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Abstract

In a search task, a group of agents compete to be the first to
find the solution. Each agent has different private informa-
tion to incorporate into its search. This problem is inspired
by settings such as scientific research, Bitcoin hash inversion,
or hunting for some buried treasure. A social planner such as
a funding agency, mining pool, or pirate captain might like
to convince the agents to collaborate, share their information,
and greatly reduce the cost of searching. However, this coop-
eration is in tension with the individuals’ competitive desire
to each be the first to win the search. The planner’s proposal
should incentivize truthful information sharing, reduce the to-
tal cost of searching, and satisfy fairness properties that pre-
serve the spirit of the competition.

We design contract-based mechanisms for information shar-
ing without money. The planner solicits the agents’ informa-
tion and assigns search locations to the agents, who may then
search only within their assignments. Truthful reporting of
information to the mechanism maximizes an agent’s chance
to win the search, and e-voluntary participation is satisfied.
In order to formalize the planner’s goals of fairness and re-
duced search cost, we propose a simplified, simulated game
as a benchmark and quantify fairness and search cost relative
to this benchmark scenario. The game is also used to imple-
ment our mechanisms. Finally, we extend to the case where
coalitions of agents may participate in the mechanism, form-
ing larger coalitions recursively.'

1 Introduction

A group of selfish pirates land on a forsaken island in search
of a hidden treasure, an indivisible item of inestimable value.
Each pirate has gathered limited information — a personal
map marking certain locations on the island where the trea-
sure might be located. Every day, each pirate can dig in a
single location; whoever finds the treasure first will keep it
forever. The pirate captain knows that, if only the pirates
would share their information, many days of useless digging
could be averted. If only she, as the wise and trusted leader,
could convince the pirates to lend her their maps, then she
could pool the collective knowledge and assign digging lo-
cations to minimize wasted effort. But can she assign loca-
tions in a way that all agree is fair and just? And equally
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important, can she convince the pirates that it is in their best
interests to give her their maps and agree to her scheme?

Our story abstracts settings where agents with heteroge-
neous information compete to solve a search problem. An
example is when different research labs try to locate a gene
corresponding to a genetic disease, and credit is only given
to the first discoverer. Each of the researchers begins their
search based on prior knowledge they acquired. Combining
the researchers’ prior information could speed up discover-
ies and reduce wasted effort.

This tension underlies the difficulties of cooperation in a
competitive environment. A solution to the competing search
problem must take into account many factors: incentives
(agents must want to report accurate information); fairness
(rewarding agents based on the progress made toward find-
ing the answer to the search problem); and welfare (it should
improve on the status quo by shortening the search).

We consider a basic setting where an agent’s informa-
tion consists of a set of possible locations where the solu-
tion (“treasure”) may be found, and each location is equally
likely to be the correct one. This simple model does not
capture cases where agents have complex distributional be-
liefs. However, this setting already raises many interesting
questions and difficulties. We believe that it can highlight
the tension between cooperation and competition in situa-
tions such as the scientific credit example, although it may
not capture cases with complex information structures.

A scenario where the assumptions of our model fit reality
more closely is the Bitcoin digital currency protocol. The
process of “mining” or creating new bitcoins requires in-
verting a cryptographic hash function; that is, we begin with
a target output and some large set of possible inputs, and we
search until we find the input that hashes to the output. Many
miners may be searching in parallel as there is a reward for
being the one to find the preimage first; they have informa-
tion sets about where the preimage might be, consisting of
the values they have not yet tried; and each input is (approx-
imately) equally likely. Pooling together the information of
miners can save unnecessary trials, save time, and improve
their probability of winning. Indeed, such “mining pools”
are common for this reason. Although we will not suggest
that our mechanisms should be directly applied to Bitcoin in
practice, the example shows that the simple treasure-hunting
model can already closely match some real-world settings.



1.1 Our approach: contract-signing mechanisms
without monetary transfer

Our goal is to design mechanisms that help compet-
ing agents share their information. Our mechanisms are
contract-based in the sense that agents first sign a “contract”
saying the outcome of the mechanism — subsets of the search
space describing how agents divide (the relevant part of the)
search space — would be binding.> Only then, agents report
their sets to the mechanism which computes and reveals the
subset allocated to each agent.

Our mechanisms are implemented without monetary
transfer. This increases their potential applicability to set-
tings where the assumptions of monetary or transferable-
utility mechanisms, such as quasilinearity of utility and no-
budget assumptions, may not hold. For instance, in scientific
research, it seems culturally implausible to suggest a money-
based mechanism for aggregating knowledge.

