peng, and Ihler 2012; Lee and Danileiko 2014; McCoy and
Prelec 2017). A new trend is to ask forecasters for slightly
more information, i.e., their predictions about others’ pre-
dictions, and use this additional information to improve ac-
curacy (e.g., Prelec, Seung, and McCoy 2017; Palley and
Soll 2019). We select representative aggregators from each
of these categories as baselines for our aggregators.

Our construction of PAS is derived from a family of mech-
anisms collectively called peer prediction. The term peer
prediction was coined up by (Miller, Resnick, and Zeck-
hauser 2005) and the literature has been further developed
by a series of studies (e.g., Prelec 2004; Miller, Resnick, and
Zeckhauser 2005; Shnayder et al. 2016; Radanovic, Faltings,
and Jurca 2016; Witkowski et al. 2017; Liu, Wang, and Chen
2020; Kong 2020).

Setting
We consider the scenario with a setN of agents recruited to
make forecasts on a setM of events (forecasting questions).

Events. We consider binary events (sometimes called
tasks).1 Each event i is represented by a random variable
Yi ∈ {0, 1}, denoting the event outcome (ground truth).
We assume that Yi is drawn from a Bernoulli distribution
Bern(qi) with an unknown qi ∈ [0, 1]. To illustrate, consider
an event i as “Will Democrats win the 2024’s election?” The
outcome is either “Yes” (Yi = 1) or “No” (Yi = 0), and
qi = 0.5 means that the outcome is random (at the time of
forecasting) and the Democrats has 50% chance to win.

Agents. Each agent ( indexed by j) forecasts on a subset of
eventsMj ⊆M.Mj could either be assigned by the prin-
cipal or be constructed by agent j herself. We use Ni ⊆ N
to denote the subset of agents who forecast on event i. We
use pi,j ∈ [0, 1] ∪ {∅} to denote the probabilistic prediction
made by agent j on event i for Yi = 1, with pi,j = ∅ denot-
ing agent j provides no forecast on event i. Meanwhile, we
let pi = (pi,j)j∈Ni and P = {pi,j}i∈M,j∈N .

The forecast aggregation problem. The forecast aggre-
gation problem is to design an aggregation function F :

([0, 1] ∪ {∅})|M|×|N| → [0, 1]|M|, which maps the predic-
tion profile P of all agents on all events to an aggregated
prediction profile {q̂i}i∈M, where q̂i ∈ [0, 1] is the aggre-
gated prediction for event i. The design goal is to make the
aggregated predictions as accurate as possible. The accuracy
of predictions is evaluated against the corresponding ground
truth of the forecasted events, which are expected to be re-
vealed some time after the aggregation.

Our aggregators will use two popular single-task aggrega-
tors as building blocks: the mean (Mean) and the logit-mean
(Logit) (Satopää et al. 2014). Mean has empirically proved

1Our methods and results can be extended to multi-outcome
events. Please refer to the full version of this paper for details.
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robustness (Jose and Winkler 2008), while Logit extrem-
izes the predictions of Mean and demonstrates significantly
higher accuracy on some human forecast datasets (Satopää
et al. 2014). We introduce the weighted versions of the two
aggregators that we will use as follows. For a single event i
with a prediction profile pi and a weight vector (wj)j∈Ni

,

• FMean
i (pi) =

∑
j∈Ni

wjpi,j ,

• F Logit
i (pi) = sigmoid

(
α
|Ni|

∑
j∈Ni

wj logit(pij)
)

with
α = 2 recommended by Satopää et al. (2014).

Logit first maps probabilistic predictions into the log-odds
space using the logit function (the inverse sigmoid function).
It then takes weighted mean and applies a scaling factor to
further extremize the predictions. Finally, it maps the pre-
dictions back into probabilities using the sigmoid function.

Prediction accuracy metrics. The accuracy of forecasts
is typically evaluated using the strictly proper scoring rules
(SPSR) (Gneiting and Raftery 2007). Two widely-adopted
rules are the Brier score and the log score. We use them to
evaluate our aggregators’ performance in our experiments.
For a prediction q̂i and ground truth Yi on an event i, we
evaluate the two scores as follows:

• Brier score2: SBrier(q̂i, Yi) = 2(q̂i − Yi)2.

• Log score: S log(q̂i, Yi) = −Yi log(q̂i)− (1− Yi) log(1− q̂i).

With above formulas, a lower score refers to a higher ac-
curacy. The Brier score ranges from 0 to 2. The log score
ranges from 0.1 to 4.61.3 Predicting 0.5 always receives a
Brier score of 0.5 and a log score of 0.69.

Aggregation Using PAS
We now formalize the notion of peer assessment
scores (PAS), and introduce our aggregation framework that
uses PAS. We defer the introduction of concrete instantia-
tions of PAS that lead to good aggregation performance into
the next section. We list the abbreviations that we frequently
use hereafter in Table 1.

In short, and in different to the true accuracy that is evalu-
ated against the ground truth, PAS assess a prediction against
only the other agents’ predictions. Thus, PAS can be applied
to broader crowdsourcing forecasting scenarios, requiring
only knowing multiple forecasts for each task. Formally, a
peer assessment score on an event setM and an agent setN
is a scoring function R : ([0, 1] ∪ {∅})|M|×|N| → [0, 1]|N |

that maps the prediction profile P of all agents on all events
into a score sj for each agent j ∈ N . The score sj should
reflect the average prediction accuracy of agent j.

