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Strictly proper scoring rules (SPSR) are incentive compatible for eliciting information about random variables

from strategic agents when the principal can reward agents after the realization of the random variables.

They also quantify the quality of elicited information, with more accurate predictions receiving higher scores

in expectation. In this article, we extend such scoring rules to settings in which a principal elicits private

probabilistic beliefs but only has access to agents’ reports. We name our solution Surrogate Scoring Rules

(SSR). SSR is built on a bias correction step and an error rate estimation procedure for a reference answer

defined using agents’ reports. We show that, with a little information about the prior distribution of the

random variables, SSR in a multi-task setting recover SPSR in expectation, as if having access to the ground

truth. Therefore, a salient feature of SSR is that they quantify the quality of information despite the lack

of ground truth, just as SPSR do for the setting with ground truth. As a by-product, SSR induce dominant

uniform strategy truthfulness in reporting. Our method is verified both theoretically and empirically using

data collected from real human forecasters.

CCS Concepts: • Information systems→ Incentive schemes; • Theory of computation→ Quality of

equilibria;

Additional Key Words and Phrases: Strictly proper scoring rules, information elicitation without verification,

peer prediction, dominant strategy incentive compatibility, information calibration

ACM Reference format:

Yang Liu, Juntao Wang, and Yiling Chen. 2023. Surrogate Scoring Rules. ACM Trans. Econ. Comput. 10, 3,

Article 12 (February 2023), 36 pages.

https://doi.org/10.1145/3565559

1 INTRODUCTION

Accurate assessment of random variables of interest (e.g., how likely the S&P 500 index will go up
next week) plays a crucial role in a wide array of applications, including computational finance [7],
geopolitical forecasting [10, 43], weather and climate forecasting [12], and the prediction of the
replicability of social science studies [1, 15]. Since such assessments are often elicited from people,
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how to incentivize people to provide accurate assessments has been a topic of great scientific
interest.

For settings in which the principal will have access to the ground truth (e.g., after a week, know-
ing whether the S&P 500 index actually went up), strictly proper scoring rules (SPSRs) [4, 13, 17, 37,
46] have been developed to elicit probabilistic assessments and evaluate them against the ground
truth. SPSR have two desirable properties. First, they incentivize truthful information reporting:
the SPSR score of an agent’s reported prediction is strictly maximized in the agent’s expectation
if the individual truthfully reveals one’s prediction. Second, the SPSR score of a prediction mea-
sures the quality of the prediction in the sense that the closer the prediction is to the underlying,
unknown true distribution of the random event, the higher the expected score.

However, in many applications, the ground truth is not available in time or at all. For example,
geopolitical events usually take months to resolve [43], and whether a study will be successfully
replicated is not known if a replication test of it is not attempted. In this article, we extend the
literature of SPSRs to the information elicitation without verification (IEWV) settings, in which
the principal has no access to the ground truth and still wants to elicit private probabilistic beliefs.
We ask the following research question:

Can we extend SPSRs to scoring mechanisms that can achieve truthful elicitation of

probabilistic information and quantify the quality of the elicited information for IEWV?

Witkowski et al. [47] explored this question in a single-task setting (i.e., having a single random
variable of interest to predict). When an unbiased proxy to the true probability distribution of
the ground truth is available, they generalized SPSRs to proper proxy scoring rules, which score a
prediction against the unbiased proxy while maintaining the two properties of SPSRs. However,
when the principal has access to agents’ reports only, it remains an open problem as to how such
an unbiased proxy can be constructed without affecting the incentive properties.

In this article, we study the research question in a multi-task setting, in which a principal wants
to predict multiple random variables that are similar a priori. We provide a positive answer to the
question. In our solution, the principal needs to know only the order of the prior probability of each
possible outcome (e.g., for binary random variables, the more likely outcome) and does not need
to have an unbiased proxy for each task. Specifically, we develop a family of scoring mechanisms
that utilize the similarity of tasks and the conditional independence of agents’ beliefs to construct
a biased proxy of the ground truth. Then, we score a prediction against this proxy by removing
the bias with regard to the underlying SPSRs that one wants to recover. Our proxy is explicitly
constructed only from agents’ reported predictions. As a result, we achieve the dominant uniform
strategy truthfulness [14] in eliciting probabilistic predictions, in which truthful reporting is the
strict best strategy when each agent adopts the same strategy across all tasks. Furthermore, the
scores of our mechanisms recover the scores of SPSRs in expectation. To the best of our knowledge,
our work provides the first meta solution that enables applications of any SPSR to the IEWV setting
without relying on access to unbiased proxies of the ground truth. We name our solution Surrogate

Scoring Rules (SSRs).
As a building block, we first introduce SSRs for a stylized setting in which the principal has

access to a noisy estimate of the ground truth, as well as the estimate’s error rates, to evaluate
the elicited information. We show that SSRs preserve the same information quantification and
truthful elicitation properties as SPSRs despite the lack of access to the ground truth. These SSRs
are inspired by the use of surrogate loss functions in machine learning [2, 5, 29, 40, 41]. They
remove the bias from the noisy estimate of the ground truth such that, in expectation, a report is
as if evaluated against the ground truth.
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Building on this bias correction step, when the principal has access to only agents’ reports and
the order of the prior probabilities of each outcome, we develop the SSR mechanisms for the multi-
task setting to achieve information quantification and the dominant uniform strategy truthfulness
when the principal has sufficiently many tasks and agents. Our mechanisms rely on an estimation
procedure to accurately estimate the average bias in the peer agents’ reports. With the estimation,
a random peer agent’s report can serve as a noisy estimate of the ground truth. SSRs can then be
applied to achieve the two desired properties. We evaluate the empirical performance of the SSR
mechanisms using 14 real-world human forecast datasets. The results show that SSRs effectively
recover SPSR scores but using only agents’ reports.

We summarize our contributions as follows:

• We extend SPSRs to a family of scoring mechanisms, the SSR mechanisms, that operate in
the IEWV setting. The SSR mechanisms require access only to peer reports and the order
of the prior probabilities of the ground truth being each outcome, and they can truthfully
elicit probabilistic beliefs. An SSR mechanism can build upon any SPSR and quantifies in
expectation the value of the elicited information just as the corresponding SPSR does as if
it had access to the ground truth. Therefore, our work complements the proper scoring rule
literature and expands the application of SPSRs in challenging elicitation settings where the
ground truth is unavailable.
• For the IEWV setting, most existing mechanisms focus on incentivizing truthful reporting

of categorical signals via rewarding the correlation between two agents’ reports. Our SSR
mechanisms complement this literature from two perspectives. First, SSR mechanisms in-
duce dominant uniform strategy truthfulness in eliciting probabilistic predictions instead of
categorical signals. Second, instead of scoring a prediction by assessing the correlation be-
tween two agents’ reports, SSR mechanisms score predictions according to their prediction
accuracy against the unknown ground truth. This property encourages agents to search for
more accurate forecasts.
• We evaluate the empirical performance of SSR mechanisms on 14 real-world human predic-

tion datasets. The results show that SSR mechanisms can better reflect the true accuracy of
agents in terms of SPSR scores than other existing mechanisms designed for IEWV.

Organization. The rest of the article is organized as follows. Section 2 provides a survey of
related work. Section 3 introduces SPSRs and their two main desirable properties in the IEWV
setting. In Section 4, we introduce our model of IEWV and our main assumptions for eliciting pre-
dictions. In Section 5, we study the information elicitation problem in the stylized setting, in which
the principal has access to a noisy estimate of the ground truth with a known bias. We introduce
surrogate scoring rules as a powerful solution in this section. In Section 6, we propose the domi-
nant uniform strategy truthful mechanisms, SSR mechanisms, to address the IEWV in the multi-
task binary-outcome task setting. We generalize our mechanisms and results to the multi-outcome
task setting in Section 7. We present our experimental study of our mechanisms in Section 8. We
discuss several restrictions of our mechanisms in Section 9. Omitted proofs can be found in the
Appendix.

2 RELATED WORK

The most relevant literature to our article is on strictly proper scoring rules (SPSRs) and peer predic-

tion. SPSRs are designed to elicit subjective beliefs about random variables when the principal can
evaluate agents’ predictions after the random variables are realized. Brier [4] proposed the widely
used Brier score to quantify the quality of forecasts. Subsequent work studied other SPSRs and
developed several characterizations of SPSRs [13, 17, 37, 46].
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Peer prediction refers to a collection of mechanisms developed for incentivizing truthful report-
ing in IEWV. Our SSR mechanisms are additions to this collection. The core idea of peer prediction
is to leverage peer reports as references to score an agent’s report. The pioneer work [28] consid-
ered a single-task elicitation setting in which each agent observes a private signal associated with
a single task of interest and a principal who knows the joint distribution of these signals wants
to elicit the exact realizations of the signals. It proposed the first mechanism in which truthful
reporting is a Bayesian Nash Equilibrium (BNE). Following this work, Jurca and Faltings [18, 19]
proposed mechanisms in which truthful reporting is a BNE with a strictly higher payment than
any other pure-strategy equilibrium. Kong et al. [21] proposed a mechanism, in which truthful
reporting is the BNE with the highest payoff for agents among all equilibria on a binary-outcome
task. Frongillo and Witkowski [11] characterized all mechanisms that admit a truthful reporting
equilibrium in this setting. Another research thread for single-task elicitation asks agents to an-
swer more questions in addition to providing their signal. The Bayesian Truth Serum [31] also
asks the agents to report their beliefs about other agents’ reports and then uses this additional
information to score the answer of each agent. The advantage of this approach is that the princi-
pal needs not to know the joint distribution of agents’ signals and that the additional information
can be used to identify the correct answer to the question [32]. However, this approach introduces
extra work for the agents. For interested readers, this line of research has been further developed
by other studies [33, 36, 39, 49].

To relax the requirement regarding the principal’s knowledge of the signal distribution, many
recent peer prediction studies have focused on a multi-task setting, where there is a set of i.i.d.
tasks, allowing the principal to leverage the statistical patterns in agents’ reports to incentivize
truthful reporting. Our work falls into this category. The multi-task setting was simultaneously
developed by Dasgupta and Ghosh [6] and Witkowski and Parkes [50]. The latter were the first to
explicitly estimate relevant aspects of agents’ belief models from agents’ reports (which our article
also uses), while the former achieves provably stronger equilibrium properties. In the mechanism
of Dasgupta and Ghosh [6], the truthful reporting equilibrium has the highest expected payoff
for agents among all equilibria when eliciting binary signals. Radanovic et al. [35] and Shnayder
et al. [42] extended the mechanism of Dasgupta and Ghosh [6] to elicit categorical signals while
maintaining the same incentive property. More recent studies have achieved the dominant uniform
strategy truthfulness in the multi-task setting. Parallel to our work, Kong and Schoenebeck [23]
developed a framework to design mechanisms to elicit general signals as long as certain notions
of mutual information can be estimated from agents’ reports. Their mechanisms, which includes
the mechanism of Shnayder et al. [42] as a special case, are dominant uniform strategy truthful
when there is an infinite number of tasks. Kong [20] further achieved this truthfulness property
with a finite number of tasks for eliciting categorical signals. Kong et al. [24] and Schoenebeck
and Yu [38] proposed dominant uniform strategy truthful mechanisms to elicit continuous signals
with normal distributions and with general full-support marginal distributions, respectively. When
there is a noisy estimate of the ground truth with a known confusion matrix, Goel and Faltings [14]
proposed a mechanism that also achieves the dominant uniform strategy truthfulness; the reward
of an agent in the mechanism is an affine transformation of the the agent’s correctness rate over all
classes. In comparison, our dominant uniform strategy truthfulness mechanisms focus on eliciting
posterior beliefs of the ground truth and the rewards in our mechanisms recover in expectation
the accuracy of agents in terms of the SPSR. Instead of assuming availability of an estimate of the
confusion matrix, we construct an estimate from the agents’ reports, assuming that the principal
knows the order of the prior probabilities of each possible outcome of the ground truth.

There are a few studies also focusing on eliciting probabilistic predictions, as we are doing in
our article. Among these studies, Witkowski and Parkes [48] and Radanovic and Faltings [34]
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consider single-task elicitation and ask agents to report additional information as required by the
Bayesian Truth Serum [31]. The two mechanisms proposed make truthful reporting an ex-post
equilibrium and a BNE, respectively. Kong and Schoenebeck [22] provided a mechanism to elicit
probabilistic predictions for the multi-task setting. Although truthful reporting is an equilibrium
strategy under their mechanism, the mechanism is not dominant uniform strategy truthful. When
the principal has access to an unbiased proxy of the ground truth, the proxy scoring rules developed
by Witkowski et al. [47] can be used to elicit probabilistic predictions for the single-task setting
as to what SPSRs offer with access to the ground truth. In this case, proxy scoring rules score
a prediction against the unbiased proxy using an SPSR, and the expected score is equal to the
expected score given by the SPSR using the ground truth up to a positive affine transformation [8].
In comparison, our mechanisms also offer a meta approach to recover the score for any SPSR. Our
mechanisms do not require access to an unbiased proxy; rather, they require a set of i.i.d. tasks.

Finally, our work borrows ideas from the machine learning literature on learning with noisy
data [9, 29, 40, 44]. At a high level, our goal in this article aligns with the goal in learning from
noisy labels – both aim to evaluate a prediction when the ground truth is missing but, instead, a
noisy signal of the ground truth is available. Our work addresses the additional challenge that the
error rate of the noisy signal remains unknown a priori.