Other approaches. A body of literature with similar mo-
tivations to our work is that on cooperative game theory
(CGT) [6], which concerns coalition formation in games.
The focus of CGT typically is on stability of a coalition and
fairness in sharing value among members of a coalition. Our
setting is superficially similar in that our mechanism forms
“coalitions” of agents and we are interested in “fairness”, but
the treasure-hunting problem seems to clash with the usual
cooperative game theory approach. Our setting is inherently
non-cooperative, partly, this is because bargaining needs to
be done carefully, as private information, when revealed, has
no more value; more importantly, this is because the pirates
may misreport their information, and hence we must con-
sider incentives and strategic behavior.

Trying to avoid making assumptions on how agents per-
ceive other agents’ information, we take a rather agnostic
approach in modeling the information agents have. In our
setting, agents are not required to form probabilistic beliefs
about other agents’ information. This is a weaker assump-
tion than in classical Bayesian game settings, where it is as-
sumed that the prior distribution of private information is
common knowledge and agents must update according to
this prior. (However, our model would be compatible with a
Bayesian game model with a uniform prior distribution over
the treasure location.)

Design goals and benchmark. The first design goal is in-
centives for truthful reporting, so that the mechanism can
correctly aggregate the agents’ information. The second is
fairness, which we interpret as preserving the spirit of the
competition for searching for the treasure. An agent who has
a good chance of finding the treasure without the existence
of the mechanism should still have a good chance after the
mechanism produces an assignment. The third is welfare im-
provement: the mechanism should reduce the total digging
costs by combining agents’ information.

2We do not consider the question of enforcement in this paper.
In the pirate story, the captain may behead the deviating pirates, a
solution that we don’t generally recommend.

In order to quantify the fairness and welfare goals, we
introduce a hypothetical benchmark, the simplified explo-
ration game. The idea is to imagine that all agents explore
within their sets in a uniformly random order, regardless of
the behavior of the others. In this simplified scenario, we can
compute expected digging costs until the treasure is found,
and also each agent’s probability of finding the treasure first.
Based on the benchmark we can set concrete quantifiable
welfare and fairness goals.

A key insight of our approach to designing the mecha-
nism is that we can use the simplified exploration game to
get good incentives. Our mechanism takes the agents’ re-
ported sets and, based on these, computes the winning prob-
ability of each agent in the simplified exploration game. The
set of possible treasure locations (obtained by intersecting
the reported sets) is then divided by the agents in propor-
tion to these computed winning probabilities. We show that
this mechanism has good incentives regardless of what ex-
ploration strategy an agent might actually have planned to
use.

Results summary. We first consider “one-shot” mecha-
nisms: forming a coalition of the entire group of agents. We
construct a one-shot contract-based mechanism and show
that in this mechanism, to maximize winning probability,
each agent should report her private information truthfully if
all other agents report truthfully. Then, we prove the fairness
and welfare properties of the mechanism. We also show that
the mechanism satisfies e-voluntary participation for ¢ — 0
as information sets grow large.

We then extend to a setting where several coalitions (each
formed, say, by the one-shot mechanism) want to become
one large coalition. We call these mechanisms “compos-
able” because they can be used to recursively form larger
and larger coalitions. We extend our approach to this set-
ting and also begin an exploration of the dynamics that may
result from the usage of such composable mechanisms.

1.2 Related work.

It has been widely recognized that private information brings
value and hence sharing of private information should be
encouraged. Kleinberg, Papadimitriou, and Raghavan [4]
draws on concepts in cooperative game theory to assign
value to releasing private information in a few specific set-
tings, including marketing surveys and collaborative filter-
ing and recommendation systems. Interestingly, some recent
work takes an opposite view, arguing that sometimes sharing
less information improves social welfare or other objectives
of the designer [7, 5].

Our setting can model competition in scientific discov-
ery. Kleinberg and Oren [3], Kitcher [2], and Strevens [§]
all model and study scientific development in the society.
However, the strategic aspects of researchers in their mod-
els lie in the selection of research projects to work on; re-
searchers who selected the same project compete indepen-
dently. In particular, Kleinberg and Oren [3] study how to
assign credits to projects so that the project selection behav-
ior of self-interested researchers may lead to optimal sci-



entific advances. Our setting essentially models a scenario
with one project and instead of letting researchers indepen-
dently compete on this project, we design mechanisms to
allow them cooperate and share information while still com-
peting with each others.

We use contract-based mechanisms to promote coopera-
tion. Such approaches are common in other settings where
some level of enforcement is necessary for incentive align-
ment. For example, Wang, Gui, and Efstathiou [9] design
Nash equilibrium contracts to guarantee optimal cooperation
in a supply chain game.