Bearing this notion of PAS in mind, we introduce our
aggregation framework. The intuition of our framework is
straightforward: In aggregation, if we rely more on predic-
tions from agents with higher accuracy indicated by PAS, we
shall hopefully derive more accurate aggregated predictions.

2We adopt the same formula for the Brier score as in the Good
Judgment Project (e.g., Atanasov et al. 2016)

3The log score is unbounded when the prediction is 0 or 1. We
thus map predictions of 1 (0) to 0.99 (0.01).

Algorithm 1 PAS-aided aggregators

1: Compute PAS (using one of DMI, CA, PTS, SSR,
PSR) based on all predictions.

2: Rank agents according to PAS.
3: For each event i, select the predictions from top

max(10% · |N |, 10) agents who predict on that event,
and run Mean or Logit aggregator on these predictions.

In general, we can incorporate PAS into an aggregation pro-
cess via three steps:

1. Compute a PAS score sj for each agent j ∈ N .

2. Choose a weight scheme that weight agents’ predictions
based on the scores sj , j ∈ N .

3. Choose a base aggregator and apply the weight scheme to
generate final predictions.

Each step features multiple design choices, which will influ-
ence the aggregation accuracy and can be customized case
by case. In Step 1, there are multiple alternatives to compute
PAS. Ideally, the computed PAS should reflect the true accu-
racy of agents. In Step 2, the weight scheme can be, for ex-
ample, either ranking the agents by PAS and selecting a sub-
set of top agents to aggregate (ranking & selection), or ap-
plying a softmax function to PAS to obtain weights.In Step
3, we can apply different base aggregators that can incorpo-
rate the weight scheme, such as weighted Mean or Logit.

We call the aggregators following the above framework
the PAS-aided aggregators. We present the detailed PAS-
aided aggregators that we will test in this paper in Algo-
rithm 1. We introduce the five peer prediction mechanisms
(DMI, CA, PTS, SSR, and PSR) used in Step 1 in the next
section. We choose the ranking & selection scheme rather
than the softmax weight in Step 2, as the former can be
applied to any base aggregator and its hyper-parameter, the
percent of top agents selected, has an straightforward phys-
ical interpretation. These two schemes show similar perfor-
mance with best-tuned hyper-parameters in our experiments.
In Step 3, we use Mean and Logit as the base aggregator.

Peer Prediction Methods for PAS
Peer prediction mechanisms are a family of emerging reward
mechanisms designed to incentivize crowd workers to truth-
fully report their private signals (e.g., probabilistic predic-
tions or votes on the outcome) in the absence of ground truth
information. These mechanisms can be expressed by a func-
tion R : ([0, 1] ∪ ∅)|M×N| → [0, 1]|N | that maps forecast-
ers’ prediction profile P to a rewardRj for each forecaster j.
R(·) is carefully designed so that an agent’s expected reward
based on her belief about others’ reports (formed by her pri-
vate signal) will be maximized when she reports truthfully.

The core intuition of peer prediction mechanisms to
achieve truthful elicitation is to quantify and reward the
correlations among participants’ predictions that are asso-
ciated with the ground truth of the forecasting questions,
instead of rewarding the simple similarity between partici-
pants’ predictions. As a result, forecasters with predictions
containing more information about the ground truth tend to
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Abbr. Full name Abbr. Full name

DMI Determinant mutual information mechanism SPSR Strictly proper scoring rules
CA Correlated agreement mechanism PAS Peer assessment sores

PTS Peer truth serum mechanism BS Brier score
SSR Surrogate scoring rule mechanism VI Variational inference aggregator
PSR Proxy scoring rule mechanism MP Minimal pivoting aggregator

Table 1: The main abbreviations and the corresponding full names used in this paper

receive a better score in expectation. This property makes
them ideal candidates to serve as PAS. While most peer pre-
diction scores do not necessarily reflect prediction accuracy,
we selectively review five peer prediction mechanisms and
provide theoretical support for using them as PAS, i.e., the
scores of these five mechanisms each correlate with accu-
racy of agents according to some metric.

These mechanisms require two assumptions to work:
A1. Events are independent and a priori similar, i.e., the joint

distribution of agents’ private signals and the ground truth
is the same across events.

A2. For each event, agents’ private signals are independent
conditioned on the ground truth.

These two assumptions resemble the requirements for us-
ing statistical inference methods to infer the ground truth:
there exists a consistent pattern between the ground truth
and agents’ predictions across tasks. The difference is that
these two conditions do not restrict the pattern to follow
some generative models specified by the inference methods.
In the following, we first introduce these five peer prediction
mechanisms and then show why their rewards may corre-
late with agents’ true prediction accuracy. We divide the five
mechanisms into two categories.

Mechanisms Recovering the Strictly Proper
Scoring Rules (SPSR)
SPSR are natural reward schemes to incentivize truthful re-
porting (Gneiting and Raftery 2007). They can be oriented
in a way that a higher score corresponds to higher accu-
racy. But they require to know the ground truth of pre-
dicted events. Surrogate scoring rules (SSR) (Liu, Wang,
and Chen 2020) and proxy scoring rules (PSR) (Witkowski
et al. 2017) are two peer prediction mechanisms that try to
recover the SPSR from participants’ reports, thus providing
two methods to estimate the prediction accuracy of agents in
the minimal information setting. Both mechanisms estimate
a proxy of ground truth from participants’ forecasts and as-
sess their forecasts against this proxy. To introduce SSR and
PSR, we use S(·) to denote an arbitrary SPSR.