3 PRELIMINARIES

Before we introduce our model of IEWV, we first briefly introduce SPSRs, which are designed for
the well-studied IEWV settings. We highlight two useful properties of SPSRs: (1) SPSRs quantify
the value of information and (2) SPSRs are incentive compatible for elicitation. Our goal of this
article is to develop scoring rules that match these properties for the more challenging without-
verification settings. Our solutions build upon the understanding of SPSRs.

SPSRs are designed for eliciting subjective distributions of random variables when the principal
can reward agents after the realization of the random variables. SPSRs apply to eliciting predictions
for any random variables. However, we introduce them for binary random variables in this section
because the rest of our article focuses on the binary case. Let Y ∈ {0, 1} represent a binary event.
An agent has a subjective belief p ∈ [0, 1] for the likelihood of Y = 1. When the agent reports
a probabilistic prediction q ∈ [0, 1] of Y being 1, the principal rewards the agent using a scoring
function S (q,y) that depends on both the agent’s report q and the realized outcome of Y . Strict
properness of S (·, ·) is defined as follows.

Definition 3.1. A function S : [0, 1] × {0, 1} → R that maps a reported belief q and the ground
truth Y into a score is a strictly proper scoring rule if it satisfies E[S (p,Y )] > E[S (q,Y )], for all

p,q ∈ [0, 1] and p � q. Both expectations are taken with respect to Y ∼ Bernoulli(p).

There is a rich family of strictly proper scoring rules, including the Brier score (S (q,Y ) = 1 −
(q − Y )2), the log scoring rule (S (q,Y ) = log(q) if Y = 1 and S (q,Y ) = log(1 − q) if Y = 0) and the
spherical scoring rules [13].

Incentive compatibility of SPSRs. The definition of SPSRs immediately gives incentive com-
patibility. If an agent’s belief is p, reporting p truthfully uniquely maximizes the agent’s expected
score.

SPSRs quantify the value of information. Another useful property of SPSRs is that they
quantify the value/accuracy of reported predictions. To present a rigorous argument, we use an
indicator vector y of length 2 to represent the realization of Y , with 1 at the Y -th position and
0 otherwise. That is, y = (0, 1) if Y = 1 and y = (1, 0) if Y = 0. We use a probability vector
q = (1 − q,q) to represent probability q. By the representation theorem [13, 26, 37], any SPSR can
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be characterized using a corresponding strictly convex function G as follows: S (q, y) = G (y) −
DG (y, q), where DG is the Bregman divergence function of G. Now, consider the unknown true
distribution of Y , denoted by p

∗ = (1 − p∗,p∗). The expected score for an agent predicting q is

E[S (q, y)] = E[G (y)] − E[DG (y, q)],

where all three expectations are taken overY ∼ Bernoulli(p∗). This means that the maximum score
an agent can receive in expectation isEY∼Bernoulli(p∗ )[G (y)], which happens when the agent’s report
q = p

∗. Moreover, a prediction q with a smaller divergence Ey∼p∗[DG (y, q)] receives a higher score
in expectation. Intuitively,EY∼Bernoulli(p∗ )[DG (y, q)] characterizes how “far away” q is from the true
distribution of Y under divergence function DG . This implies that a strictly proper scoring rule S
qualifies the accuracy of a prediction q based on the corresponding divergence function. When S
is taken as the Brier scoring rule, the corresponding Bregman divergence is the quadratic function,
and EY∼Bernoulli(p∗ )[DG (y, q)] = | |p∗ − q| |2, implying that a prediction q closer to p

∗ according
to �2 norm receives a higher score in expectation. When S is taken as the log scoring rule, the
corresponding Bregman divergence is the KL-divergence, DK L , which is also called the relative
entropy, and EY∼Bernoulli(p∗ )[DG (y, q)] = DK L (p∗ | |q) + H (p∗), where H is the entropy function.
A prediction with a smaller KL-divergence from p

∗ receives a higher score in expectation. This
property of SPSRs allows the principal to take an expert’s average score over a set of prediction
tasks as a proxy of the expert’s average accuracy and rank experts accordingly.

4 MODEL AND MECHANISM DESIGN PROBLEM

We consider a multi-task setting for the IEWV problem Under this setting, we aim to develop
scoring mechanisms that are incentive compatible and are able to quantify the value of elicited
information, recovering the two desirable properties that SPSRs achieve in the presence of the
ground truth. In this section, we formally introduce the information structure of our setting and
the exact mechanism design problem that we consider.

4.1 Model of Information Structure

A principal has a set of tasks [m] = {0, . . . ,m − 1}. Each task asks for a prediction for an in-
dependent random variable of interest, denoted by Yk , k ∈ [m]. For now, we assume that these
random variables to predict are binary variables, that is, Yk ∈ {0, 1},∀k ∈ [m]. We will generalize
our results to (non-binary) categorical random variables in Section 7. There is a set of informed
agents [n] = {0, . . . ,n − 1}. Each agent i ∈ [n] privately observes a random signal Oi,k gener-
ated by Yk for each task k ∈ [m] and, thus, holds a posterior belief about Yk , represented by
Pi,k := Pr[Yk = 1|Oi,k ]. The posterior Pi,k is a random variable as the signal Oi,k is a random vari-
able. We make the following main assumptions on the information structure among the signals
and ground truth.

Assumption 1. Tasks are independent and similar a priori, that is, the joint distribution of

(O1,k , . . . ,On,k ,Yk ) is i.i.d. for all tasks k ∈ [m].

This assumption is natural when the set of tasks are of similar nature, for example, tasks to pre-
dict the replicability of multiple studies published in the same journal and the same year. In this
example, readers may a priori hold the same journal-wide belief about the features and replicabil-
ity of each study. After reading the journal, each agent receives a private signal for each individual
study, which allows the agent to provide a more informed prediction for that study. This assump-
tion is common for multi-task IEWV.1

1Kong [20], Kong and Schoenebeck [22] consider information elicitation for objective questions (i.e., questions for which

an objective ground truth exists). They make the same assumption as Assumption 1. Other studies (e.g., [6, 20, 23, 35, 42])
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Based on Assumption 1, each Yk has the same prior, denoted by p := Pr[Yk = 1]. Also, for a
fixed agent i , the distribution of signal Oi,k conditioned on Yk on each task k ∈ [m] is the same.
We use D+i and D−i to denote this conditional distribution for agent i for conditions Yk = 1 and
Yk = 0, respectively. We assume that D+i � D−i ; otherwise, observation Oi,k is independent and
uninformative to Yk . Each agent forms a posterior belief Pi,k using the prior p and the conditional
distributions D+i and D−i . We require no knowledge of D+i and D−i for the principal and the
agents other than agent i . We assume that agents’ signals are independent conditioned on the
ground truth.

Assumption 2. For each task, agents’ signals are mutually independent conditioned on the ground

truth, that is, ∀k ∈ [m], Pr
[
O1,k , . . . ,On,k |Yk

]
=

∏
i ∈[n] Pr[Oi,k |Yk ].

This assumption excludes the scenarios in which agents have some form of “side information”
to coordinate their reports. With “side information,” it is impossible to have any mechanism that
can truthfully elicit agents’ predictions without access to ground truth. This issue has been noted
by Kong and Schoenebeck [22] and Kong [20] for tasks with ground truth and the same assumption
has been adopted. Finally, we make a technical assumption about the prior p and the principal’s
knowledge.

Assumption 3. It holds that p � 0.5 and the principal knows whether p > 0.5 or not.

We do not assume that the principal knows the exact prior p of tasks but assume that the prin-
cipal knows whether p > 0.5 or p < 0.5. This one binary-bit of information helps the principal
distinguish between the set of truthful predictions and the set of inverted predictions (i.e., every-
one reporting 1 − pi,k instead of pi,k ), which otherwise is impossible to distinguish. In practice,
this information is usually easy to obtain. In the example of predicting the replicability of studies,
this assumption requires only that the principal knows whether the majority of the studies can be
replicated or not. The assumption p � 0.5 is a technical condition we need in order to distinguish
the truthful reporting scenario from the inverted reporting scenario.

We also assume that the posterior Pi,k for any agent i on any task k is different under different
realizations of private signal Oi,k . This assumption is without loss of generality because different
realizations of Oi,k that lead to the same posterior Pi,k for agent i on task k also lead to the same
posterior about any other agent’s signal O j,k for agent i due to Assumption 2. Therefore, we can
merge multiple realizations ofOi,k that lead to the same posterior Pi,k into one realization without
influencing agent i’s belief about other agents’ signals and the ground truth. Consequently, it is
without loss of generality to assume that there exists a one-to-one correspondence between the
realization of an agent’s signal Oi,k and the agent’s posterior Pi,k . According to this one-to-one
correspondence and Assumptions 1 and 2, the following two conditions hold for Pi,k for i ∈ [n],k ∈
[m].

Proposition 4.1. Under Assumptions 1 and 2, the following two conditions hold for agents’ beliefs

Pi,k , i ∈ [n],k ∈ [m].

(1) P1,k , . . . , Pn,k and Yk are independent of their own counterparts across tasks k ∈ [m] but have

the same joint distribution, that is, (P1,k , . . . , Pn,k ,Yk ) are i.i.d. across tasks k ∈ [m].
(2) For each task k ∈ [m], P1,k , . . . , Pn,k are independent conditioned on Yk , that is,

Pr[P1,k , . . . , Pn,k |Yk ] =
∏

i ∈[n] Pr[Pi,k |Yk ],∀k ∈ [m].

The first condition in Proposition 4.1 implies that an agent has the same expertise level across
different tasks, as the joint distribution of the agent’s posterior belief and the ground truth is

consider information elicitation for subjective questions (i.e., questions with no objective ground truth, e.g., how do you

rate the movie?). These studies also assume that the joint distributions of agents’ signals are the same across all tasks.
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the same across tasks. The second condition implies that given the ground truth, each agent’s
probabilistic prediction is independent. The two conditions in Proposition 4.1 in fact characterize
a broader space of information structure than the space captured by Assumptions 1 and 2. The
former space includes the information structure in which each task has a different prior but the
distribution of the posterior beliefs of each agent are still the same across tasks. Our theoretical
results in this article hold for the model with this broader information structure space characterized
by the two conditions in Proposition 4.1 and with Assumption 3, where p refers to the mean prior
overall tasks.

4.2 Mechanism Design Problem

We consider the multi-task peer prediction mechanisms in which the principal assigns each task
k to a subset [nk ] ⊆ [n] of agents, collects a single probabilistic prediction qi,k ∈ [0, 1] from
each agent i assigned with task k , and pays each agent based on all predictions collected from all
agents. We use [mi ] ⊆ m to denote the set of tasks assigned to agent i . We use qi,k = ∅ to denote
that agent i has not been assigned to task k . Such a multi-task peer prediction mechanism can
be formally expressed as a function R : {∅ ∪ [0, 1]}n×m → Rn , which maps a prediction profile
on all tasks and all agents to a vector of total payments of all agents. In this article, we restrict
our attention to anonymous mechanisms that give each prediction from an agent an independent
payment such as an SPSR. Thus, a mechanism that we consider can be fully expressed by a score
function R : {∅ ∪ [0, 1]} × {∅ ∪ [0, 1]}n−1×m → R, which maps a single prediction qi,k of agent
i on task k and a profile of predictions from all other agents into a single reward score for that
prediction, and agent i’s total reward is the sum of the scores that the agent obtains across the
tasks the agent is assigned.

Agents have no obligation to report their true beliefs. Instead, given a mechanism, an agent can
report strategically to maximize one’s expected payment. As there is a one-to-one correspondence
between an agent’s signal and the individual’s posterior on a single task in our model, we can
define an agent’s reporting strategy on a single task without loss of generality as a function that
maps the agent’s posterior to a distribution where that individual’s reported prediction is drawn
from.

Definition 4.2. Let Δ[0,1] be the space of all probability distributions over [0, 1]. The strategy of
an agent i on task k is a mapping σi : [0, 1] → Δ[0,1], which maps the agent’s posterior belief Pi,k

into a distribution σi (Pi,k ) over [0,1], from which the agent draws the reported prediction Qi,k .

We use the uppercase Qi,k to denote the reported prediction when we want to emphasize that
the reported prediction is a random variable determined by an agent’s posterior belief and that
individual’s reporting strategy jointly; otherwise, qi,k is used. We further assume that each agent
adopts the same mixed strategy across all asigned tasks.

Assumption 4 (Uniform Strategy). For any agent i ∈ [n], the agent adopts the same strategy

σi (·) over all assigned tasks k ∈ [mi ].

This assumption is reasonable as we assume that tasks are a priori similar to each other. We use
σi (·) to denote the reporting strategy adopted by agent i on all tasks that the agent answers and
use σ−i to denote the strategy profile used by all agents except agent i . We use E[R (qi,k ;σ−i )] to
denote the expected score that agent i receives for reporting qi,k when other agents use strategy
profile σ−i , where the expectation is taken over the randomness in ground truth, other agents’
signals and strategies, and in the mechanism itself. We use E[R (σi ;σ−i )] to denote the expected
reward of agent i when the agent’s report is also a random variable generated by that individual’s
belief Pi,k and reporting strategy σi .

ACM Transactions on Economics and Computation, Vol. 10, No. 3, Article 12. Publication date: February 2023.



Surrogate Scoring Rules 12:9

In this article, our goal is to design a mechanism R (·) in the IEWV setting with similar proper-
ties that SPSRs have for the IEWV setting: quantification of the value of information and incentive

compatibility.