2 The Treasure Hunting Game

Let S (the island) be a finite set of locations, one of which
is s* (the treasure). There is a set N of agents who will
be seeking the treasure, and | N| = n. Each agent ¢ has as
private information a set S; C S, where it is guaranteed that
s* € S;. This immediately means that s* € N;cnS;. We
use Sy to denote the intersection N;cn.S;. The fact s* €
S; for all ¢ € N is common knowledge to all agents. We
assume that each agent 7 believes that every element in .S; is
equally likely to be s*. We make no other assumptions on
i’s beliefs.?

Initially, the mechanism takes place: Each agent i reports

a set S”i C S to the mechanism and receives a set II; C S
from the mechanism. ¢ may only dig at locations in II;.

Subsequent is the digging phase, consisting of up to |S]|
digging periods. In each period, each agent ¢ can “dig” at
one location s € II; of his choice. It is assumed that an agent
will not dig in the same location twice. The digging phase
ends immediately after the first period in which an agent digs
at s*. We assume that each agent wishes to maximize her
probability of being the one to win the treasure.

It is assumed above that agents only dig at locations in
their assigned set II;. This follows if agents agree before-
hand to abide by the outcome of the mechanism and there
is some manner of enforcing that they do so. Thus, we call
the above procedure a contract-signing mechanism. We do
not consider how the contract is enforced in this paper, but
assume there exists a manner of enforcement.

Desiderata of the Mechanism. In the treasure-hunting
scenario, the pirate captain wishes to satisfy three objectives:

e Incentives. The pirates should prefer to report all their
information to the mechanism truthfully so that it can cor-
rectly aggregate.

e Fairness. The mechanism should be impartial among the
agents and reward each according to the information he
provides.

e Welfare. The mechanism should reduce the amount of
wasted searching.

3For a concrete example model that implies such beliefs, sup-
pose that the treasure is uniformly distributed on the island. Each
agent receives as a signal a set of locations containing the treasure
location, and updates to a posterior belief that the treasure is uni-
form on this set.

We formalize the desired incentive property by requiring
that each agent maximize their probability of finding the
treasure by reporting their information truthfully (assuming
that others are not misreporting). This probability is over
any randomness in the mechanism and over the randomness
of the treasure location (recall that each pirate initially be-
lieves that it is uniformly distributed in S;).

The fairness and welfare goals are more subjective. To
meet them, the captain must answer the questions: What do
we mean by “fair”? And how can we quantify “welfare” or
reduced digging cost when we do not know what would have
happened without our mechanism? (Perhaps some lucky pi-
rate would have found the treasure on the first day!)

To answer both of these questions, we next define a sim-
plified exploration game. This game will serve as a “bench-
mark” for fairness and welfare; the captain can compare her
mechanism to what would happen in the benchmark game.
We will also use this game as the basis for our proposed
mechanism.

2.1 Formalizing Fairness: The Simplified
Exploration Game

The simplified exploration game is defined as follows. We
emphasize that the game is hypothetical and is not actually
played by the agents. To emphasize this difference, we de-
scribe the game as being “simulated”, say on a computer or
as a video game with artificial players. In the game, each
simulated player has a subset S; of the island. The player
chooses a permutation of her set .S; uniformly at random.
This is the order in which the simulated player will dig in her
set. Then, a simulated treasure location is drawn uniformly
at random from the intersection Sy of the sets. Then, there
is a sequence of simulated digging periods; in each period,
each player “digs” at the next location in her chosen permu-
tation. (In the simulation, this corresponds to simply check-
ing whether the next location in the permutation is equal to
the randomly drawn treasure location.) The simulation ends
in the first period where some player simulates a dig at the
simulated treasure location; this player wins the game. (Ties
are broken uniformly at random.)

We next describe how the simplified exploration game can
be used by the pirate captain as a benchmark for her sub-
jective goals. In Section 4, we show how the captain can
actually use the game to construct a mechanism.

e Benchmark for fairness: A mechanism can be consid-
ered fair if a pirate’s chance to win the treasure under the
mechanism matches his chance to win in the simplified
exploration game. Intuitively, the simplified game is fair
because (a) it rewards players for the value of their in-
formation: Players with smaller sets (better knowledge of
the treasure) are more likely to win; (b) it rewards play-
ers only for the value of their information: A player can-
not “jump ahead” of a better-informed opponent by em-
ploying some complex strategy; and (c) it preserves the
competitive aspect of the treasure-hunting game: A player
with high chances of winning in the game is guaranteed
a high chance of winning under the mechanism, so he
does not feel that the mechanism unfairly diminished his



chance of winning.

o Benchmark for welfare: The welfare improvement of a
mechanism is the difference in total expected exploration
cost (number of locations searched) under the mechanism
and in the simplified exploration game. (The expected
digging cost for the mechanism is computed by assum-
ing the treasure is uniformly random in the intersection
and that each pirate explores her assignment II; in an ar-
bitrary order.) This gives the captain a concrete measure
of the mechanism’s improvement. She can interpret this
measure as saying something about the improvement the
mechanism makes in real life, depending on how closely
she thinks the simplified exploration game matches what
would have happened without the mechanism.