Surrogate scoring rules (SSR). For a prediction pi,j from
agent j, SSR randomly draws a binary signal Z from other
agents’ forecasts on the same task as the proxy to evalu-

ate pi,j , with Z ∼ Bern
(∑

k∈Ni\{j}
pi,k

|Ni|−1

)
. The bias of Z

to ground truth Yi can be represented by two error rates
e0 = P(Z = 1|Yi = 0) and e1 = P(Z = 0|Yi = 1).
Assumptions A1 and A2 guarantee that the error rates of Z
for agent j are the same across different tasks. Based on this

property, Liu, Wang, and Chen (2020) provided an algorithm
to accurately estimate e0 and e1 using participants’ forecasts
on multiple events. SSR then assess a prediction pi,j using
a de-bias formula for S(·) to get an unbiased estimate for
S(·) with Z. For prediction pi,j , we have

RSSR
i,j (pi,j , Z) =

(1− e1−Z)S(pi,j , z)− eZS(pi,j , 1− Z)

(1− e0 − e1)
.

Consequently, EZ|Yi

[
RSSR
i,j (pi,j , Z)

]
= S(pi,j , Yi).

Proxy scoring rules (PSR). In constrast to SSR, PSR
directly apply SPSR S(·) to an agent’s forecast against a
proxy Ŷi of the ground truth to obtain the reward score,
i.e., RPSR

i,j (pi,j , Ŷi) = S(pi,j , Ŷi). Witkowski et al. (2017)
showed that as long as the proxy Ŷi is unbiased to the ground
truth, the proxy scoring rule gives an positive affine transfor-
mation of S(·), maintaining the incentive property. In prac-
tice, Witkowski et al. (2017) recommended using an extrem-
ized mean prediction as the proxy when there is no explicit
unbiased proxy of ground truth available.

Mechanisms Rewarding the Correlation
Determinant mutual information mechanism (DMI) (Kong
2020), correlated agreement (CA) (Shnayder et al. 2016),
and peer truth serum (PTS) (Radanovic, Faltings, and Ju-
rca 2016) are three mechanisms that reward agents based on
their forecasts’ correlation to their peers’. Their core ideas
are to reward by a correlation metric that measures the agree-
ment degree between agents’ forecasts that are introduced
through the ground truth, while excludes the agreement de-
gree introduced by pure chance. In this way, an agent who
independently manipulates her reports regardless the ground
truth can only decrease her agreement with other agents. To
compute the score for an agent j, all the three mechanisms
first estimate the joint voting distribution between agent j
and an uniformly randomly selected peer agent k. Given a
prediction pi,j , agent j’s vote on event i can be viewed as
drawn from Bern(pi,j). Thus, the joint voting probability of
agent j voting u and agent k voting v for any u, v ∈ {0, 1}
can be estimated empirically as

d̂j,ku,v =
1

|Mj,k|
∑

i∈Mj,k

pui,j(1− pi,j)1−upvi,k(1− pi,k)1−v,

whereMj,k is the subset of forecasting tasks answered by

both agents. We use D̂j,k =
(
d̂j,ku,v

)
u,v∈{0,1}

to denote the

entire joint voting distribution of agent j and k. In the fol-
lowing paragraphs, we review how these three mechanisms
reward agent j given the peer agent k.
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Determinant mutual information mechanism (DMI).
DMI measures the correlation using the determinant mutual
information (Kong 2020). Let M′j,k,M′′j,k be two disjoint
subsets ofMj,k, and let D̂′, D̂′′ be the joint voting distribu-
tion computed on these two subsets separately. DMI rewards
agent j by an unbiased estimate to the squared determinant
mutual information between agents j and k:

RDMI
j = η det(D′) · det(D′′), (1)

where η is a normalization coefficient.

Correlated agreement (CA). CA rewards an agent j by

RCA
j =

∑
u∈{0,1}

∑
v∈{0,1}

|d̂j,ku,v − d̂ju · d̂kv |, (2)

where d̂ju =
∑
v∈{0,1} d̂

j,k
u,v is the marginal distribution of

agent j reporting u estimated from the data. RCA
j rewards

the correlation by measuring the gap between the overall
matching probability (represented by d̂j,ku,v) and the matching
probability caused by pure chance (represented by d̂ju · d̂kv).

Peer Truth Serum (PTS). PTS rewards agent j by the
matching probability of her votes to the peer agent k’s votes.
PTS mitigates the effect of a match caused by pure chance
via rewriting the matching probability under different vote
realizations. Let p̄−j,u be the average marginal probability
of voting u of all agents except j. PTS rewards agent j by

RPTS
j = d̂j,k0,0/p̄−j,0 + d̂j,k1,1/p̄−j,1. (3)

Peer Prediction Rewards and Accuracy of Agents
In this section, we formally show that the five peer prediction
mechanisms reflect forecasters’ true accuracy. First, SSR
and PSR reflect the underlying accuracy of predictions due
to the unbiasedness of their rewards w.r.t. the (affine trans-
formation of) SPSR that they are built upon. As a direct
corollary of their unbiasedness, we have the following.
Proposition 1. 1. Under Assumptions A1 and A2, SSR

ranks the agents in the order of their mean SPSR that
SSR is built upon asymptotically (|M|, |N | → ∞).

2. When there is an unbiased estimate of the ground truth
and all agents are scored with the same unbiased esti-
mate, PSR ranks the agents in the order of their mean
SPSR that PSR is built upon asymptotically (|M| → ∞).
Second, the mechanisms, DMI, CA, PTS, reflect the ac-

curacy of each agent because they essentially try to capture
the informativeness of agents forecasts, i.e., the correlation
between the agents’ forecasts that is established through the
ground truth instead of the pure chance. More specifically,
we have the following proposition.
Proposition 2. Under Assumptions A1 and A2, and assum-
ing agents report truthfully, the expected rewards of DMI,
CA, PTS reflect certain accuracy measures of agents. In
particularly,

1. DMI ranks the agents in the order of their reports’
squared determinant mutual information (Kong 2020)
w.r.t. the ground truth asymptotically (|M|, |N | → ∞).