Quantifying value of information. The score of each prediction should reflect the true accu-
racy of the prediction, similar to what SPSRs achieve. That is, for all i , k , and qi,k and for any true

distribution of the ground truth Yk , E[R (qi,k ;σ−i )] = f
(
EYk

[S (qi,k ,Yk )]
)

holds for an SPSR S (·)
and a strictly increasing function f , where the two expectations are taken over the true distribu-
tions of the random variables in the two expressions at each side of the equality. This design goal
pursues that the score that an agent receives for a prediction in IEWV recovers what the agent
would receive with an SPSR (with access to the ground truth) in expectation.

Incentive Compatibility. A mechanism satisfies incentive compatibility to some extent if
truthful reporting is a strategy that maximizes an agent’s expected utility under certain conditions.
In this article, we pursue the dominant uniform strategy truthfulness [14], where truthful report-
ing is a dominant strategy if we restrict the strategy space with the uniform strategy assumption
(Assumption 4).

Formally, in IEVW, a dominant uniform strategy truthful mechanism is a mechanism in which
truthful reporting on each task maximizes an agent’s expected reward no matter what uniform
strategies the other agents play and strictly maximizes the agent’s expected reward if other agents’
reports are also informative.2 Let σ ∗i be the truthful reporting strategy for agent i , that is, σ ∗i is the
function that maps a belief pi to a distribution in which all probability mass is put on pi . Let
Q̄−i,k := 1

n−1

∑
j�i Q j,k be the mean of all agents’ reported predictions on task k except agent i’s.

Note that Q̄−i,k is a random variable because of the randomness in reporting strategy σj and the
randomness in signal O j,k for all j � i . We say that Q̄−i,k is informative about the ground truth
if E[Q̄−i,k |yk = 1] � E[Q̄−i,k |yk = 0]. We formally define the dominant uniform strategy truthful
mechanisms as follows.

Definition 4.3 (Dominant Uniform Strategy Truthfulness). A mechanism R (·) is dominant uniform

strategy truthful if ∀i ∈ [n], ∀k ∈ [mi ],∀{D+j ,D−j }j ∈[n] and for any realization oi,k of signal Oi,k :

E[R (σ ∗i ;σ−i ) |Oi,k = oi,k ] ≥ E[R (σi ;σ−i ) |Oi,k = oi,k ] for any uniform strategy σi � σ ∗i and any
uniform strategy profile of other agents σ−i , and the inequality holds strictly for any uniform
strategy profile σ−i under which Q̄−i,k is informative about Yk .

In Definition 4.3, we characterize the condition that peers’ reports are informative as follows:
that the expectation of the mean of peers’ reports on a task differs when conditioned on different
realizations of the ground truth.

5 ELICITATION WITH A NOISY ESTIMATE OF GROUND TRUTH

Before we develop mechanisms with the two desirable properties we pursue, in this section we
first obtain these two properties under a very stylized setting: elicitation with a noisy estimate of

2In a standard dominant truthful mechanism, truthful reporting strictly maximizes the agent’s expected reward no matter

what strategies other agents play. In IEWV, however, if all peer agents report predictions independently with regard to the

ground truth on each task, then there will be no information available for the mechanism to incentivize truthful reporting.

Therefore, it is inevitable to allow a dominant truthful mechanism in IEWV to pay truthful reporting strictly more only

when the peer reports are informative about the ground truth. For example, in studies [20, 23], the dominant uniform

strategy truthful mechanism is defined to be a mechanism that pays truthful reporting strictly more only when for each

agent, there is at least one peer agent reporting truthfully. We will see later that in our definition, we do not require that

there is at least one peer agent reporting truthfully. We allow all peer agents to play non-truthfully, but require the mean

of peer agents’ reports to be informative with respective to the ground truth.
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ground truth. In this stylized setting, we introduce surrogate scoring rules as an effective solution.
These scoring rules will be the building blocks of our mechanisms designed for the general setting.

This stylized setting has only one event Y and one agent i , who observes a signal Oi generated
from distribution Di (Y ) and forms a posterior Pi = Pr[Y = 1|Oi ]. The principal in this setting
has access to a noisy estimate Z ∈ {0, 1} of the ground truth Y , although the individual has no
access to the exact realization of Y . The noisy estimate Z is characterized by two error rates, e+z
and e−z , defined as e+z := Pr[Z = 0|Y = 1], e−z := Pr[Z = 1|Y = 0], which are the probabilities thatZ

mismatchesY under the two realizations ofY . The principal knows the realization Z and the exact
error rates e+z , e

−
z . The principal cannot expect to do much if Z is independent of Y . Therefore, we

assume that Z and Y are stochastically relevant, an assumption commonly adopted on the relation
between a signal and the ground truth in the information elicitation literature [28].

Definition 5.1. A random variable Z is stochastically relevant to a random variable Y if the dis-
tribution of Y conditioned on Z differs for different realizations of Z .

The following lemma shows that the stochastic relevance condition directly translates to a con-
straint on the error rates, that is, e+z + e

−
z � 1. This lemma can be proved immediately by writing

out the distribution of Y conditioned on Z in terms of the two error rates e+z , e
−
z and the prior of Z .

Lemma 5.2. The noisy estimate Z is stochastically relevant to the ground truth Y if and only if

e+z + e
−
z � 1.

The goal of the principal in this setting is to design a scoring rule to elicit the posterior Pi

truthfully based on this noisy estimate Z and the error rates e+z , e
−
z . We define the design space of

the scoring rules with the noisy estimate as follows.

Definition 5.3. Given a noisy estimate Z of ground truth Y with error rates (e+z , e
−
z ) ∈ [0, 1]2, a

scoring rule against the noisy estimate of the ground truth is a function R : [0, 1] × {0, 1} → R that
maps a prediction qi ∈ [0, 1] and a realized noisy estimate z ∈ {0, 1} to a score. The function R can
depend on the two error rates (e+z , e

−
z ).

Adopting the terminology from the scoring rule literature, we refer to strict properness of a
scoring rule against a noisy estimate of ground truth as the property that the rule assigns a strictly
better expected score to a truthful prediction of the ground truth than to a non-truthful prediction.

Definition 5.4. A scoring ruleR (qi ,Z ) against a noisy estimateZ of ground truth is strictly proper

for eliciting an agent’s posterior belief generated by signal Oi if it holds for all realizations oi of
Oi and the posterior pi = Pr[Y = 1|Oi = oi ] that

EZ |Oi=oi
[R (pi ,Z )] > EZ |Oi=oi

[R (qi ,Z )],∀qi ∈ [0, 1](qi � pi ).

5.1 Surrogate Scoring Rules (SSRs)

In this section, we present our solution, the surrogate scoring rules (SSRs), for this stylized setting.
SSRs are a family of scoring rules that evaluate a prediction against a noisy estimate of ground
truth. For any distribution of the ground truth and any stochastically relevant noisy estimate
of the ground truth, the expected score that SSRs give to the prediction, with expectation taken
over the randomness of the noisy estimate, is equal to (up to a monotonic increasing transforma-
tion) the expected score that an SPSR gives to the same prediction, with expectation taken over the
randomness of the ground truth. We will see that SSRs are strictly proper under mild conditions.

Definition 5.5 (Surrogate Scoring Rules). R : [0, 1] × {0, 1} → R is a surrogate scoring rule if for
some strictly proper scoring rule S : [0, 1]×{0, 1} → R and a strictly increasing function f : R→ R,
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it holds that ∀pi ,qi , e
+
z , e
−
z ∈ [0, 1] and e+z + e

−
z � 1, EZ [R (qi ,Z )] = f (EY [S (qi ,Y )]), where Y is the

ground truth drawn from Bernoulli(pi ) and Z is a noisy estimate of Y with error rates e+z , e
−
z .

Definition 5.5 defines the SSR R (·) as scoring rules that help us remove the bias in Z and return
us the same score given by an SPSR in expectation. The idea of SSRs is borrowed from the machine
learning literature on learning with noisy data [5, 27, 29, 40, 44]. SSRs can be viewed as a particular
class of the proxy scoring rules proposed by Witkowski et al. [47]. Witkowski et al. [47] achieve
properness of proxy scoring rules by plugging in an unbiased proxy of the ground truth to an SPSR.
With SSRs, we directly work with biased proxy and design scoring functions to de-bias the noise
in the proxy. We have the following strict properness result for SSRs straightforwardly:

Theorem 5.6. Given the prior p of the ground truthY and a private signalOi , SSR R (qi ,Z ) against

a noisy estimate Z is strictly proper for eliciting the posterior Pi = Pr[Y = 1|Oi ] if Z and Oi are

independent conditioned on Y and Z is stochastically relevant to Y .

We provide an implementation of SSRs, which we call SSRα :

R (qi ,Z = 1) =
(1 − e−z ) · S (qi , 1) − e+z · S (qi , 0)

1 − e+z − e−z
, (1)

R (qi ,Z = 0) =
(1 − e+z ) · S (qi , 0) − e−z · S (qi , 1)

1 − e+z − e−z
, (2)

where S can be any strictly proper scoring rule. This SSR implementation is inspired by Natarajan
et al. [29]. As can been seen from Equations (1) and (2), the knowledge of the error rates e+z , e

−
z is

crucial for defining SSRα . Moreover, SSRα has the property that the expected score EZ |Y [R (qi ,Z )]
conditioned on the realization of the ground truth Y is exactly the same as the score S (qi ,Y ) given
by the SPSR. More formally, we have the following lemma.

Lemma 5.7 (Lemma 1, [29]). For SSRα , ground truth Y and noisy estimate Z , ∀qi , e
+
z , e
−
z ∈ [0, 1]

and e+z + e
−
z � 1,∀y ∈ {0, 1} : EZ |Y=y[R (qi ,Z )] = S (qi ,Y = y).

Proof. Lemma 1 in [29] proves the statement for e+z + e
−
z < 1. For completeness, we provide the

proof for e+z + e
−
z � 1 here. Let qi ∈ [0, 1] be an arbitrary prediction. When y = 1, we have that

EZ |Y=1[R (qi ,Z )] = (1 − e+z )R (qi , 1) + e+z R (qi , 0)

= (1 − e+z )
(1 − e−z )S (qi , 1) − e+z S (qi , 0)

1 − e+z − e−z
+ e+z

(1 − e+z )S (qi , 0) − e−z S (qi , 1)

1 − e+z − e−z

=

(
(1 − e+z ) (1 − e−z ) − e+z e−z

)
S (qi , 1)

1 − e+z − e−z
= S (qi , 1).

When y = 0, we have that

EZ |Y=0[R (qi ,Z )] = e−z R (qi , 1) + (1 − e−z )R (qi , 0)

= e−z
(1 − e−z )S (qi , 1) − e+z S (qi , 0)

1 − e+z − e−z
+ (1 − e−z )

(1 − e+z )S (qi , 0) − e−z S (qi , 1)

1 − e+z − e−z
= S (qi , 0). �

Intuitively, the linear transformation in SSRα ensures that, in expectation, the prediction qi is
scored as if it were scored against the ground truth Y under the underlying SPSR. We would like
to note that other surrogate loss functions designed for learning with noisy labels can also be
leveraged to design SSRs. With the conditional unbiasedness property of SSRα , we can formally
claim that SSRα is a surrogate scoring rule, as stated in Theorem 5.8 next.
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Theorem 5.8. SSRα is a surrogate scoring rule and ∀pi ,qi , e
+
z , e
−
z ∈ [0, 1](e+z + e−z � 1),

EZ [R (qi ,Z )] = EY [S (qi ,Y )], where Y is the ground truth drawn from Bernoulli(pi ) and Z is the

noisy estimate of ground truth Y with error rate e+z , e
−
z .

Proof. As shown by Lemma 5.7, for SSRα , we have that ∀pi ,qi , e
+
z , e
−
z (e+z + e

−
z � 1) and ∀y ∈

{0, 1}, EZ |Y=y [R (qi , z)] = S (qi ,Y = y), we have immediately that

EZ [R (qi , z)] = EY [EZ |Y [R (qi ,Z )]] = EY [S (qi ,Y )]. �

With Theorem 5.8, we know that SSRα quantifies the quality of information of a prediction just
as the underlying SPSR S does. Furthermore, SSRα has the following variance:

Theorem 5.9. Let pz := Pr[Z = 1]. For a fixed prediction qi ∈ [0, 1], SSRα suffers the following

variance:

EZ

[
R (qi ,Z ) − Ez[R (qi ,Z )]

]2
=

pz · (1 − pz )

(1 − e+z − e−z )2
· (S (qi , 1) − S (qi , 0))2 . (3)

Proof.

EZ

[
R (qi ,Z ) − EZ [R (qi ,Z )]

]2

= pz

(
R (qi , 1) −

(
pzR (qi , 1) + (1 − qz )R (qi , 0)

))2

+ (1 − pz )

(
R (qi , 0) −

(
pzR (qi , 1) + (1 − qz )R (qi , 0)

))2

= pz (1 − pz )2
(
R (qi , 1) − R (qi , 0)

)2
+ (1 − pz )p2

z

(
R (qi , 0) − R (qi , 1)

)2

= pz (1 − pz )
(
R (qi , 0) − R (qi , 1)

)2

=
pz (1 − pz )

(1 − e+z − e−z )2

(
(1 − e−z )S (qi , 1) − e+z S (qi , 0) −

(
(1 − e+z )S (qi , 0) − e−z S (qi , 1)

))2

=
pz (1 − pz )

(1 − e+z − e−z )2

(
S (qi , 1) − S (qi , 0)

)2
. �

6 ELICITATION WITHOUT VERIFICATION

The results in the previous section are built upon the fact that there is a noisy estimate of ground
truth with known error rates. In this section, we apply the idea of SSRs to the IEWV setting. A
reasonable way to do so is to use agents’ reports as the source of the noisy estimate. Although the
principal does not know the exact bias in agents’ reports, we find a way to construct such a noisy
proxy of ground truth and estimate its error rates. We refer to this noisy proxy as the reference

report. Applying SSRs with this reference report, we can finally get a family of mechanisms that
are dominant uniform strategy truthful and that also quantify the value of information in agents’
reports as to what SPSRs do. Within this family, we can choose different underlying SPSRs for
SSRs to get different mechanisms. We call this family of mechanisms SSR mechanisms. We present
a sketch of our SSR mechanisms in Mechanism 1.