3 Computing probabilities

Here, we consider computation of winning probabilities for
the simplified exploration game, including simple lemmas
that are useful for proving properties of the mechanism.

Lemma 1. In the simplified exploration game, letting
MIN = min; |S;| be the smallest set size, the probability
that each player i wins is

where f;(x) = Pr[i wins | i explores s* on day x| does not
depend on i’s set S;, but only on S; for j # i.

Proof. The treasure can only be found on day
1,2,...,MIN, because by the end of day MIN, the
agent with the smallest set has explored her entire set, so
she must have found the treasure.

The probability that ¢ wins can thus be written as the sum,
over days x from 1 to MIN, of the probability that i ex-
plores the treasure location s* on day x, multiplied by f;(z),
the probability that ¢ wins on day x given this fact. The prob-
ability that ¢ explores s* on day x is ﬁ for any day =z, since
1 explores in a uniformly random order (so s* has an equal
chance of landing in any position in the exploration order).

We only need to argue that f;(x) does not depend on S;.
But once we condition on ¢ exploring s* on day z, the prob-
ability that ¢+ wins is equal to the probability that, for ev-
ery j # i, s* lands at position z or later in j’s permutation
(which depends only on |.S;|) and that, of all the agents who
explore s* on exactly day z, the winner of the uniformly
random tiebreaker is ¢ (which depends only on the number
of tied agents). O

Lemma 2. In the simplified exploration game, the exact
probabilities of winning can be computed in time polynomial
in the number of locations |S| and the number of players n
by the procedure in Algorithm 1.

Proof. Let MIN =
cations in any player’s set. A player can only win if her
sampled treasure position, z;, is at most M I N. Supposing
that ¢ does draw a position x; < MIN, ¢ will win outright

(i.e., without a tie) if every other player j draws a position
x; > x;. Thus, we have a simple formula:
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When the sets .S; are large the probability of a tie is small,
and Equation (1) gives a good approximation for the win-
ning probability. However, exact computation of winning
probabilities must include ties:
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where the notation o, is introduced as shorthand, with
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We now just need to efficiently compute o, which is a sum
over over the (”;1) subsets of players not containing . We

can write
a =y 118
BC[n]\i,|B|=k jEB

where 3; = |S;| —x

It turns out that o, can be computed efficiently because it
corresponds to a coefficient of a polynomial. (This fact ap-
pears to be mathematical folklore.) Consider the polynomial
with indeterminate y, q(y) = [[;c(,,\:(8jy +1). Thisisa
polynomial of degree n — 1 and can be written as

n—1
y) = Z ary® where oy = Z H Bj.
k=0

BC[n)\i,|B|=k jEB



This allows us to conclude: the coefficients o, can be com-
puted efficiently merely by multiplying out the polynomial
[T (Bjy + 1) from left to right (or, more efficiently,
using FFT-based polynomial multiplication). We get as a
result Algorithm 1. O

We note that the probabilities can also be estimated as fol-
lows: Simulate the simplified exploration game many times,
and count how many times each player wins. This gives
a probability distribution that approaches the true distribu-
tion after many simulations. (Specifically, it is known that
learning a discrete distribution on support size n up to error
€ on each point’s probability, with at most a § probability
of failure, can be done by running O(In(2/§)/e?) simula-
tions. This follows immediately from the Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality[1].)

ALGORITHM 1: Compute Winning Probabilities

Input: S; for each player 1.
Qutput: p;, the probability of winning the treasure in the
simplified exploration game, for each player .

set MIN = min; |S;];

foreach player i do

// First compute the coefficients agk,
then use them to set p;

forx=1,...,MIN do

let the polynomial ¢ (y) = [,.; ((|S;| — @)y +1);

multiply out into the form ¢, (y) = 3-7Z} aw k¥

end
_ «—MIN 1 n—1 1 .
setp; = Zz:l (HJ |5j\) k=0 n—k Xz,k>

end
output p; for each player ¢;

For an example, consider a case of just two players with
|S1] < |S2|. We can calculate more easily using the formula
for the probability that player 2, the less-informed player,

wins outright (Equation 1). It is ‘gllg;‘l. The probability of

a tie is @ (because it is the sum, over the first |S1| po-
sitions in each’s exploration permutation, of the probabil-
ity that both players draw the treasure at that position), and
player 2 wins with probability % if there is a tie. So 2’s total

|51
IR

probability of winning is

2|S2|—[54]
2|5z |

and 1’s total probability of

winning is

4 One-Shot Mechanisms

In this section, we consider a one-shot setting, where all
agents arrive and simultaneously participate in the mecha-
nism. In Section 5 we will extend the discussion to the case
where subsets of the agents have formed coalitions, and may
wish to form even larger coalitions.