2. CA ranks the agents in the order of their reports’ deter-
minant mutual information w.r.t. the ground truth asymp-
totically (|M|, |N | → ∞).

3. PTS ranks the agents in the inverse order of their signals’
expected weighted 0-1 loss w.r.t. the ground truth outcome
asymptotically (|M|, |N | → ∞), when the binary answer
drawn from the mean prediction of all agents has a true
positive rate and a true negative rate both above 0.5.

Item 1 in Proposition 2 follows straightforwardly from
Theorem 6.4 of Kong (2020). We give the proofs for the
items 2 and 3 in the full version of this paper. We note that
mutual information does not directly imply accuracy in the
binary case. For example, a random variable Y ′i = 1 − Yi
contains all information w.r.t. the ground truth Yi. But Y ′i is
clearly not an accurate prediction of ground truth Yi. How-
ever, when agents’ forecasts pi,j are positively correlated to
the ground truth Yi, i.e., agents’ predictions are better than
random guess, then the mutual information does rank fore-
casts in the correct order, i.e., ranking the perfect prediction
(pi,j = Yi) the highest and ranking random ones the lowest.

Empirical Studies
Our theoretical results suggest that the five peer prediction
methods can effectively identify participants who predict
more accurately than others under certain assumptions. In
practice, however, it is often challenging or impossible to
know to what extent these assumptions hold. Therefore, we
conduct extensive experiments to study the performance of
our PAS-aided aggregators. We use a diverse set of 14 real-
world human forecast datasets and adopt two widely used
accuracy metrics, the Brier score and the log score. We first
introduce our experimental setup, then examine the effec-
tiveness of PAS in selecting top performing forecasters, and
finally present a comprehensive evaluation of our aggrega-
tors’ performance. We focus on binary events here and pro-
vide results for multi-outcome events in the full version.

Experiment Setup

Datasets. Our 14 test datasets consist of 4 datasets from
the Good Judgement Projects (GJP) collected from 2011 to
2014 (Good Judgment Project 2016), 3 datasets from the
Hybrid Forecasting Competition (HFC) of varied popula-
tions (IARPA 2019), and 7 MIT datasets (Prelec, Seung, and
McCoy 2017). These datasets vary in several dimensions, in-
cluding dataset size, sparsity, topics, collecting environment,
and participants’ performance. Together they offer a rich en-
vironment for evaluating the performance of aggregators.

The GJP and the HFC collected predictions about real-
world issues involving geopolitics and economics via year-
long online forecast contests. In these contests, forecasting
questions were opened, closed, and resolved dynamically,
and forecasters’ accuracy can be evaluated using previously
resolved questions and used to aggregate predictions of re-
maining open questions. In contrast, the MIT datasets are
static prediction datasets, where participants predict on a
set of questions all at once. The topics include the capi-
tal of states, the price interval of arts, and the diagnosis of
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Items G1 G2 G3 G4 H1 H2 H3 M1a M1b M1c M2 M3 M4a M4b

# of questions 94 111 122 94 72 80 86 50 50 50 80 80 90 90
# of agents 1409 948 1033 3086 484 551 87 51 32 33 39 25 20 20

Avg. # of ans. per ques. 851 534 369 1301 188 252 33 51 32 33 39 18 20 20
Avg. # of ans. per agent 56.74 62.46 43.55 39.63 28.03 36.5 32.8 49.88 49.96 50 79.97 60 90 89.5
Maj. vote correct ratio 0.90 0.92 0.95 0.96 0.88 0.86 0.92 0.58 0.76 0.74 0.61 0.68 0.62 0.72

Table 2: Statistics about the binary event datasets from GJP, HFC and MIT datasets

skin lesions. The MIT datasets also contain additionally so-
licited predictions that participants made about other partic-
ipants’ predictions. This information enables one to apply
the surprising-popularity-based aggregators.

Our paper focuses on the minimal-information aggrega-
tion setting. Therefore, we ignore the temporal information
in the GJP and HFC datasets and only use each individ-
ual’s final forecast on each forecasting question.4 We also
ignore the additional information solicited in MIT datasets
when applying our aggregators, but use it for a surprising-
popularity-based benchmark aggregator. We filter out partic-
ipants with less than 15 predictions and questions with less
than 10 answers from these datasets. This operation only re-
moved a few forecasting questions in the HFC datasets with
no sufficient predictions to make meaningful aggregation.
We summarize the main statistics of the 14 datasets after fil-
tering in Table 2. More details about datasets can be found
in the full version of this paper.

Benchmarks. In addition to the two base aggregators,
Mean and Logit, which are widely-used in the minimal-
information aggregation setting (Satopää et al. 2014; Jose
and Winkler 2008), we also use two other types of aggre-
gators as our benchmarks, the inference-based methods and
the surprising-popularity-based methods.