The challenge of designing such mechanisms is to construct the reference report Zi,k in Mecha-
nism 1 and successfully estimate its error rates e+zi,k

, e−zi,k
. In the following sections, we show how

to construct this reference report and estimate its error rates.
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Mechanism 1: SSR mechanisms (Sketch)

1: For each task k , we uniformly randomly pick at least 3 agents, assign task k to them, and
collect their predictions.

2: For each agent i and each task k that the agent answers, we construct a reference report Zi,k

using the agent’s peer agents’ reports, and estimate the error rates e+zi,k
and e−zi,k

for Zi,k .

3: Pay each agent i for the agent’s prediction qi,k on task k by SSR R (qi,k ,Zi,k ) if e+zi,k
+ e+zi,k

� 1,

and pay 0, otherwise.

6.1 Reference Report and Its Property

Recall that we use Q j,k to denote the reported prediction of agent j on task k , which is generated
by agent j’s posterior belief Pj,k and reporting strategy σj . Let S j,k ∈ {0, 1} be a binary signal
independently drawn from Bernoulli(Q j,k ). We refer to S j,k as the prediction signal of agent j on
task k . We construct the reference report Zi,k for agent i as follows: We uniformly randomly pick

an agent j from agent i’s peer agent set [n]\{i}, collect agent j’s predictionQ j,k , and draw a prediction

signal S j,k ∼ Bernoulli(Q j,k ). We use this S j,k as the reference report Zi,k for agent i on task k .

Conditioned on all peer agents’ reports Q j,k , j ∈ [n]\{i}, the distribution of Zi,k is
Bernoulli(Q̄−i,k ), because we pick a prediction signal from all peer agents uniformly randomly.
Recall that in our model, Qi,k ∼ σi (Pi,k ), i ∈ [n],k ∈ [m]. Due to Proposition 4.1 and Assump-
tion 4, Q̄−i,k is i.i.d. across tasks k ∈ [m] and is independent to agent i’s posterior Pi,k conditioned
on the ground truthYk for any task k . Therefore,Zi,k ,k ∈ [m] that we construct have the following
two properties.

Lemma 6.1. ∀i ∈ [n],k ∈ [m], Zi,k is independent to agent i’s posterior Pi,k conditioned on Yk .

This property ensures that Zi,k can be used as the conditionally independent noisy estimate
of the ground truth in Theorem 5.6 and, thus, SSR against Zi,k is strictly proper for eliciting the
posterior belief Pi,k .

Lemma 6.2. For any strategy profile agents play, the reference reports of a single agent i for any i ∈
[n] are i.i.d. across tasks and have the same error rates with regard to their corresponding ground truth

Yk , that is, ∀σ1, . . . ,σn ,∀i ∈ [n],∃e+i , e−i ∈ [0, 1],∀k ∈ [m] : Pr[Zi,k = 0|Yk = 1] = e+i , Pr[Zi,k =

1|Yk = 0] = e−i .

This lemma shows that the error rates of the reference reports of an agent i are the same across
all tasks. This property allows the estimation of the error rates using the multi-task prediction
data. In the following sections, we introduce the estimation of the error rates and complete our
mechanisms. We prove Lemmas 6.1 and 6.2 below.

Proof. Proposition 4.1 and Assumption 4 directly imply that (1) for each task, Q1,k , . . . ,Qn,k

are mutually independent conditioned on the ground truth Yk , and (2) (Q1,k , . . . ,Qn,k ,yk ) are i.i.d
across tasks k ∈ [M]. As Zi,k is independently drawn from Bernoulli(Q̄−i,k ), we immediately have
that (1’) for each task k ∈ [m], Zi,k is independent toOi,k and, thus, to Pi,k := Pr[Yk = 1|Oi,k ], and
(2’) (Zi,k ,Yk ) have the same joint distribution for k ∈ [m]. As a result of (2’), Zi,k ,k ∈ [m] have
the same error rates with regard to the corresponding Yk . �

6.2 Asymptotic Setting

To better deliver our idea for error rate estimation, we start with an asymptotic setting with infinite
amounts of tasks and agents, that is, m,n → ∞. We will later provide a finite sample justification
for our mechanism. Based on Lemma 6.2, the reference reports of an agent on different tasks have
the same distribution and error rates. Therefore, we focus on estimating the error rates of the
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reference report of agent i on a generic task k , while we use Z to denote this reference report,
omitting the subscripts i and k , and use e+z , e

−
z to denote its error rates.

Our estimation algorithm resembles the “method of moments.” We establish three equations on
the first- to the third-order statistics, of which the parameters can be expressed by the unknown
error rates e+z , e

−
z . We show that the three equations, with knowing the true parameters (which is

true in the asymptotic setting), together uniquely determine e+z , e
−
z . Thus, we can solve the three

equations to obtain e+z , e
−
z . In the next section, we argue that in the finite sample setting, with im-

perfect estimates of the parameters of the three questions, the solution from these three perturbed
equations still approximate the true values of e+z , e

−
z with guaranteed accuracy.

To construct these three equations, we make the following preparation. Let sj,k be the realization
of the prediction signal S j,k of agent j on task k , and let S−i := {sj,k }j�i,k ∈[M] be the realization

profile of all prediction signals from all peer agents of agent i . On a generic task k , we draw three
random variablesZ1,Z2,Z3.Z1 represents the realization of a prediction signal uniformly randomly
drawn from the set of all prediction signals {sj,k }j�i on task k except agent i’s. Z2 represents the
realization of another uniformly randomly picked prediction signal from set {sj,k }j�i but excluding
Z1. Similarly,Z3 represents the realization of another uniformly randomly picked prediction signal
from set {sj,k }j�i but excluding Z1 and Z2. Because agents’ reports are conditionally independent,
Z1,Z2,Z3 are also independent conditioned on the ground truth. Moreover, Z1 and the reference
report Z have the same error rates, as they are generated by the same random process. With
infinite number of agents,Z2 andZ3 also have the same error rates asZ . Furthermore, (Z1,Z2,Z3) is
i.i.d. across different tasks according to Proposition 4.1 and Assumption 4. Therefore, with infinite
number of tasks (and, thus, infinite number of samples from the joint distribution Z1,Z2,Z3), we
can know the exact distribution parameters of any statistics about Z1,Z2, and Z3. We can then
establish the following three equations.

(1) First-order equation: The first equation is based on the distribution of Z . Let
α−i := Pr[Z = 1]. α−i can be expressed as a function of e+z , e

−
z via spelling out the conditional ex-

pectation:

α−i = p · Pr[Z = 1|Y = 1] + (1 − p) · Pr[Z = 1|Y = 0] = p · (1 − e+Z ) + (1 − p) · e−Z . (4)

(2) Matching between two prediction signals: The second equation is based on a second-
order statistic called the matching probability. We consider the matching-on-1 probability ofZ1,Z2,
that is, the matching-on-1 probability of the prediction signals from two uniformly randomly
picked peer agents of agent i). Let β−i := Pr[Z1 = 1,Z2 = 1]. It can be written as a function of

e−z , e
+
z as follows:

β−i = p · Pr [Z1 = 1,Z2 = 1|Y = 1] + (1 − p) · Pr [Z1 = 1,Z2 = 1|Y = 0]

= p · Pr [Z1 = 1|Y = 1] · Pr [Z2 = 1|Y = 1] + (1 − p) · Pr [Z1 = 1|Y = 0] Pr [Z2 = 1|Y = 0]

= p · (1 − e+z )2 + (1 − p) · (e−z )2. (5)

(3) Matching among three prediction signals: The third equation is obtained by go-
ing one order higher. We check the matching-on-1 probability over three prediction signals
Z1,Z2,Z3 uniformly randomly drawn from three different peer agents on the same task. Let
γ−i := Pr[Z1 = Z2 = Z3 = 1]. Similar to Equation (5), we have that

γ−i = p · (1 − e+z )3 + (1 − p) · (e−z )3. (6)
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ALGORITHM 1: e+z , e
−
z solver

Input: α−i , β−i ,γ−i ,1(p > 0.5)
Output: e+z , e

−
z

1: Compute the following quantities:

a :=
γ−i − α−iβ−i

β−i − (α−i )2
, b :=

α−iγ−i − (β−i )2

β−i − (α−i )2
.

2: Let

x :=
a −
√
a2 − 4b

2
, x :=

a +
√
a2 − 4b

2
,p ′ :=

α−i − x
x − x

3: If 1(p ′ > 0.5) = 1(p > 0.5), then e+z = 1 − x , e−z = x , else e+z = 1 − x , e−z = x .

Note that all three parameters α−i , β−i ,γ−i can be perfectly estimated using S−i with an infinite
number of tasks and agents yet without accessing any of the ground truth. With the knowledge
of these three parameters, we prove the following:

Theorem 6.3. p, e−z , e
+
z are uniquely identified by Equations (4) to (6) under Assumption 3 (p �

0.5 and the principal knows whether p > 0.5 or not). The solution is in the closed form shown in

Algorithm 1.

Proof. Let x− := e−z , x
+ := 1 − e+z . Recall the three equations we have:

α−i = (1 − p) · x− + p · x+ (7)

β−i = (1 − p) · (x−)2 + p · (x+)2 (8)

γ−i = (1 − p) · (x−)3 + p · (x+)3. (9)

We can rewrite the three equations as

α−i − x+ = (1 − p) (x− − x+) (10)

β−i = (1 − p) (x− − x+) (x− + x+) + (x+)2 (11)

γ−i = (1 − p) (x− − x+)
(
(x−)2 + x− · x+ + (x+)2

)
+ (x+)3. (12)

Plugging Equation (10) into Equations (11) and (12) and reorganizing the two equations, we have,
respectively, that

β−i = α−i (x− + x+) − x− · x+ (13)

γ−i = α−i

(
(x− + x+)2 − x− · x+

)
− x− · x+ (x− + x+). (14)

Let

x− + x+ = a, x− · x+ = b .

Then, we have that a =
b+β−i

α−i
from Equation (13). Note that a is well defined, as o.w. if α−i = 0, we

have to have that x− = x+ = 0, which leads to e−z + e
+
z = 1, a contradiction.

Substituting x− + x+ and x− · x+ with
b+β−i

α−i
and b correspondingly in Equation (14), we have

that

α−i ·
(

(b + β−i )2

(α−i )2
− b

)
− b · b + β−i

α−i
= γ−i (15)
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⇒ (b + β−i )2

α−i
− b · α−i −

b2

α−i
− b · β−i

α−i
= γ−i (16)

⇒
(
β−i

α−i
− α−i

)
b = γ−i −

(β−i )2

α−i
⇒ b =

α−iγ−i − (β−i )2

β−i − (α−i )2
. (17)

Thus, a =
b+β−i

α−i
=

γ−i−α−i β−i

β−i−(α−i )2 ,b =
α−iγ−i−(β−i )2

β−i−(α−i )2 . Then, from x− + x+ = a, x− · x+ = b, we have that

x+ =
a ±
√
a2 − 4b

2
,x− =

a ∓
√
a2 − 4b

2
,p =

α−i − x−
x+ − x− .

Thus, we have two pairs of solutions for the error rates and the prior:

e+z, (1) = 1 − a +
√
a2 − 4b

2
, e−z, (1) =

a −
√
a2 − 4b

2
,p(1) =

α−i − e−z, (1)

1 − e+
z, (1)
− e−

z, (1)

e−z, (2) = 1 − e+z, (1), e
+
z, (2) = 1 − e−z, (1),p(2) = 1 − p(1).

As in these two solutions, the values for the prior is symmetric with regard to 0.5. Thus, by
Assumption 3, the principal can identify the unique correct solution from the two. �

We can continue to establish higher-order equations. However, we show that they do not provide
additional information about the three unknown variables, p, e+z , and e−z .

Theorem 6.4. Any higher-order (≥4) matching equations can be expressed by the first- to the third-

order equations, Equations (4) to (6).

Proof. We follow the shorthand notations as in the proof of Theorem 6.3. The n-th equation is

Pr[Z1 = · · · = Zn = 1] = (1 − p) (x−)n + p (x+)n .

For n ≥ 4, the right-hand side of the equation can be expressed as

(1 − p) (x−)n + p (x+)n =
(
(1 − p) (x−)n−1 + p (x+)n−1

)
(x− + x+)

− x− · x+
(
(1 − p) (x−)n−2 + p (x+)n−2

)
= Pr[Z1 = · · · = Zn−1](x− + x+)

− Pr[Z1 = · · · = Zn−2]x− · x+.