We propose that the captain utilize the simplified explo-
ration game as a basis for a mechanism. The idea is to ask
each pirate to report a set .S;, then consider the simplified
exploration game where each pirate corresponds to a player.
Then allocate digging locations according to performance in
this simulated game.

More specifically, our primary mechanism for the one-
shot setting is Mechanism 2, which proceeds as follows.
First, all agents sign contracts agreeing to search only within
their assigned location. Then, each agent ¢ reports a subset

S'i of the island to the mechanism. The mechanism com-
putes the intersection Sy of the reports and assigns each
element of the intersection independently at random accord-

ing to the winning probabilities of the agents (with sets S
in the simplified exploration game. Then, agents may dig
only within their assigned subsets. (In particular, if the inter-
section is empty or the entire intersection is searched with-
out discovering the treasure, agents are still not allowed to
search elsewhere.)

We can imagine other allocation rules that use the winning
probabilities from the simplified exploration game: for ex-
ample, assigning locations deterministically with the num-
ber of locations proportional to the winning probabilities.
So we can think of Mechanism 2 as giving a framework that
can extend to any rule for dividing the intersection according
to the winning probabilities. However, we do not explicitly
consider these mechanisms and focus on Mechanism 2 for
proving our results.

Mechanism 2: One-Shot Mechanism

Input: S; for each agent 7.

Output: A partition of Sy = NienSs, with II; assigned to agent

i.
set Sy = N Si;
foreach agent i do
\ compute ¢’s winning probability p;;

end

initialize each II; = 0;

foreach /ocation s € Sy do
let ¢ be a random agent chosen with probability p;;
add s to II;;

end
output the sets II; for each ¢;

4.1 Results for one-shot mechanisms

Theorem 1. In Mechanism 2, if other agents are reporting
truthfully, then each agent i maximizes her probability of
winning the treasure by reporting S; truthfully.

Proof. Under the mechanism, if other agents report truth-
fully, then agent ¢’s probability of winning the treasure is
exactly the probability (over the location of the treasure and
the randomness of the mechanism) that the treasure location
s* is in ¢’s assigned set II;. Thus, ¢ prefers to report the set
that maximizes this probability. We need to show that .S; is
this set.

Some preliminaries: Denote agent ¢’s report to the mech-
anism by S;, and fix the reports of agents except ¢ to be
truthful.* Denote the intersection of the reports by Sy and

“To see why we cannot achieve a “dominant strategy” type of
solution, suppose that all agents but ¢ have committed to not report-
ing location s € S, even if it is in their sets. Then s will not be in
the intersection. So 7 is strictly better off by omitting s from her



the probabilities of winning computed by the mechanism
by p; for each player 7. Using this notation we get that
Pr[i wins (when i reports S;)] is equal to Pr[s* € Sy] - p;
Let MIN = min; |S;| be the smallest reported set size.
By Lemma 1, we can write ¢’s probability of winning as
MIN

1
pi=Y —filx) 2
=1 ‘Sz|

where f;(x) is a probability that does not depend on | S;|, but
only on the reports S for j # 4. In particular, if |S' | is not
the umque smallest- s1zed set, then M IN does not depend
on S;, and p; is proportional to |.S;].

The proof proceeds as follows: We will show that for any
fixed report S5, adding any location s € .S; to S; decreases
this probability; and removing any location s € S; from S,
decreases this probability. This will show that i’s winning
probability is maximized by reporting S; = S;. Intuitively,
the first case hurts ¢ because she reports an unnecessarily
large set and thus unnecessarily decreases her probability of
winning. In the second case, ¢ obtains a higher probability of
finding the treasure first in the simplified exploration game,
but this is at least balanced out by the chance that the treasure
was in the omitted location s (in which case it will not be in
the intersection and nobody will get it).