• Inference-based methods contain a wide range of
minimal-information multi-task aggregators. These meth-
ods establish parameterized models to characterize the la-
tent features of forecasters such as their biases towards
the ground truth probability and the variances in their
beliefs. Then, they infer these parameters as well as the
ground truth using the forecasts across all events. In
this type of aggregators, we use the variational infer-
ence for crowdsourcing (VI) method as a benchmark. It
is a go-to approach to aggregate predictions in the ma-
chine learning community. We use the estimate ground
truth probabilities given by VI as its predictions. Details
of VI are included in the full version. Other sophisti-
cated methods in this category include the cultural con-
sensus model (Oravecz, Vandekerckhove, and Batchelder
2014), the cognitive hierarchy model (Lee and Danileiko
2014), and the multi-task statistical surprising popularity
method (McCoy and Prelec 2017)5. We will also compare
to the performance these aggregators reported by McCoy

4We obtain similar qualitative results when the first forecasts or
the average forecasts are used.

5This aggregator combines both inference and surprising-
popularity.

and Prelec (2017) on the MIT datasets.
• Surprising-popularity-based methods are not minimal-

information aggregators, but they represent a new trend
of forecast aggregation (Prelec, Seung, and McCoy 2017;
Palley and Soll 2019). They require forecasters to addi-
tionally predict other forecasters’ predictions about the
events of interest. Using this additional information, these
methods can identify commonly shared information in
participants’ forecasts and avoid counting them multiple
times in the aggregation. The typical aggregator in this
category refers to the surprisingly-popular algorithm (Pr-
elec, Seung, and McCoy 2017). We use a more recent
variant, called the minimal pivot (MP) method, as our
benchmark. It has a better performance in generating
probabilistic predictions. It has a simple form: the aggre-
gated prediction equals two times the mean of the partic-
ipants’ forecasts minus the mean of the participants’ pre-
dictions about other participants’ average prediction.
Median is another popular aggregator in the minimal in-

formation setting. In our test, its performance is always be-
tween the performance of Mean and Logit. Thus, we omit
our results about median.

Implementation of PAS-aided aggregators. In our exper-
iments, we evaluate 10 PAS-aided aggregators. Each PAS-
aided aggregator uses one of the five peer prediction mecha-
nisms (DMI, CA, PTS, SSR, PSR) to compute PAS and
then incorporate the PAS into one of the two base ag-
gregators (the Mean and Logit) using the rank&selection
scheme. These PAS-aided aggregators have a single hyper-
parameter—the number of top participants selected for each
forecasting question. We set it to be the larger one of 10
and 10% percent of the total number of users. This hyper-
parameter is shared among all PAS-aided aggregators on all
datasets. Meanwhile, for SSR and PSR aggregators, we set
the SPSR they are built upon as the metric SPSR. We use the
output of the VI aggregator as the proxy used in PSR.6 All
these aggregators are described in Algorithm 1.

Smaller but Smarter Crowd
Before we delve into the comprehensive comparison be-
tween our PAS-aided aggregators and benchmarks, we first
examine the effectiveness of PAS in identifying top fore-
casters and the influence of the number of top forecasters
selected to the aggregation.

6We also tested using proxies (e.g, the mean of agents’ predic-
tions and the extremized mean (Witkowski et al. 2017)) in PSR,
while using VI as the proxy gives us the best result.
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Figure 1: The averages of the true mean
Brier score of top forecasters selected by
the five PAS and by the true Brier score.

Figure 2: The portions of overlapped
agents, who are simultaneously selected
by all of the five PAS and the true score.

Figure 3: The Brier scores of the mean-
based PAS-aided aggregators varying
with the numbers of top agents selected
on dataset G2.

Fig. 1 shows the average prediction accuracy of the top
forecasters selected by the five PAS (DMI, CA, PTS, SSR,
PSR) over the 14 datasets. For all five PAS, the average of
the true mean Brier scores of the selected top forecasters
steadily increases (from around 0.3 to around 0.45) when
we gradually enlarge the selection range from top 5% to all
forecasters. This result indicates that all five PAS scores ef-
fectively rank the forecasters in the order of their true per-
formance. We also notice that at each level of top forecasters
selected, the mean accuracy of top forecasters selected by
different PAS is very similar. We further examine the overlap
of these top forecasters. The result (Fig. 2) suggests that the
sets of top forecasters selected by different PAS scores have
considerable overlap, and among these overlapped forecast-
ers, the portion of the actual top forecasters is also remark-
able. For example, as shown in Fig. 2, around 50% of fore-
casters are common among the top 30% forecasters under
different PAS scores, and in these common forecasters, 60%
forecasters are the actual top 30% forecasters (because at
the level of top 30%, 30% forecasters are shared by all 5
PAS together with the true Brier score). This result further
confirms that the five PAS can identify true top performers
and that they have similar abilities in doing so.

Next, we examine how the number of top forecasters se-
lected by PAS influences the aggregation accuracy. Over-
all, we observe that the accuracy of the PAS-aided aggre-
gators peaks at a certain top percent (usually at top 5% to
top 20%) and outperforms the accuracy of the base aggre-
gator that they are built upon. We illustrate this observation
with dataset G2 in Fig. 3, which also shows the accuracy of a
Brier-score-(BS)-aided aggregator. The performance of this
BS-aided aggregator shows the “in hindsight” performance
we could achieve if the peer assessment is as accurate as
if we knew the ground truth. In this particular dataset, the
PAS-aided aggregators perfectly recover this “in hindsight”
performance of the BS-aided aggregator (Fig. 3).

Overall, these results confirm prior findings which show
that there often exists a smaller but smarter crowd whose
mean prediction outperforms that of the entire crowd (e.g.
“superforecasters” (Mellers et al. 2015) and (Goldstein,
McAfee, and Suri 2014)). Our contribution is to demonstrate
that we can identify this set of smarter forecasters using only
their prediction information.