As we know from the proof of Theorem 6.3, x− + x+ and x− · x+ are uniquely determined by the
first three equations, ithat is, Equations (4) to (6) (no matter whether Assumption 3 is made or not).
Therefore, by induction starting from n = 4, the n-th equation can be expressed by the first three
equations. �

Now we have completed our SSR mechanisms. The full version of the mechanisms is presented
in Mechanism 2. Intuitively speaking, Theorem 6.3 shows that without ground truth data, know-
ing how frequently agents’ predictions reach consensus with each other will help us characterize
the (average) subjective biases in their reports. Furthermore, it implies that SSR mechanisms are
asymptotically (in m,n) preserving the information quantification property that SPSRs have, that
is, EZ [R (qi,k ,Z )] = EY [S (qi,k ,Y )], and that SSR mechanisms induce truthful reporting as the
unique best uniform strategy for an agent, when Z is informative (i.e., 1 − e+z − e−z � 0), and as a
best strategy otherwise. Formally, we have the following theorem.
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Mechanism 2: SSR mechanisms

1: For each task k , uniformly randomly pick at least 3 agents, assign task k to them, collect their
reported predictions qi,k , and generate the prediction signal Si,k for each prediction.

2: For each agent i and each task k the agent answers, uniformly randomly select one prediction
signal S j,k from the agent’s peers’ prediction signals on the same task and let the reference
report Zi,k := S j,k .

3: Establish Equations (4) to (6) and solve out the error rates e−zi
, e+zi

for Zi,k for any k using
Algorithm 3.

4: Pay each agent i’s prediction qi,k on each task k the agent answers by applying SSRα with qi,k

and the noisy estimate Zi,k with error rates e+zi
, e−zi

if e+zi
+ e+zi

� 1, and pay 0, otherwise.

Theorem 6.5. Under Assumptions 1 to 4, SSR mechanisms are dominant uniform strategy truth-

ful with an infinite number of tasks and agents. Furthermore, for any agent i and task k , if the

average prediction of all other agents is informative, that is, e+z + e−z � 1 for the noisy estimate

of the ground truth Zi,k constructed for agent i , then the expected score of SSR mechanisms for

agent i’s prediction on a task is equal to the expected score given by the corresponding SPSR S :

∀qi,k ∈ [0, 1],EZi,k
[R (qi,k ,Zi,k )] = EYk

[S (qi,k ,Yk )].

Proof. Recall that in Assumption 4, we assume that each agent adopts the same reporting strat-
egy across tasks. As long as this assumption is satisfied, for an agent i , no matter what exact
strategy the other agents play, we can always correctly estimate the error rates e+z and e−z of the
reference report Z constructed for agent i , according to Theorem 6.3. Furthermore, by Lemma 6.1,
Z is independent from agent i’s belief conditioned on the ground truth. Therefore, according to
Theorem 5.6, when e+z +e

−
z � 1, that is, the other agents’ average prediction is informative about the

ground truthY , SSRs give agent i’s prediction qi,k a reward unbiased to the expected reward given
by the corresponding SPSR, that is, ∀qi,k ,EZi,k

[R (qi,k ,Zi,k )] = EYk
[S (qi,k ,Yk )]. Consequently,

truthful reporting strictly maximizes the expected reward of agent i . When e+z + e
−
z = 1, that is,

the other agents’ average prediction is uninformative about Yk for task k , SSR mechanisms always
reward agent i zero, where truthful reporting also maximizes the expected reward of agent i . Thus,
SSR mechanisms are dominant uniform strategy truthful. �

Remark 1. Theorems 6.3 and 6.5 rely on Proposition 4.1 and Assumptions 3 and 4. Proposition 4.1
and Assumption 4 guarantee that there is a similar information pattern across the predictions of
different tasks that we can learn to infer the ground truth. Therefore, they can be hardly relaxed in
IEVW settings. For Assumption 3, we’d like to argue that at least one bit of information is needed
in order to distinguish the case in which agents are truthfully reporting from the case in which
agents are misreporting by reverting their observations. This is because for any distribution of
the observed reports of agents resulting from a world with parameters (p, e+z , e

−
z ) and with agents

reporting truthfully, there always exists the following counterfactual world achieving the same
distribution of the observed reports of agents: a world with parameters (1 − p, 1 − e−z , 1 − e+z ) and
with agents misreporting predictions via relabelling 0 → 1 and 1 → 0. Thus, the mechanism
designer cannot tell the two worlds apart from only the observed reports. Some studies [20, 23]
relax Assumption 3 by allowing the truthful reporting strategy to weakly dominate this “relabeling
equilibrium.”

We will show in the next section that SSR mechanisms are also dominant uniform strategy truth-
ful with a finite number of tasks and agents under mild conditions. Several remarks follow. (1) We
would like to emphasize again that for an agent i , bothZ and R (·) come from the prediction signals
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of the agent’s peer agents’ reports S−i : Z is directly picked from S−i ; R (·) depends on the error
rates e+z and e−z of Z , which are also learnt from S−i . (2) When making reporting decisions under
SSR mechanisms, agents can choose to be oblivious of how much error presents in others’ reports,
because truthful reporting is the dominant strategy, that is, no matter what uniform reporting strat-
egy other agents play, truthful reporting always maximizes the expected reward. This removes the
practical concern of implementing truthful reporting as a particular Nash Equilibrium when there
exists a non-truthful reporting equilibrium. (3) Another salient feature of SSR mechanisms is that
they transfer the cognitive load of having prior knowledge from the agent side to the mechanism
designer side. Yet we do not assume that the designer has exact knowledge of the prior either (but
the knowledge of whether the prior is greater than 0.5 or not). Instead, we will leverage the power
of estimation from reported data to achieve our goals.

6.3 Finite Sample Analysis

With finite m,n, we use the same procedure as shown in Algorithm 1 to estimate the error rates
e+z , e

−
z for each agent, except that we cannot have the exact value for α−i , β−i ,γ−i but only with

finite-sample estimates for them. Specifically, for agent i , letting k1,k2,k3 (which could be different
on different tasks) be the three agents whose prediction signals are selected as Z1,Z2,Z3 on each
task k ∈ [M],3 we estimate that

α̃−i =

∑m
k=1

1(Sk1,k = 1)

m
, β̃−i =

∑m
k=1

1(Sk1,k = Sk2,k = 1)

m
, γ̃−i =

∑m
k=1

1(Sk1,k = Sk2,k = Sk3,k = 1)

m
.

We then use these three values to replace α−i , β−i ,γ−i , respectively, in Algorithm 1 to solve Equa-

tions (4) to (6). We denote the resulting error rates as ẽ+z and ẽ−z and the corresponding SSRα using

these error rates as R̃ (·).
There are two reasons that these finite-sample estimates ẽ+z and ẽ−z are not equal to the exact

true error rates e+z and e−z for Z . First, in constructing Equations (4) to (6), the error rates of two
randomly picked prediction signals Z2,Z3 will not have the exact same error rates with Z , as

these signals come from a slightly different agent pool. Second, α̃−i , β̃−i , γ̃−i are not exactly equal
to α−i , β−i ,γ−i with finite samples. However, we will show that the errors induced by these two
factors in estimating the error rates diminish withm and n. Consequently, the SSR computed using

ẽ+z , ẽ
−
z also have a small and diminishing error towards the SSR computed with the exact error rates

e+z , e
−
z .

Lemma 6.6. ẽ+z , ẽ
−
z given by Algorithm 1 using α̃−i , β̃−i , γ̃−i satisfy that for an arbitrary δ ∈ (0, 1),

with probability at least 1 − δ , |ẽ+z − e+z | ≤ ϵ, |ẽ−z − e−z | ≤ ϵ for some ϵ = O ( 1
n
+

√
ln 1

δ

m
), which can

be made arbitrarily small with increasing m and n.

Proof Sketch. We present the high-level idea of our proof here and defer the complete proof
to the appendix. We consider the two aforementioned errors separately. Both can be transformed
to a diminishing error attaching to the evaluation of α−i , β−i , and γ−i . This diminishing noise in
α−i , β−i , andγ−i can then be transformed into a diminishing error in the final solution of e+z , e

−
z . �

Next, we show that the deviations of the rewards of SSR mechanisms due to the imperfect esti-
mation of the error rates in the finite sample case can also be bounded to be arbitrarily small. We

first deal with a special case: even if 1 − e+z − e−z is far from zero, the estimated 1 − ẽ+z − ẽ−z in the
denominator of SSRα can be arbitrarily close to zero by coincidence. In this case, agents can have

3In practice, we need to assign task k to these three randomly selected agents only.
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unbounded scores, which may be far from the exact scores that agents should obtain when the es-
timation is perfect. To address this special case, the principal can select a threshold κ greater than

but close to zero and pay agents zero when |1 − ẽ+z − ẽ−z | < κ instead of just when 1 − ẽ+z − ẽ−z = 0.
As a result, the final reward of each agent is always bounded. Next, we introduce a lemma that we
will use in our proof.

Lemma 6.7. ∀l1, l2, t1, t2 ∈ [−1, 1], t1, t2 � 0,
��� l1

t1
− l2

t2

��� ≤ |l1−l2 |+ |t1−t2 |
|t1t2 |

Proof.
��� l1

t1
− l2

t2

��� = ��� l1t2−l2t1

t1t2

��� = ��� l1t2−l2t2+l2t2−l2t1

t1t2

��� ≤ |t2 | |l1−l2 |+ |l2 | |t2−t1 |
|t1t2 | ≤ |l1−l2 |+ |t1−t2 |

|t1t2 | �

This lemma is an extension of Lemma 7 in [25], which considers the case in which all variables
are non-negative. Now we present our main theorem about the diminishing error in estimating
the SSR scores.

Theorem 6.8. For a bounded SPSR S (·) with supremum max S , for an arbitrary δ ∈ (0, 1), and

some ϵ = O ( 1
n
+

√
ln 1

δ

m
) such that with probability at least 1 − δ , |ẽ+z − e+z | ≤ ϵ, |ẽ−z − e−z | ≤ ϵ , let m

and n be sufficiently large such that ϵ ≤ |1 − e−z − e+z |/4, the SSR mechanism built upon S (·) satisfies,

with probability at least 1 − δ , that

|R̃ (qi,k ,Z ) − R (qi,k ,Z ) | ≤ 12 max S

Δ2
· ϵ, ∀i ∈ [n],k ∈ [m],qi,k ∈ [0, 1],Z ∈ {0, 1},

where Δ = |1 − e−z − e+z |. Furthermore, taking over all of the randomness in the score, we have that

���E[R̃ (qi,k ,Z )] − E[S (qi,k ,Z )]��� = O �� 1

N
+

√
lnm

m
�	 ,∀i,k .

Proof. This proof is straightforward following the error rate bounding result (Lemma 6.6). We
use sдn(Z ),Z ∈ {0, 1} as the superscript, where sдn(0) refers to superscript “−” and sдn(1) refers
to superscript “+”.

Consider an arbitrary agent i and a task k ; we have that

|R̃ (qi,k ,Z ) − R (qi,k ,Z ) | =
������
�

1 − �
e

sдn (1−Z )
z

1 − ẽ+z − ẽ−z
− 1 − esдn (1−Z )

z

1 − e+z − e−z
��	 S (qi,k ,Z )

− �
�


e

sдn (Z )
z

1 − ẽ+z − ẽ−z
− e

sдn (Z )
z

1 − e+z − e−z
��	 S (qi,k , 1 − Z )

�����
≤
�����1 −

�
e

sдn (1−Z )
z

1 − ẽ+z − ẽ−z
− 1 − esдn (1−Z )

z

1 − e+z − e−z

�����max S

+
�����



e

sдn (Z )
z

1 − ẽ+z − ẽ−z
− e

sдn (Z )
z

1 − e+z − e−z

�����max S .

Since ϵ ≤ (1 − e−z − e+z )/4, we know that

|1 − ẽ+z − ẽ−z | ≥ |1 − e−z − e+z |/2.
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Thus, with probability at least 1 − δ ,

�����1 −
�
e

sдn (1−Z )
z

1 − ẽ+z − ẽ−z
− 1 − esдn (1−Z )

z

1 − e+z − e−z

����� ≤
����� �esдn (1−Z )

z − esдn (1−Z )
z

����� + ���ẽ+z + ẽ−z − e+z − e−z ���
|(1 − ẽ+z − ẽ−z ) (1 − e+z − e−z ) |

≤ 3ϵ

|(1 − ẽ+z − ẽ−z ) (1 − e+z − e−z ) |
≤ 6ϵ

Δ2
.

In these inequalities, the first “≤” follows Lemma 6.7, the second follows Lemma 6.6, and the third

follows |1 − ẽ+z − ẽ−z | ≥ |1 − e−z − e+z |/2. Similarly, we have that

�����


e

sдn (Z )
z

1 − ẽ+z − ẽ−z
− e

sдn (Z )
z

1 − e+z − e−z

����� = 6ϵ

Δ2
.

Plugging back, we have proved the claim that with probability at least 1 − δ ,

|R̃ (qi,k ,Z ) − R (qi,k ,Z ) | ≤ 12ϵ ·max S

Δ2
, ∀qi,k ∈ [0, 1],Z ∈ {0, 1}.

As E[S (qi,k ,Z )] = E[R (qi,k ,Z )], letting δ = 1
m

, we have the expected error |E[R̃ (qi,k ,Z )] −

E[S (qi,k ,Z )]| bounded by O ((1 − 1
m

) ( 1
n
+

√
ln m
m

) + 1
m

) = O ( 1
m
+

√
ln m
m

). �

Theorem 6.8 indicates that the errors of the expected scores given by SSR mechanisms wwith
regard to the expected score given by the underlying SPSR can be made arbitrarily small with
sufficiently large m and n. As a result, for arbitrarily discretized report space of a prediction, SSR
mechanisms are still dominant uniform strategy truthful with finite but sufficiently largem and n.
To see this, we can make the error smaller than the minimum absolute difference of the SPSRs of
any two allowed probability reports. In this way, there will be no beneficial deviation for agents to
report non-truthfully. This result considers the reality that in real surveys, agents are often allowed
to specify at most two decimal digits for probabilistic predictions.