Adding a location to Si. Let s ¢ S;, Si. Add s to S‘i
and use a prime symbol to denote the results of the change:
S/ = §; U {s}; S} is the intersection when i reports S/
rather than S;, fixing all other reports to being truthful; and
P}, is the computed probability for 7 to win in this case. Then,
as the chance of s* being in the intersection has not changed,

= Pr[s* € S| - p
= Pr[s* € Sy] - P

Pr[i wins (when i reports S7)]

If | S;] is not the unique minimum-size set among all reports

then as discussed above, p; is proportional to —— E S [ 80 P =
18l _ 5 18l 5. it i i -
Di 3 = D; it < p;. If it is the unique minimum-size

set, i.e. |S;| = MIN and |S;| > MIN(Vj # i), we still
have p; < p;. To see this, note that, in the formula for p;
where |S;| = MIN, the sum from z = 1 to MIN divided
by |5;| = MIN is an average over the values f;(z); and
the same is true when |S}| = MIN. However, this average
can only decrease by including an additional term, because
the terms are strictly decreasing (they are the probability of
winning given that 7 wins on step x, by Lemma 1, and this
must be strictly decreasing in z since any exploration order
of the agents j # 4 that allows 4 to win on day x + 1 also
allows 7 to win on day x). So in either case, the proability

that ¢ wins when reporting S‘j is smaller than when reporting

Removing a location from S}v. Lets € 5;, S‘i. Remove s
from S; and again use a prime symbol to denote the change.

report, even if s € S;.

If |S;| # MIN, then analogously to above, §; = }S 1

bi S'ﬁ L 1f S| = MIN. then we still have p; < pi%,
because we have the same multiplicative factor changé and

we are also summing over fewer terms. Meanwhile,

=Pr[s* € Sy | s* € Sy] - Pr[s* € Sx]
_ 18-
|54

Pr[s* € S]

1 o
- Pr[s* € Sy].

Hence, the probability that 7 wins when reporting S s
S| -1 o1 . |Si]
= PI‘[S* S SN] *Di—=
1S5 |5i| — 1
= Pr[s* € Sn] - P

= Pr[i wins (when i reports Sy)].

P[S E‘S’N] A/<

O

It is worth emphasizing that the incentive property is not
compared to any sort of benchmark; it is an absolute prop-
erty of the mechanism itself. For instance, even if an agent
disliked the exploration game benchmark or disagreed that
the mechanism satisfied good fairness properties, that agent
would still agree that her probability of winning is maxi-
mized by reporting her set truthfully.

We next consider the desirable properties of fairness and
welfare, as compared to the benchmark of the simplified ex-
ploration game.

Theorem 2. Mechanism 2 satisfies fairness: the probabil-
ity for an agent to win the treasure under the mechanism is
equal to her probability of winning in the simplified explo-
ration game.

Proof. Immediate from the construction of the mechanism:
The treasure is in some location s* in the intersection Sy,
and this location is assigned to player ¢ with probability p;,
where p; is her probability of winning the simplified explo-
ration game. O

For welfare, the goal is to quantify the decreased explo-
ration costs under the mechanism as compared to the bench-
mark. Specifically, we count the number of “digs” that take
place, in expectation over the randomness of the mechanism
and of the treasure location. For instance, if all n players dig
on day 1, and then n — 3 players dig on day two, then 2n — 3
“digs” have taken place. To measure the improvement, we
focus on the parameter R which measures the potential “gain
from cooperation”. R is the ratio of the smallest agent set
size to the size of the intersection. For instance, if every
agent has a set of size 300, but by pooling their information
they reduce their sets to just a size of 30, then R = 10.

The final result of Theorem 3 will state that, for large set
sizes, for two agents the ratio of number of digs in the sim-
plified game to the number with the mechanism is approxi-
mately %. This means that (for instance) if both agents’ sets
are 10 times the size of the intersection, then the mechanism



gives about a ten-fold improvement in digging cost. As the
number of agents n also increases, the ratio approaches ﬁ.

Theorem 3. Mechanism 2 satisfies the following welfare
properties:

1. E[# digs with mech.] < E[# digs of optimal mech.]+"5*.
2. E[# digs with mech.] < E[# digs in simp. exp. game].
3. Let R := miu ‘Sil; then

[Sn]
E .[# d.igs .with mech.] < i (1+6),
E [# digs in simp. exp. game] — 275 R

where € = €(n, R, |Sn|) = 0 as @ — .

Proof. The proof strategy is as follows. First, we will prove
the following fact: The optimal exploration strategy that em-
ploys on average k agents digging in parallel searches a total

of W locations in expectation. (Given that the treasure
is uniformly distributed in Sy.) Note that this shows that the
global optimal expected number of digs occurs by employ-
ing exactly one agent, giving % expected digs.5 We
then argue that Mechanism 2 is an optimal strategy employ-
ing at most n agents digging in parallel. This will prove our
first claim, since ‘SNzH" < |SN2|+1 + 251, Then, we no-
tice that the simplified exploration game is at best optimal
and always employs n agents digging in parallel, which will
prove our second claim. We then focus on the final claim.