Forecast Aggregation Performance
In this section, we present our main experimental results—
the aggregation performance of our 10 PAS-aided aggrega-
tors against the benchmark aggregators on binary events of
the 14 datasets. Our extensive evaluation highlights the fol-
lowing findings:

1. The performance of the four benchmark aggregators
varies significantly across datasets, confirming the diffi-
culty of minimal-information forecast aggregation.

2. The PAS-aided aggregators not only have higher overall
accuracy than the benchmarks but also perform more sta-
bly and robustly across datasets.

3. While the performance of the 10 PAS-aided aggregators is
not statistically different, the Mean-based PAS-aided ag-
gregators tend to have higher accuracy and lower variance
than the Logit-based PAS-aided aggregators.

Our main results are shown in Table 3 and Table 4. Table 3
shows the accuracy of the 10 PAS-aided aggregators and
the benchmark aggregators on each dataset under the Brier
score. As can be seen, 9 out of 10 PAS-aided aggregators
outperform the best of the benchmarks on at least 5 datasets,
and the remaining one outperforms the best benchmark on 4
datasets. Furthermore, each of the 5 PAS-aided Mean aggre-
gators outperforms the second-best benchmark on at least 12
out of 14 datasets. Moreover, no PAS-aided aggregator un-
derperforms the worst benchmark on any dataset, with only
one exception of the PSR-aided Logit aggregator on dataset
M1a. This is a significant improvement as we can see that
though these benchmark aggregators are carefully designed
for aggregating forecasts in the minimal information setting,
none of them has stable performance across datasets.

Table 4 provides the number of datasets on which one
aggregator statistically outperforms the other for each pair
of PAS-aided aggregators and benchmarks. Each of the 10
PAS-aided aggregators, especially the Mean-based PAS-
aided aggregators, statistically outperforms each benchmark
on at least 4 more datasets than it underperforms, with a
maximum of 9 more datasets. Similar results are observed
under the log scoring rule (Table 4 and more in the full ver-
sion of this paper). Next, we give a more detailed review of
the experimental results.
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Base aggr. PAS G1 G2 G3 G4 H1 H2 H3 M1a M1b M1c M2 M3 M4a M4b

Mean

DMI .125 .068 .071 .066 .219 .196 .110 .326 .126 .114 .434 .429 .535 .282
CA .127 .069 .073 .071 .200 .195 .126 .340 .126 .114 .454 .443 .536 .282

PTS .122 .069 .070 .066 .188 .192 .116 .359 .125 .114 .474 .443 .536 .282
SSR .137 .079 .072 .063 .164 .188 .122 .359 .116 .114 .474 .436 .522 .303
PSR .133 .065 .070 .059 .175 .187 .116 .459 .108 .107 .472 .451 .536 .278

Logit

DMI .113 .053 .072 .037 .199 .194 .115 .517 .056 .058 .425 .545 .702 .325
CA .109 .053 .066 .036 .162 .191 .119 .547 .056 .058 .482 .569 .686 .325

PTS .109 .053 .071 .036 .172 .191 .120 .587 .066 .058 .508 .569 .686 .325
SSR .106 .053 .072 .039 .132 .187 .118 .587 .046 .058 .518 .556 .701 .422
PSR .106 .054 .071 .039 .182 .195 .117 .715 .037 .028 .535 .579 .686 .376

Mean (benchmark) .206 .174 .114 .151 .212 .184 .143 .452 .347 .347 .480 .441 .473 .333
Logit (benchmark) .116 .080 .066 .065 .136 .174 .122 .681 .433 .357 .500 .562 .663 .485

VI (benchmark) .213 .072 .082 .085 .306 .325 .163 .595 .037 .000 .841 .610 .733 .345
MP (benchmark) N/A N/A N/A N/A N/A N/A N/A .425 .251 .232 .479 .471 .609 .491

Table 3: The mean Brier scores (with range [0, 2]) of different aggregators on binary events of 14 datasets. The best mean
Brier score among benchmarks on each dataset is marked by bold font. The mean Brier scores of 10 PAS-aided aggregators that
outperform the best of benchmarks on each dataset are highlighted in green; those outperforming the second best of benchmarks
are highlighted in yellow; the worst mean Brier scores over all aggregators on each dataset are highlighted in red.

Performance of the benchmarks. The Logit aggregator
performs better than the other benchmarks on the GJP and
HFC datasets, but performs worse on the MIT datasets,
while the Mean aggregator performs in the other directions.
This is likely because that the questions in MIT datasets are
more challenging than those in the GJP and HFC datasets
(e.g., see the correctness ratio of majority vote shown in Ta-
ble 2), and the Logit aggregator, which extremizes the mean
prediciton, further worsens the situation. VI predicts almost
flawlessly on datasets M1b, M1c, but is outperformed by
uninformative guess (predicting 0.5) on M2, M3, and M4a.
This is likely because the accuracy of VI heavily depends on
the extent to which the data follows the assumed generative
model that VI uses to infer the ground truth. MP has a rela-
tively stable performance on the MIT datasets, but on some
of these datasets, it is outperformed by VI and Mean.

PAS-aided aggregators vs. Mean and Logit. As can be
seen in Table 4, the PAS-aided aggregators outperform the
Mean and the Logit aggregators with statistical significance
on most datasets. Dataset H2 is the only exception where
Mean and Logit are not outperformed by any PAS-aided ag-
gregator under the Brier score. However, a closer look shows
that the accuracy difference of these two aggregators in H2
is minimal (within 0.02). This advantage of the PAS-aided
aggregators over the Mean and the Logit aggregators is be-
cause of the use of cross-task information when computing
the PAS, i.e., the top forecasters are truly identified by these
PAS using agents’ forecasts on multiple tasks. These em-
pirical results suggest that one can safely replace the Mean
and Logit with the PAS-aided aggregators and expect an ac-
curacy improvement in most cases (if a sufficient number7

of predictions are collected from each forecaster to compute
the PAS).