Corollary 6.9. For discretized report space of probabilistic predictions, SSR mechanisms that are

built upon bounded SPSRs are dominant uniform strategy truthful for finite but sufficiently large m
and n.

7 GENERALIZATIONS TO MULTI-OUTCOME TASKS

In this section, we discuss how to extend SSR and SSR mechanisms to the multi-outcome, multi-
task setting. A multi-outcome task asks agents to provide predictions about a multi-outcome ran-
dom variable Y , which takes value from a finite support set [c] = {0, . . . , c − 1} with c > 2. A noisy
estimate Z ∈ [c] of the ground truth Y is characterized by a confusing matrix:

Ez =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
e0,0 e0,1 . . . e0,c−1

e1,0 e1,1 . . . e1,c−1

. . . . . . . . . . . . . . . . . . . . . . . . . .
ec−1,0 ec−1,1 . . . ec−1,c−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where eu,v represents the flipping probability of Z with regard to Y , that is, eu,v = Pr[Z = v |Y =
u],∀u,v ∈ [c].
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7.1 Generalization of SSR

The SSRs for a task with c outcomes are defined as follows. Let Δc−1 be the (c − 1)-dimension

probability simplex, that is, Δc−1 :=
{
(x0, . . . ,xc−1) |∑c−1

i=0 xi = 1,x0, . . . ,xc−1 ≥ 0
}
.

Definition 7.1 (Surrogate Scoring Rules). R : Δc−1 × [c]→ R is an SSR for a c-outcome task if for
some strictly proper scoring rule S : Δc−1 × [c]→ R and a strictly increasing function f : R→ R,
the following equation holds:

∀p, q ∈ Δc−1,∀Ez ∈ [0, 1]c×c (Ez is invertible) : EZ [R (q,Z )] = f (EY [S (q,Y )]),

where the ground truth Y is drawn from Categorical(p) and Z is a noisy estimate of Y with con-
fusing matrix Ez .

We have the following theorem immediately.

Theorem 7.2. Given the prior p of the ground truth Y and a private signal Oi , SSR R (q, z) with a

noisy estimate Z of the ground truth is strictly proper for eliciting an agent’s posterior pi := Pr[Y |Oi ]
if Z and Oi are independent conditioned on Y and Ez is invertible.

Now we give an implementation of SSR, SSRα , for a c-outcome task. Let S (qi ) be the vector of
SPSR scores for a prediction qi ∈ Δc−1 under each realization of Y , that is, S (qi ) := (S (qi ,Y =
0), . . . , S (qi ,Y = c − 1)). Similarly, let R (qi ) := (R (qi ,Z = 0), . . . ,R (qi ,Z = c − 1)). Our implemen-
tation SSRα goes as follows:

R (qi ) := (Ez )−1S (qi ).

Clearly, for SSRα we have that S (qi ) = Ez · R (qi ), which gives

∀v ∈ [c], S (qi ,Y = v ) =
c−1∑
k=0

ev,kR (qi ,Z = k ) = EZ |Y=v [R (qi ,Z )].

Lemma 7.3. For SSRα : ∀v ∈ [c],EZ |Y=v [R (pi ,Z )] = S (pi ,Y = v ).

Theorem 7 follows immediately.

Theorem 7.4. SSRα is an SSR for a multi-outcome task, and for any distribution p ∈ Δc−1 of the

ground truth Y and for any invertible confusing matrix Ez of a noisy estimate Z of the ground truth,

we have that ∀q ∈ Δc−1,EZ [R (q,Z )] = EY [S (q,Y )].

A detailed example of SSRα for a three-outcome task follows.

Example 7.5. Let c = 3 and let the confusing matrix of a noisy signal Z be

Ez =

⎡⎢⎢⎢⎢⎢⎣
0.5 0.25 0.25
0.25 0.5 0.25
0.25 0.25 0.5

⎤⎥⎥⎥⎥⎥⎦ ⇒ (Ez )−1 =

⎡⎢⎢⎢⎢⎢⎣
3 −1 −1
−1 3 −1
−1 −1 3

⎤⎥⎥⎥⎥⎥⎦ .
We obtain a closed form of SSRα :

R (q,Z = 0) := 3S (q, 0) − S (q, 1) − S (q, 2)

R (q,Z = 1) := −S (q, 0) + 3S (q, 1) − S (q, 2)

R (q,Z = 2) := −S (q, 0) − S (q, 1) + 3S (q, 2)
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7.2 Generalization of SSR Mechanisms

SSR mechanisms can also be extended to multi-outcome tasks and maintain the two properties
we pursue: the dominant uniform strategy truthfulness and qualifying the value of information as
what SPSRs do.

We consider the same setting of information structures under Assumptions 1 to 3, except that
Yk ,k ∈ [m] in these assumptions are c-outcome categorical random variables, agents’ beliefs are
categorical distributions, and, in Assumption 3, the prior probabilities of Yk being each outcome
is different and the principal knows the order of these prior probabilities. As we have shown that
SSRs can be extended to multi-outcome events, to construct the corresponding SSR mechanism,
we just need to construct the corresponding noisy estimate Z of the ground truth and estimate the
confusion matrix Ez for multi-outcome tasks.

The noisy estimate Z for an agent i on task k can be constructed similar to that of the
counterpart in the binary case, that is, we uniformly randomly pick an agent j � i and draw
Z ∼ Categorical(qj,k ), where qj,k is the reported distribution of Yk from agent j. Then, the con-

fusion matrix can also be estimated using the method of moments. However, as there are c2 − 1
unknown parameters in the confusion matrix Ez and the prior p of Yk , we have to establish c2 − 1
equations. These equations could be solved numerically. These c2 − 1 equations will have c! real-
value symmetric solutions, each corresponding to a permutation of the labeling of the c outcomes.
To identify the unique solution that yields the true confusion matrix and the prior of Y , that is, to
identify the correct labeling of the outcomes, the principal has to know the order of the prior prob-
abilities of Yk being each outcome, as what we assume in Assumption 3 for multi-outcome tasks.
Thus, with the multi-task variant of Assumptions 1 to 3, we can still construct a noisy estimate Z
of the ground truth, estimate its confusion matrix, and apply SSRs to obtain unbiased estimates of
agents’ scores given by the underlying SPSRs.

Despite the positive result in theory, there are some caveats of applying SSR mechanisms to
multi-outcome tasks. First, Assumption 1 essentially assumes that the confusion matrix of an agent
is homogeneous across different tasks. However, as there is no clear correspondence between the
labels of the outcomes of different tasks, the confusion matrix of the noisy estimate Z for an agent
is less likely to be homogeneous across different tasks. Therefore, the real data can deviate far
from Assumption 1. Second, as there are more parameters in the confusion matrix to estimate in
the multi-task case than in the binary case, we need a much larger number of agents and tasks and
denser predictions to maintain decent estimation accuracy. Third, to apply an SSR mechanism to
multi-outcome tasks, these tasks have to have the same number of outcomes. However, in most
crowd forecasting projects, the number of multi-outcome tasks with the same number of outcomes
is much smaller than the number of binary questions and may not be sufficient to make an accurate
estimation of the confusion matrix. These caveats leave a massive space for future research.

8 EMPIRICAL STUDIES

Using 14 real-world human forecasting datasets, we empirically examine the performance of SSR
mechanisms in revealing agents’ prediction accuracy in terms of SPSRs. We focus on three as-
pects: the unbiasedness of SSR, the correlation of SSR scores to SPSR scores, and the accuracy of
SSR in selecting true top forecasters in terms of SPSRs. We also compare the performance of SSR
mechanisms to several existing peer prediction mechanisms. The overall results show that our SSR
mechanisms have an advantage in recovering SPSRs.

8.1 Setting

8.1.1 Datasets. We conduct our experiments on 14 datasets from three human forecasting and
crowdsourcing projects: the Good Judgment Project (GJP), the Hybrid Forecasting Competition
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(HFC), and the human judgment datasets collected by the Massachusetts Institute of Technology
(MIT). These three projects differ in participant population, forecasting topics, and elicitation meth-
ods, offering a rich environment for empirical evaluation.

GJP datasets [3]. The GJP data consists of four datasets for geopolitical forecasting questions.
The four datasets, denoted by G1∼G4, were collected from 2011 to 2014, respectively. They contain
different sets of forecasting questions and forecasters.

HFC datasets [16]. We use the forecast data of team participants in the Hybrid Forecasting
Competition. The data consist of three datasets, denoted by H1∼H3, referring to the forecasting
data collected in the preseason competition, the first competition, and the second competition,
respectively. The the preseason competition lasted half a year, and the two formal competitions
lasted around one year. The three datasets have different forecasting questions and partially over-
lapped participating teams.

MIT datasets [32]. The MIT data consist of seven datasets, denoted by M1a, M1b, M1c, M2,
M3, M4a, M4b. Each dataset uses one of four sets of questions and has a different participant pool.
The questions range from guessing the capital of each state and predicting the price interval of
artworks to some trivia questions. The forecasters were students in class and colleagues in labs.
In datasets M1a, M1b, M4a, M4b, forecasters report only binary votes on forecasting questions. In
datasets M1c, M2, M3, forecasters give probabilistic predictions.

Both GJP and HFC allow participants to make daily forecasts. For testing peer prediction mech-
anisms in our setting, we need to use only a single prediction for each participant on a forecasting
question. In our experiments, we mainly focus on the final prediction of each participant made on
each question (i.e., the last prediction made by each participant before the close date of the corre-
sponding forecasting question) in these two projects. At the end of Section 8.2, we complement our
analysis by verifying the robustness of SSRs with respect to the choice of the time the predictions
are made. Also, we focus on the forecasting questions that have binary outcomes in these datasets.
To have a relatively stable estimation over the accuracy of agents, we filter out participants who
made predictions on less than 15 questions. The basic statistics of these datasets are presented in
Table 1.

8.1.2 SPSRs. We consider three SPSRs — the Brier score, the log scoring rule, and the rank-sum
scoring rule –because of their usage in practice and connections to machine learning concepts. The
first two are the most widely adopted scoring rules. They are equivalent to two main loss functions,
the squared error and the cross-entropy loss, respectively, used in the machine learning community.
The rank-sum scoring rule can be written as an affine transformation of the area under the receiver
operating characteristic curve (AUC-ROC),4 which is also a widely adopted accuracy metric in the
machine learning community.

In our experiments, we adopt the conventional formula of the Brier score used in the GJP and
HFC projects. The Brier score ranges from 0 to 2, with a smaller score corresponding to higher
accuracy. This is different from using SPSRs as a payment method, in which case, the higher the
better. We can transfer between these two usages by applying a negative scalar. We orient the log
scoring rule and the rank-sum score rule in the same direction as the Brier score, with a minimum
(best) score of 0. The exact formula for each scoring rule is as follows: Recall that qi,k and Yk

4The affine transformation coefficients are determined by the numbers of tasks with ground truth 1 and ground truth 0

according to Equations (12) and (13) [30]. Thus, when evaluating agents’ prediction accuracy on the same set of answered

questions, the rank-sum scoring rule is equal to the AUC-ROC for each agent up to the same affine transformation de-

termined by the ground truth of the questions. However, the AUC-ROC itself is not an SPSR, as when considering the

incentive, the affine transformation coefficients may differ in different agents’ beliefs.
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Table 1. Statistics about Binary-Outcome Datasets from GJP, HFC, and MIT Datasets

Items G1 G2 G3 G4 H1 H2 H3 M1a M1b M1c M2 M3 M4a M4b

# of questions (original) 94 111 122 94 44 86 203 50 50 50 80 80 90 90
# of agents (original) 1,972 1,238 1,565 7,019 79 317 222 51 32 33 39 25 20 20

After applying the filter

# of questions 94 111 122 94 44 86 203 50 50 50 80 80 90 90
# of agents 1,409 948 1,033 3,086 79 316 222 51 32 33 39 25 20 20

Avg. # of answers per question 851 533 369 1,301 71 295 220 51 32 33 39 18 20 20
Avg. # of answers per agent 57 62 44 40 39 80 201 50 50 50 80 60 90 90

Majority vote correct ratio (%) 0.90 0.92 0.95 0.96 0.93 0.93 0.86 0.58 0.76 0.74 0.61 0.68 0.62 0.72

are agent i’s prediction and the ground truth for task k , respectively, and [mi ] is the set of tasks
answered by agent i .

• Brier score: SBrier (qi,k ,Yk ) = 2(qi,k − Yk )2. We use the mean Brier score, 1
mi
·∑

k ∈[mi ] S
Brier (qi,k ,Yk ), to represent an agent’s overall accuracy under the Brier score over

the set of tasks the agent answered.
• Log scoring rule: S log (qi,k ,Yk ) = Yk log(qi,k ) + (1 − Yk ) log(1 − qi,k ). We use the mean

log score, 1
mi

∑
k ∈[mi ] S

log (qi,k ,Yk ), to represent an agent’s overall accuracy under the long

scoring rule over the tasks the agent answered. As the log scoring rule is unbounded when
the forecast predicts the opposite of the ground truth, we change all forecasts of 1 to 0.99
and forecasts of 0 to 0.01 to ensure that the score is always a real number.
• Rank-sum scoring rule is a multi-task scoring rule. For a single task k , it assigns a score

S rank (qi,k ,yk ) = −yk ·ψ
(
qi,k |{qi,k ′ }k ′ ∈[mi ]

)
,

whereψ (qi,k |{qi,k ′ }k ′ ∈[mi ]) :=
∑

k ′ ∈[mi ] 1(qi,k ′ < qi,k )−∑k ′ ∈[mi ] 1(qi,k ′ > qi,k ) is the rank of

prediction qi,k among all predictions from agent i . Then, agent i’s rank-sum score S rank
i is de-

fined as S rank
i =

∑
k ∈[mi ] S

rank (qi,k ,Yk ).5 The range of the score increases with the number of

answered tasks quadratically thus; we use the normalized score 1+ 4
m2

i

S rank
i with range [0, 2].