We define an “optimal strategy employing on average k
agents in parallel” to be a strategy that never explores the
same location twice and that, in expectation over the time
steps, has k agents exploring per time step. To compute an
optimal strategy’s expected number of digs, consider any ex-
ecution of any exploration strategy and list the locations in
S in order of the time step at which they are first explored
by some agent (if multiple different locations are first ex-
plored on the same day, break ties uniformly at random).
The treasure is uniformly randomly distributed in this list.
The expected number of locations that fall before the trea-
sure on this list is

[Sn|-1
Z j Pr[s* is at position j + 1]
j=1
|Sn|—-1

Now, given that the treasure is found on some particular day
t, and that k, agents are exploring in parallel on that day,
how many more locations must be explored that have not
been counted? The treasure location s* itself must always
be explored, giving one additional location. And given that
the treasure is explored on this day ¢, on which k; locations

>Intuitively, this is because there is no chance of wasted digs
by an agent exploring on the same day as another agent finding the
treasure.

are explored in total, the expected number of locations that
fall after it is (by the same summation as above) % This

gives a total of % + 1+ E[f) = % searches
that any strategy must make in expectation, if on average k
agents search in parallel per day.

Mechanism 2 is an optimal policy employing at most
n agents because there is never any dig outside of those
counted in the above argument: For any fixed allocation
of the intersection and agent choice of exploration order,
we can construct the chronological list of locations in Sy,
agents under the mechanism only search at locations in Sy
that fall before s* on the list, or on the same day as s*. As
mentioned at the beginning of the proof, the simplified ex-
ploration game employs exactly n parallel searchers and is
at best optimal, so we have completed our proof of the first
two claims.

We now consider the improvement when there is large
“potential gain from cooperation” R. The previous argu-
ment gives a good upper bound on the number of digs made
with the mechanism. In the exploration game, the expected
number of locations searched is exactly n times the expected
search time, because each agent searches in every time pe-
riod until the treasure is found. We now compute this ex-
pected search time.

The simplified exploration game is equivalent to each
agent ¢ drawing a time z; uniformly in {1,...,|S;|} (this is
the time at which 7 explores s*); the expected search time is
the expectation of the minimum of these x;s. The expected
minimum is lower-bounded by the case when all sets have
size |S;| = R|Sn/|, in which case the CDF of the minimum
is

Pr[miin(xi) <c=1-(1-Pr[z; <))"

c
=1—=(1 - —— n7
U RSy
S0 its expectation is
R|SN| R|SN| c
Priz > ] = 1——)"
2 Pl = 2 0 gy

v

R[Sn| ¢
1-—- "d
TS 2
. R|SN| 1_ 1 "
on+1 R|Sn| .

Under the simplified exploration game, the expected number
of locations dug is at least n times the expected exploration

n
time, which is lower-bounded by —2— R|S| (1 - m) .

n+1



Taking the ratio:

E [number of locations searched under Mechanism 1]
E [number of locations searched in exploration game]

[Sn|+n ( R|Sn| )n

= 22 R[Sy] \RISy| -1
1 n 1 "
() ()
QWR( SN R[SN|
1
<55 (l+e
2R

) (1 + ﬁ) In particular, as

— 00, € — 0. O

forel(l1

~RTSNT
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4.2 Voluntary Participation

One drawback to our mechanism is that it does not always
satisfy voluntary participation, meaning that there are sce-
narios where an agent might rather not participate while all
other agents do participate. This would not be a concern
in many settings where participation is mandatory; for in-
stance, all of the pirates vote on whether to implement a
mechanism, and once the decision is made, all must par-
ticipate together. But voluntary participation is still a nice
general property to satisfy.

The following example was pointed out by an anonymous
reviewer: There are three agents, each holding the same set
S of size two. If two agents are participating in the mech-
anism, then by also participating the third agent of course
wins with probability % but it can be checked that by ex-
ploring randomly instead of participating the third agent has
a % probability of winning. This example assumes that ties
between agents in and not in the mechanism are broken uni-
formly at random.

However, we show that this concern is minor when sets
are large compared to the number of participants, in that the
loss in probability of winning the treasure goes to zero. To
show this, we assume that an agent who does not participate
explores uniformly at random. It may be of note that the
MIN in the theorem statement is over all sets besides i’s,
so a single very well-informed agent is still incentivized to
participate when others’ sets are large.