7We will discuss this number in the next section.

PAS-aided aggregators vs. VI and other inference-based
methods. We notice that although VI ranks the worst in
many datasets, the number of datasets on which VI statis-
tically underperforms each PAS-aided aggregator is smaller
than those numbers of the other benchmarks (Table 4). This
is because VI tends to output extreme predictions (close to 0
or 1) and thus receives extreme accuracy scores (e.g., close
to 0 or 2 under the Brier score), requiring more events to
draw statistically significant conclusions. Also, as we have
mentioned, the performance of VI varies significantly across
different datasets (Table 3). If one is uncertain about whether
the data follows the generative model assumed by VI, the
PAS-aided aggregators (especially the SSR-/PSR-aided ag-
gregators) are better choices. They perform much closer to
VI than the other benchmark aggregators on datasets where
VI makes almost perfect predictions (datasets M1b, M1c),
and perform more stably on datasets where VI makes ex-
tremely wrong predictions (datasets M2, M3, M4a).

McCoy and Prelec (2017) reported the mean Brier score
(with range [0,1]) of three other inference-based aggregators
(the cultural consensus model, the cognitive hierarchy model
and the multi-task statistical surprising popularity method)
on MIT datasets (See the full version of this paper for con-
crete data). Based on their reports, only the multi-task sta-
tistical surprising popularity method outperforms our PAS-
aided aggregators on one more datasets than what VI does.
However, this method requires forecasters to provide addi-
tional predictions beyond the predictions of the events of in-
terest just as other surprising-popularity-based aggregators.

PAS-aided aggregators vs. MP. MP generally performs
better than other benchmarks on the 7 MIT datasets, as it
uses the additionally solicited information available these
datasets. However, Table 4 still shows a salient advantage of
PAS-aided Mean aggregators over MP. This result implies
that when forecasters make predictions on multiple events,
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Brier Score Log Score

Base aggr. PAS Mean Logit VI MP Mean Logit VI MP

Mean

DMI 10, 1 7, 1 5, 2 5, 0 10, 1 7, 2 8, 2 6, 0
CA 8, 1 6, 1 5, 2 4, 0 8, 1 6, 2 8, 2 5, 0

PTS 9, 1 6, 1 5, 2 4, 0 9, 1 6, 2 9, 2 5, 0
SSR 8, 1 6, 0 6, 2 5, 0 8, 1 6, 3 7, 2 4, 0
PSR 8, 1 6, 1 5, 2 3, 0 8, 1 6, 2 9, 2 4, 0

Logit

DMI 6, 2 6, 1 2, 0 3, 1 6, 2 4, 1 6, 0 3, 1
CA 6, 2 4, 0 3, 0 3, 1 7, 3 5, 0 5, 0 3, 2

PTS 6, 2 4, 0 3, 0 3, 2 6, 3 3, 0 5, 0 3, 2
SSR 7, 2 4, 0 3, 0 2, 2 7, 4 2, 0 5, 1 2, 3
PSR 6, 3 4, 1 4, 0 3, 2 6, 4 4, 1 5, 1 3, 3

Table 4: The two-sided paired t-test for the mean Brier scores and the mean log scores of each pair of a PAS-aided aggregator
and a benchmark on binary events of 14 datasets. The first integer in each cell represents the number of datasets where the PAS-
aided aggregator achieves significantly smaller mean score (with p-value<0.05), while the second integer in each cell indicates
the number of datasets where the benchmark achieves significantly smaller mean score. The cells where the # of outperforms
exceeds the # of underperforms by at least 4 are highlighted in green.

(a) Brier score (b) Log scoring rule

Figure 4: The mean and the standard deviation of the aggregation accuracy of the 10 PAS-aided aggregators
(DMI/CA/PTS/SSR/PSR-aided × Mean/Logit-based aggregators) and the benchmarks over 14 datasets.

the cross-task information leveraged by the PAS scores may
be more powerful in facilitating aggregation than the addi-
tionally solicited information used in MP.

Average performance across datasets. We present the
mean and the standard deviation of the accuracy of our 10
PAS-aided aggregators and benchmarks over the 14 datasets
in Fig. 4 (Concrete data can be found in the full version
of this paper). As can be seen, all PAS-aided aggregators
have better mean accuracy under the Brier score than all
benchmarks. In particular, the five Mean-based PAS-aided
aggregators outperform all benchmarks with statistical sig-
nificance (p<0.05) under both the Brier score and the log
scoring rule.8 Moreover, the five Mean-based aggregators
also show much smaller variances than the Logit and VI ag-
gregators under both accuracy metrics, suggesting that the
Mean-based PAS-aided aggregators are more stable than

8The only exceptions are the PSR-aided aggregator under the
Brier score, and the SSR-/PSR-aided aggregators under the log
score when compared to the MP aggregator, as the MP aggregator
only applies to 7 MIT datasets.

these two benchmarks. Within PAS-aided aggregators, the
Mean-based ones appear to be more accurate and stable
than the Logit-based ones, while the differences are not sta-
tistically significant. We conjecture that as the PAS already
select out the forecasters with more accurate predictions,
the extremization provided by the Logit base aggregator no
longer benefits for any accuracy improvement, but only in-
creases the aggregation variance.