8.1.3 Treatments. Though existing peer prediction methods are not designed for recovery of
SPSRs, we add comparisons to them for completeness of our study.6 In particular, we would like to
understand whether in practice SSR mechanisms have the advantage of revealing the true scores
given by SPSRs while not accessing ground truth information.

In our experiments, we consider four popular existing peer prediction methods serving as
comparisons to SSRs: proxy scoring rules (PSRs) with extremized mean [47], peer truth serum
(PTS) [35], correlated agreement (CA) [42], and determinant mutual information (DMI) [20].

PSRs are to directly apply the SPSRs with respect to an unbiased proxy of the ground truth. When
the principal knows no unbiased proxy, Witkowski et al. [47] recommend using the extremized
mean of the reported predictions to serve as the proxy. In our experiments, we adopt the same

formula for the extremized mean as in their experiments [47], that is,
q̄2

k

q̄2
k
+(1−q̄k )2 , where q̄k is the

average reported prediction on task k . Using different SPSRs as the underlying scoring rule, we
can get different PSRs and SSRs.

5The AUC-ROC of agent i is 1
2 (1 − 1

m+
i

(mi−m+
i

)
S rank

i ), where mi+ :=
∑

k ′∈[mi ] 1(Yk ′ = 1) (given by Equations (12) and

(13), [30]).
6We do not intend to claim that our mechanism is better in any sense, as it would be an unfair comparison since the goals

were different in each design of these mechanisms. For example, the mechanisms [20, 42] can characterize determinant

mutual information between an agent’s reports and the underlying ground truth.
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PTS, CA, and DMI do not depend on SPSRs and are designed to elicit categorical labels instead
of probabilistic predictions. Thus, we make the following adaptation for them to take probabilistic
predictions as inputs. Our adaptation is based on the fact that, in essence, these mechanisms all
appreciate the joint distribution of agents’ reported labels to compute the scores: For a task k , an
agent who reports probability Pi,k believes that the true label of the task has probability Pi,k to be
1. Therefore, on this task, the joint probability of agent i’s believed true label and agent j’s believed
true label both being 1 is Pi,kPj,k , assuming their believed true labels are independent conditioned
on their predictions. In this way, we can compute the joint distribution of the believed true labels
of two peer agents on each task and their joint distribution over the whole dataset is the mean
of their joint distributions on each task. Using this joint distribution over the whole dataset, we
can compute the scores for PTS, CA, and DMI directly. This adaptation method for PTS, CA, and
DMI turns out to give better correlations between the scores of these three mechanisms and the
true SPSR scores than the alternative adaptation method of using the most likely categorical labels
indicated by the probabilistic predictions as inputs for these mechanisms (see how the correlations
shown in Figures A.1 and A.2 in the appendix – most likely labels as inputs – compare to the
correlations shown in Figures 2 and 3).

8.2 Main Results

Unbiasedness of SSR. Our theorem shows that under certain assumptions, the reward of an
SSR mechanism is unbiased to the reward of the SPSR that the SSR mechanism is built upon. How-
ever, it is unclear to what extent this unbiasedness holds in real datasets for which these assump-
tions are unlikely to hold strictly. Therefore, we empirically examine the concrete relationship
between SSR scores and the corresponding SPSR scores.

Figure 1 plots the score pairs received by forecasters in each of the 14 datasets. Each score
pair represents the SPSR score and the SSR score that an individual forecaster receives in a single
dataset. As can be seen, under each of the three SPSRs we test, the SSR scores demonstrate a salient
linear relationship to the true SPSR scores. We further draw a linear regression curve between the
SSR scores and the true scores for each of the three SPSRs of interest (the blue curves in Figure 1).
To draw this linear regression curve, we first cluster the score pairs into different groups based on
the value of the SPSR scores and compute the center point (the mean score pair) for each group,
represented by the orange triangles in Figure 1. Then, we regress on these center points.7 The three
regression curves demonstrate a slope of 0.74, 0.73, and 0.84, respectively, all with an intercept near
0. This result indicates that though the SSR scores are not exactly unbiased in real data, they still
follow an affine transformation of the true SPSR scores with decent approximate unbiasedness.

We also notice that under all three SPSRs, the SSR scores tend to underestimate the true scores
by around 20%. As the SSR scores follow an affine transformation of the SPSR scores empirically,
this underestimation can possibly be mitigated by applying a constant scaling factor (e.g., 1.25 as
suggested by our regression) without influencing the incentive properties of the SSR mechanisms.

Correlation with SPSR. We compare the correlations between agents’ SPSR scores and the
scores given by the five peer prediction mechanisms we test. We first measure the correlations on
each dataset independently using Pearson’s correlation coefficient (corr) and then classify them
into different levels based on the value of the coefficient. Finally, we count the number of datasets at

7The reason for clustering score pairs before regression is that the SPSR scores of forecasters are not distributed evenly

within the range of the SPSR score, with most forecasters’ SPSR scores falling in the low range of the SPSR score. Conse-

quently, drawing the regression curve directly on all score pairs will mainly reflect the regression pattern in the low range

of the SPSR score instead of the whole range. In fact, for each of the three SPSR tested, the corresponding SSR mechanism

obtains a regression slope closer to 1 at the low range of the SPSR score.
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Fig. 1. Regression of individuals’ true accuracy and SSR score over 14 datasets under 3 different SPSRs.

Fig. 2. The number of datasets in each level of correlation (measured by Pearson’s correlation coefficient)

between individuals’ peer prediction scores and different SPSRs.

different correlation levels for each peer prediction mechanism and present the results in Figure 2.
As can be seen, all five peer prediction mechanisms achieve a strong correlation (corr > 0.5) to
the SPSRs on half of the 14 datasets, while the SSR mechanisms demonstrate an even stronger
correlation pattern. In particular, the SSR mechanisms achieve a very strong correlation (corr > 0.8)
on 9 out of the 14 datasets under all 3 SPSRs, and achieve correlations in more datasets than other
mechanisms for each of the following levels: corr > 0.9, corr > 0.8, and corr > 0.5. The advantage
of SSRs in the correlation to SPSRs is most salient under the Brier score and is more salient when
compared with the PTS, CA, and DMI mechanisms than compared with the PSR mechanisms. We
observe similar results using Spearman’s rank correlation test (Figure 3), which implies that SSR
mechanisms also rank the agents similarly to SPSRs.

The performance of SSR mechanisms in reflecting the true SPSR scores depends on the accuracy
of estimating the error rates of the constructed noisy estimate of ground truth in SSR mechanisms.
This estimation accuracy depends on the number of prediction samples that SSR mechanisms have
access to. In our previous experiments, each task receives a considerable number of predictions
(no less than 20 on average), which may give an edge to the SSR mechanisms. However, a principal
with a limited budget can often collect only a small number of predictions for each task. Therefore,
we are also interested in comparing the performance of SSR mechanisms with other peer predic-
tion mechanisms when each task receives only a limited number of predictions. To simulate this
scenario, for each original dataset, we sample a subset of users to create a new dataset such that
each new dataset has an average of 4∼5 predictions per task with a minimum of 3 predictions,
which is the minimum number of predictions per task required by our SSR mechanisms.8 Figure 4

8To ensure a minimum of 3 predictions per task, we removed a small number of tasks that receive less than 3 predictions

by this sampling method. Over the 100 runs of random sampling, around 20 tasks are removed on average from each GJP

dataset, and no more than 2 tasks are removed from each of the other datasets in each run. This sampling operation keeps

a decent number of predictions for each agent, which allows a stable computation for the scores of SSR, PTS, CA, and DMI

mechanisms.
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Fig. 3. The number of datasets in each level of correlation (measured by Spearman’s correlation coefficient)

between individuals’ peer prediction scores and different SPSRs.

Fig. 4. The number of datasets in each level of correlation (measured by Pearson’s correlation coefficient)

between individuals’ peer prediction scores and different SPSRs on sampled datasets (the correlation is av-

eraged over 100 runs of random sampling).

shows the correlation results of each peer prediction mechanism based on the average Pearson’s
correlation coefficient over 100 runs of random sampling. As can be seen, overall, the correlations
between each peer prediction mechanism and the three SPSR in these sampled datasets decrease
when compared with the corresponding correlations in the original datasets. SSR mechanisms still
maintain a strong correlation (corr > 0.5) over half of the 14 datasets, while the other mechanisms
do not. However, the performance difference of SSR and other mechanisms shrinks. The PSR mech-
anisms outperform SSR mechanisms at two correlation levels, corr > 0.8 and corr > 0.9, under the
Brier score and the log scoring rule. In fact, the single-task PSR mechanisms demonstrate smaller
correlation decreases, indicating that they are more robust to the number of predictions than the
other four multi-task mechanisms.

Expert identification. SPSRs are sometimes used to identify top forecasters to assign prizes,
for example, in GJP and HFC. Moreover, accurate identification of true top forecasters without
access to the ground truth can help improve the aggregation accuracy when a principal wants to
aggregate forecasters’ predictions into a final prediction for each task [45]. Therefore, we examine
to what extent different peer prediction scores can identify top-performing experts in terms of the
true SPSRs without access to the ground truth.

In GJP and HFC, forecasters may answer different sets of forecasting questions. It is non-trivial
to compare forecasters’ performance when they answer different sets of questions whose difficulty
levels vary. Here, we use the mean peer prediction scores and mean SPSR scores to measure the
forecaster’s performance for simplicity, as our main purpose is to compare how close the evalu-
ation results will be when we use true SPSRs and when we use the SSR scores in the same way.
Though we are demonstrating the application of SSR in expert identification, it is a by-product
of its calibration property and we acknowledge that the identification might be affected by other
factors, including how agents selected the forecasting questions. In projects such as GJP, the or-
ganizers impute and standardize the scores for different questions and then prize the forecasters.
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Fig. 5. The portion of top t% forecasters with regard to 3 different metrics (mean squared loss, cross-entropy

loss, AUC-ROC loss) in the top t% forecasters selected by different methods (averaged over 14 datasets).

Fig. 6. The portion of bottom 50% forecasters with regard to 3 different metrics (mean squared loss, cross-

entropy loss, AUC-ROC loss) in the top t% users selected by different methods (averaged over 14 datasets).

Arguably, forecasters have no incentive to choose easy questions a priori, which alleviates the
evaluation bias induced by heterogeneous difficulty levels of the forecasting questions.

We first rank the forecasters according to one of the three SPSRs (when the rank-sum scoring
rule is chosen, we use the AUC-ROC instead to evaluate agents’ true accuracy because, as an
accuracy metric instead of an incentive device, AUC-ROC is much more popular than the rank-
sum scoring rule). We focus on two metrics about expert identification: (i) the percentage of top t%
forecasters identified by the SPSRs in the top t% forecasters selected by a peer prediction method,
and (ii) the percentage of below-average forecasters (the bottom 50% forecasters) under the SPSRs
in the top t% forecasters selected by a peer prediction method. The results are shown in Figures 5
and 6. For illustration, consider the left (Brier) pane of Figure 5. Of the top 10% forecasters according
to SSR, 40% are indeed in the top 10% according to the Brier score. We find that for both the Brier
score and the log score, there are more true top t% forecasters in the top t% forecasters selected by
SSR than in the top t% forecasters selected by other peer prediction mechanisms, when t% ranges
from 5% to 50%. Meanwhile, there are less true below-average forecasters in the top t% forecasters
under SSR and PSR mechanisms than under the other peer prediction mechanisms. For AUC-ROC,
while the SSR mechanism maintains a relatively smaller number of true below-average forecasters
in its top 10% to 15% forecasters, all 5 peer prediction mechanisms perform similarly, which echoes
the correlation results under the rank-sum scoring rule, in which the 5 peer prediction mechanisms
all achieve strong correlation in most of the datasets (Figure 2(c)).

Robustness of SSRs in temporal forecasting. The experiments just discussed use the final
forecasts of each participant in the two temporal forecasting projects, GJP and HFC. In this exper-
iment, we test whether our evaluation is robust to the choice of the prediction time in temporal
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Fig. 7. Regression and comparison of individuals’ mean Brier scores and SSR scores over 14 datasets when

the initial, average, and final predictions are used for GJP and HFC datasets.

Fig. 8. The number of datasets in each level of correlation (measured by Pearson’s correlation coefficient)

between individuals’ peer prediction scores and the Brier score when the initial, average and final predictions

are used for GJP and HFC datasets.

forecasting. In particular, we focus on the Brier score metric and redo the experiments shown
in Figures 1(a) and 2(a) while using the initial prediction and the average prediction (from the
open date to the close date of the forecasting question) of each participant instead of the final pre-
diction (see Figures 7 and 8).9 Figure 7 shows that the Pearson’s correlation coefficient between
SSRs and the Brier score decreases only slightly when the initial and average predictions are used.
Figure 8 shows that when we use earlier predictions, the correlations between the five peer pre-
diction scores and the Brier score slightly decrease, while SSRs still maintain a relative advantage
in correlation over other mechanisms.

9 DISCUSSION

In this article, we propose the SSR mechanisms such that truthful reporting one’s posterior belief
is a dominant strategy in the multi-task IEWV setting when each agent uses a consistent reporting
strategy across all tasks. Moreover, the reward of a prediction given by an SSR mechanism quan-
tifies the value of information in expectation as if the prediction is assessed by the corresponding
SPSR with access to the ground truth. Because of these two properties, our mechanisms are par-
ticularly suitable for information elicitation scenarios in which using SPSRs to reward agents is
favored but the ground truth is not available in time, such as forecasting long-term geopolitical
events and predicting the replicability of social science studies.

There are also some limitations of applying our models and mechanisms. First, our Assumption 2
requires agents’ signals on a task to be independent conditioned on the ground truthY . This implies
that our SSR mechanisms apply only to scenarios in which there is such an objective ground truth
or in which there is no objective ground truth but the agents’ signals are correlated only through
a single latent variable. An example of the latter is asking an agent how likely an essay is well

9Figures 1(a) and 7(c) are the same. Figures 2(a) and 8(c) are the same.
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written or not. Although whether an essay is well written may not have an objective answer, as
long as the agents’ signals are independent conditioned on a latent variable that captures the real
quality of the essay, our mechanisms should incentivize truthful reporting as a dominant strategy
when all agents adopt uniform strategies across tasks. In comparison, most existing multi-task
peer prediction mechanisms (e.g., [20, 35, 42]) that elicit categorical signals do not require agents’
signals to be correlated only through a latent variable. Instead, they allow a broader correlation
pattern (e.g., self-predicting [35]) or arbitrary correlations as long as signals are not completely
independent (e.g., [20, 42]).

Second, to estimate the error rates of the noisy estimate of the ground truth, our mecha-
nisms require at least three reports for each task. In contrast, several multi-task mechanisms (e.g.,
[6, 20, 35, 42]) need only one peer agent to achieve their incentive properties. Moreover, the vari-
ance of the rewards of SSR mechanisms depends on the number of tasks and reports that the
mechanisms have access to. A relatively large number of tasks and reports is needed to obtain a
low-variance reward for each agent. As can be seen from our empirical study, although SSR mech-
anisms still maintain better correlations to the true SPSR scores than the other mechanisms when
there are only a few reports per task, SSR mechanisms have a more salient correlation decrease
when compared with the case in which each task receives a sufficient number of answers. SSR
mechanisms are more sensitive to the size of the dataset. However, our analysis suggests that as
long as agents adopt uniform strategies across tasks, it is possible to learn the statistical patterns
of agents’ reports without influencing the incentive. Therefore, a future direction to mitigate SSR
mechanisms’ sensitivity to the amount of data is to develop or adopt more sophisticated estimation
algorithms that require fewer tasks and reports to achieve stable performance.

APPENDICES

A MISSING FIGURES

Fig. A.1. The number of datasets in each level of correlation (measured by Pearson’s correlation coefficient)

between individuals’ peer prediction scores and different SPSR when each probabilistic prediction is mapped

to the most likely binary vote with uniform random tie breaking.

Fig. A.2. The number of datasets in each level of correlation (measured by Spearman’s correlation coeffi-

cient) between individuals’ peer prediction scores and different SPSRS when each probabilistic prediction is

mapped to the most likely binary vote with uniform random tie breaking.
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B PROOF OF LEMMA 5.2

Proof. Suppose that z and y are not stochastically relevant; we have that

Pr[y = 0|z = 0] = Pr[y = 0|z = 1], (18)

Pr[y = 1|z = 0] = Pr[y = 1|z = 1]. (19)

From Equation (18), we know that

Pr[y = 0, z = 1]

Pr[z = 1]
=

Pr[y = 0, z = 0]

Pr[z = 0]
⇔

Pr[y = 0]e−z
Pr[z = 1]

=
Pr[y = 0](1 − e−z )

Pr[z = 0]
,

When Pr[y = 0] � 0, we hav that Pr[z=1]
Pr[z=0] =

e−z
1−e−z
. Similarly, from Equation (19), we have that

Pr[z=1]
Pr[z=0] =

1−e+z
e+z

, when Pr[y = 1] � 0. Therefore, we obtained that

e−z
1 − e−z

=
1 − e+z
e+z
,

from which we have that e−z + e
+
z = 1. Contradiction. The other direction follows similarly. �

C PROOF OF LEMMA 6.6

Proof. We consider the estimation of the error rates e+z , e
−
z of an agent i , and we con-

sider a generic task as tasks are a priori similar. Thus, in the proof, we drop the subscript

k , which indexes the tasks. There are two layers of estimation error in solving the system of Equa-

tions (4), (5), and (6):

• (1) Estimation error due to heterogeneous agents: The higher-order equations do not
capture the true matching probability with heterogeneous agents. As we draw Z2 and Z3

in a task without replacement, with a finite number of agents, Z2 and Z3 are dependent
on Z1, and the error rates of Z2 and Z3 are not exactly the same as the error rates of
Z1 (z).
• (2) Estimation errors due to finite estimation samples: The last sources of errors come

from the estimation errors of β̃−i , γ̃−i , and α̃−i .

Next, we bound the two errors separately.
(1) Estimation error due to heterogeneous agents: The challenge lies in the fact that

the higher-order equations do not capture the true matching probability with heterogeneous
agents.

We first consider Equation (5), which is not precise – randomly picking a prediction signal from
all agents without replacement leads to different error rates. This will complicate the solution
for the system of equations. We show that our estimation, though ignoring the above bias, will
not affect our results by much: Let k1 be the agent whose prediction signal is picked to be Z1.
Conditioned on agent k1 being picked and on reports q1, . . . ,qN , we have that Pr[Z1 = Z2 =

1|q1, . . . ,qN ,k1] = qk1
· (

∑
j�i,k1

qj

N−2 ). Recall that qk1
is a random variable because of the private

signal ck1
received by agent k1 and the randomness in σk1

, and that e+z = Eq1, ...,qN |y=1[q̄−i ]. We
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have that

Pr[Z1 = Z2 = 1|y = 1] = Ek1
[Eq1, ... ,qN |y=1[Pr[Z1 = Z2 = 1|k1,q1, . . . ,qN ]]]

= Ek1

[
Eq1, ... ,qN |y=1

[
qk1
·
(∑

j�i,k1
qj

N − 2

)] ]
= Ek1

[
Eq1, ... ,qN |y=1[qk1

] · Eq1, ... ,qN |y=1

[∑
j�i,k1

qj

N − 2

] ]
= Ek1

[
Eq1, ... ,qN |y=1[qk1

] · Eq1, ... ,qN |y=1

[
(N − 1)q̄−i

N − 2
−

qk1

N − 2

] ]
= Ek1

[
Eq1, ... ,qN |y=1[qk1

] ·
(N − 1

N − 2
e+z −

1

N − 2
Eq1, ... ,qN |y=1[qk1

]
)]

=
N − 1

N − 2
e+z Ek1

[
Eq1, ... ,qN |y=1[qk1

]
]
− 1

N − 2
Ek1

[
E

2
q1, ... ,qN |y=1[qk1

]
]

=
N − 1

N − 2
(e+z )2 − 1

N − 2
ω,

where ω := Ek1
[E2

q1, ... ,qN |y=1
[qk1

]].

Note that both e+z and ω are no more than 1. Then,����N − 1

N − 2
(e+z )2 − 1

N − 2
ω − (e+z )2���� ≤ (e+z )2

N − 2
+

1

N − 2
ω ≤ 2

N − 2

This adds 2
N−2 error bias in the step where we replace Pr[z1 = z2 = 1|y = 1] with (e+z )2 in the

deduction of Equation (5). In addition, it finally adds 2
N−2 error bias in estimating β−i (through

both (e−z )2 and (1 − e+z )2) in Equation (5).
Similarly for the matching among three agents (Equation (6)) we have that���Pr[Z1 = Z2 = Z3 = 1|y = 1] − (e+z )3��� ≤ 3

N − 3
.

This adds 3
N−3 error bias in estimating γ−i .

(2) Estimation errors due to finite estimation samples: The last sources of errors come

from the estimation errors of β̃−i , γ̃−i , and α̃−i . Direct application of the Chernoff bound gives us
the following lemma:

Lemma C.1. When there are M samples for estimating β̃−i , γ̃−i . and α̃−i , respectively (total budget-

ing 3M), we have with probability at least 1 − δ that

|β̃−i − β−i | ≤

√
ln 6

δ

2M
, |γ̃−i − γ−i | ≤

√
ln 6

δ

2M
, |α̃−i − α−i | ≤

√
ln 6

δ

2M
.

The error analysis in 1 and 2 jointly imply that with probability at least 1 − δ

|β̃−i − β−i | ≤

√
ln 6

δ

2M
+

2

N − 2
, |γ̃−i − γ−i | ≤

√
ln 6

δ

2M
+

3

N − 3
, |α̃−i − α−i | ≤

√
ln 6

δ

2M
.

Now we are ready to prove Lemma 6.6. First, from Algorithm 1, we can easily derive that

|ẽ−z − e−z | ≤
|ã − a |

2
+
|
√
ã2 − 4b̃ −

√
a2 − 4b |

2
(20)

|ẽ+z − e+z | ≤
|ã − a |

2
+
|
√
ã2 − 4b̃ −

√
a2 − 4b |

2
. (21)
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For the latter term in Equations (20) and (21), we have that

|
√
ã2 − 4b̃ −

√
a2 − 4b |

2
=
|(
√
ã2 − 4b̃ −

√
a2 − 4b) · (

√
ã2 − 4b̃ +

√
a2 − 4b) |

2(
√
ã2 − 4b̃ +

√
a2 − 4b)

≤ |ã
2 − a2 |

2
√
a2 − 4b

+
4|b̃ − b |

2
√
a2 − 4b

≤ |ã − a |2

2
√
a2 − 4b

+
a · |ã − a |
√
a2 − 4b

+
2|b̃ − b |
√
a2 − 4b

The first inequality is due to the fact that we drop the positive 2
√
ã2 − 4b̃ in the denominator. For

the second inequality, note that a is non-negative as, essentially, a = 1 − e+z + e−z as shown in the
proof for Theorem 6.3.

To summarize, we have that

|ẽ−z − e−z | ≤
(

1

2
+

a
√
a2 − 4b

)
|ã − a | + 2|b̃ − b |

√
a2 − 4b

+
1

2
√
a2 − 4b

|ã − a |2 (22)

|ẽ+z − e+z | ≤
(

1

2
+

a
√
a2 − 4b

)
|ã − a | + 2|b̃ − b |

√
a2 − 4b

+
1

2
√
a2 − 4b

|ã − a |2. (23)

The key tasks here reduce to bounding |ã − a | and |b̃ − b |. Recall that

a :=
γ−i − α−iβ−i

β−i − (α−i )2

b :=
α−iγ−i − (β−i )2

β−i − (α−i )2
.

We know the following facts:

|(β̃−i − (α̃−i )2) − (β−i − (α−i )2) | ≤ |(α̃−i )2 − (α−i )2 | + |β̃−i − β−i |

≤ 2|α̃−i − α−i | + |β̃−i − β−i | ≤ 3

√
ln 6

δ

2M
+

2

N − 2
,

|(γ̃−i − β̃−i α̃−i ) − (γ−i − β−iα−i ) | ≤ |γ̃−i − γ−i | + |β̃−i α̃−i − β−iα−i |

≤ |γ̃−i − γ−i | + |β̃−i − β−i | + |α̃−i − α−i |

≤ 3

√
ln 6

δ

2M
+

2

N − 2
+

3

N − 3
,

|(α̃−iγ̃−i − (β̃−i )2) − (α−iγ−i − (β−i )2) | ≤ |α̃−i − α−i | + |γ̃−i − γ−i | + 2|β̃−i − β−i |

≤ 4

√
ln 6

δ

2M
+

2

N − 2
+

3

N − 3
.
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Next, denoting η = p (1 − p) (1 − e+z − e−z )2 (which also means that Δ = p (1 − p) (x− − x+)2 ), we
have that

β−i − (α−i )2 = (1 − p) · (x−)2 + p · (x+)2 − ((1 − p) · x− + p · x+)2

= (1 − p) · p · (x− − x+)2

= η.

Let N be sufficiently large such that

3

√
ln 6

δ

2M
+

2

N − 2
< η. (24)

Then,

β̃−i − (α̃−i )2 ≥ p (1 − p)

2
· η

2
.

Therefore,

|ã − a | =
������γ̃−i − α̃−i β̃−i

β̃−i − (α̃−i
2)
− γ−i − α−iβ−i

β−i − (α−i )2

������
≤ |(β̃−i − (α̃−i )2) − (β−i − (α−i )2) | + |(γ̃−i − β̃−i α̃−i ) − (γ−i − β−iα−i ) |

|β̃−i − (α̃−i )2 | · |β−i − (α−i )2 |

≤ 2

η2

�

�6

√
ln 6

δ

2M
+

4

N − 2
+

3

N − 3

���	 .
Note that the first inequality uses Lemma 6.7.

Similarly for b, we have that

|b̃ − b | ≤ 2

η2

�

�7

√
ln 6

δ

2M
+

4

N − 2
+

3

N − 3

���	
Together, we proved that when M and N are sufficiently large such that Equation (24) holds,

that is, 3

√
ln 6

δ

2M
+ 2

N−2 <
η

2 , we have th

|ẽ−z − e−z | ≤ O
�

�
√

ln 1
δ

M
+

1

N

���	
|ẽ+z − e+z | ≤ O

�

�
√

ln 1
δ

M
+

1

N

���	 �
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