These findings suggest that one can expect better accu-
racy and smaller performance variance when using PAS-
aided aggregators instead of the benchmark aggregators.
Moreover, the Mean-based PAS-aided aggregators, espe-
cially the Mean-based DMI-aided aggregator, are likely to
produce the best aggregation outcomes. We also evaluated
PAS-aided aggregators on smaller datasets that were sam-
pled from the 14 original datasets. These datasets have 20
events and 30 or 50 participants. We observe similar im-
provements of the PAS-aided aggregators over the bench-
marks. This result suggests that the PAS-aided aggregators
may also mitigate the cold-start problem in long-term fore-
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cast aggregation settings, where only a small set of forecasts
is available with no ground truth yet revealed. We present
the details of this experimentin the full version of this paper.

Finally, we find no significant difference in the perfor-
mance of PAS-aided aggregators that use different PAS. In
particular, under the Brier score, no PAS-aided aggregator
statistically outperforms another on more than three datasets
if the same base aggregator is used. This is likely because
different PAS have similar abilities in identifying the top
forecasters as we have shown in Fig. 2.

Discussion and Future Directions
This paper demonstrates that the PAS-aided aggregators
generally have higher aggregation accuracy across datasets
than the four benchmark aggregators. Among the bench-
marks, the Mean, Logit, and MP aggregators are single-
task aggregators that generate the final prediction of an
event using only the forecasts on that event. However,
they were the top-performing aggregators in several real-
world, multi-task forecasting competitions such as in the
Good Judgement project (Jose and Winkler 2008; Satopää
et al. 2014). The VI aggregator is a multi-task statistical-
inference-based aggregator, which uses an inference method
to infer the ground truth probability based on cross-task in-
formation. Our PAS-aided aggregators can also be viewed as
a multi-task statistical-inference-based aggregator. The peer
prediction methods used in the PAS-aided aggregators are
inference-like methods that estimate forecasters’ underlying
expertise using all forecasts collected.

Using cross-task information in aggregation gives the
PAS-aided aggregators advantages over the single-task
benchmark aggregator. We can see that on datasets M1b
and M1c, the three single-task benchmarks perform mod-
erately well (with a mean Brier score around 0.3), while
the other benchmark aggregator using cross-task informa-
tion, the VI aggregator, has almost perfect predictions (with
a mean Brier score close to 0). Our PAS-aided aggregators
has similarly great performance on these two datasets as the
VI aggregator. On the other hand, the PAS-aided aggregators
appear to have more robust performance than the statistical-
inference-based VI aggregator. For example, on datasets M2,
M3, and M4a, where VI has much worse performance than
random guesses, the PAS-aided aggregators still have mod-
erate performance. Intuitively, statistical inference methods
are sensitive to underlying properties of the data, i.e., the ex-
tent to which the assumed probabilistic model reflects the
true pattern of the data. Unlike typical statistical-inference-
based aggregators, the PAS-aided aggregators do not di-
rectly infer the outcomes of the forecasting questions. In-
stead, they infer forecasters’ expertise from cross-task pre-
dictions and then use the expertise information to adjust the
base aggregator. This operation likely makes the PAS-aided
aggregators more robust to the variation of the data.

Although the PAS-aided aggregators demonstrated signif-
icant accuracy improvement on datasets where individuals’
overall performance is either good or poor and the number
of forecasts collected per question is either high or low (GJP
datasets and MIT datasets), we find their accuracy improve-
ment is minimal on the HFC datasets, where the number of

forecasts each forecaster made (< 40) is relatively small.
This observation is consistent with the theoretical require-
ments for PAS scores to accurately estimate forecasters’ true
performance: Each forecaster has consistent accuracy across
events, and each forecaster has made a sufficient number of
predictions. Therefore, if an insufficient number of predic-
tions has been made by each forecaster, the PAS scores may
not reflect forecasters’ factual accuracy well.

In addition, the five PAS scores that we tested in theory all
rely on the assumption that the predictions of different fore-
casters are independent conditioned on the underlying event
outcome to reflect the forecasters’ true accuracy. Although
the PAS-aided aggregators perform well on our 14 datasets,
where the assumption is likely not hold strictly, one should
still be careful about using the PAS-aided aggregators in sce-
narios where this assumption is saliently violated, for exam-
ple, when forecasters are encouraged to discuss with each
other before making predictions and when forecasters are
machine predictors trained using similar data and methods.

In this paper, we take the first step to understand the pos-
sibility of using peer prediction methods to robustly improve
the collective intelligence in prediction tasks. Our approach
has the advantage of only requiring a minimal amount of in-
formation to be collected and placing almost no restriction
on crowsourcing workflow. Thus, our methods have the po-
tential of becoming a component of more interactive human-
machine forecasting systems, where other techniques of
boosting collective intelligence, such as teaming (Canon-
ico, Flathmann, and McNeese 2019), workflow design (Lin,
Mausam, and Weld 2012), promoting interactions (Bigham,
Bernstein, and Adar 2015) and AI algorithms (Weld, Lin,
and Bragg 2015), are also present. From another perspec-
tive, the human-machine computation systems are now also
developed for many complex tasks, such as image segmenta-
tion (Song et al. 2018) and article editing (Zhang, Verou, and
Karger 2017). An important problem is that how we boost
collective intelligence for solving these complex tasks. Our
approach provides a way to potentially reduce this problem
to how we can devise effective correlation metrics to capture
the information quality of these responses. All above are in-
teresting future research directions.
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