Theorem 4. There is an implementation of Mecha-

nism 2 that satisfies e-voluntary participation for € <

%4("_2) <tz (Where MIN = minj; |S;|). In partic-

ular, e =0 forn =2 and e < ﬁforalln.

Proof. The variant of the mechanism assigns digging loca-
tions by sampling a single simulated exploration game, then
iterating through each location and assigning it to the agent
whose simulated player was first to dig at that location. The
agents are then instructed to dig in the same order as their
simulated exploration (though with the difference that they
only dig in locations they are assigned and skip over those
they are not assigned).

To prove the theorem and visualize the mechanism, it will
be helpful to picture, for each agent (both in or not in the

mechanism), the random permutation of his set .S;. For ex-
ample, suppose we had 3 agents and the island consists of
the locations a, b, ¢, d, e, f, g. Then each agent has a random
permutation of his set, e.g.:

agent1l: f b gac
agent2: b f ce g a
agent3: ca e d f

One might imagine that agents 2 and 3 are participating in
the mechanism and agent 1 is deciding whether to join. The
proof will go as follows: First, we identify the particular ran-
dom outcomes in which ¢ can gain at all by not participating,
and determine that in each of them, ¢ can gain a probability
of at most % conditioned on that random outcome. Then, we
show that one of these “beneficial” random outcomes occurs
with probability at most (n—1)(n—2)/2MIN?, which will
complete the proof.

So for a given random outcome, let us compare the cases
where ¢ participates and where ¢ does not participate. In
each case, every agent (including 7) samples a random per-
mutation of his set. Then, each agent in the mechanism has
some number of locations removed from his permutation,
either because those locations were not in the intersection,
or because they were not assigned to that agent. This has the
effect of “sliding” the other locations to the left in our visu-
alization. Finally, the treasure is drawn uniformly at random
from the intersection, and the agent who has this treasure
furthest left in his permutation will dig there and win it. This
follows because, in this variant of the mechanism, all agents
are digging “left-to-right” in the visualization.

For each possible random outcome of the permutations
and the treasure location s*, we can consider ¢’s winning
chances if he participates versus if he does not. If s* does
not appear earliest in ¢’s permutation, ¢ does not win in either
scenario. If s* appears earliest in ¢’s permutation, with no
ties, then ¢ wins in both scenarios. Now suppose that s*
appears earliest in ¢’s permutation, tied with a single other
agent j. If ¢ participates, ¢’s chance of winning is % Ifq
does not participate, then it is at most %, because it could be
that j is participating and will have some preceding locations
removed from his permutation. In any case, ¢’s chance of
winning is at least as large when participating.

This only leaves the cases where, when the permutations
and treasure are drawn randomly, ¢ ties with at least 2 other
agents. In this case, if ¢ does not participate, ¢ has at most
a % chance of winning the treasure (at least one other agent
will dig at the treasure location on either the same day as ¢,
or on some earlier day). Thus, the gain in chance of winning
the treasure from not participating is bounded by

Y . 1
Pr[i’s permutation ties with > 2 others] 7

For each pair of other agents j and k, the probability that
both 7 and k£ have s* at the same location in their per-
mutation as ¢ does is ‘Sl—‘ﬁ This is upper-bounded by
1/MIN?. By union-bounding over the ("} ') = (n—1)(n—
2)/2 pairs of other agents, we get that the gain from not par-



ticipating is bounded by
< (n—1)(n—2)
- 4AMIN?Z

5 Composable Mechanisms

In the previous section, we considered the case where all
agents arrived and simultaneously joined a single “coali-
tion”. But what if some subsets of the agents have already
met and formed coalitions? These coalitions might still be
able to benefit from sharing information. This motivates our
extension to “composable” mechanisms.

Our setting is exactly the same, except that entities wish-
ing to participate in the mechanism may either be agents (as
before) or coalitions. A coalition C is a set of agents along
with an allocation rule for dividing the locations assigned to
that coalition. Each agent ¢ in the coalition has a set S; and
the intersection [ sec i is denoted Sc.

Now, the mechanism should take in the coalitions
C1,...,Cy, (we can think of individual agents as coalitions
of size one) and output an allocation rule for dividing the
intersection Sy = N¢,;Sc,; among the agents. Then, be-
fore digging starts, this allocation rule is applied to produce
a set of digging locations II; for each agent 7; again, agents
are contractually obligated to dig in their assigned sets. The
goals are the same: good incentives (a coalition should max-
imize its probability of being allocated the treasure location
by reporting S¢ truthfully); fairness, and welfare. We next
generalize the simplified exploration game and construct a
mechanism that satisfies a corresponding notion of fairness.

5.1 Defining a Fair Mechanism

The simplified exploration game is generalized as follows
(we can think of this as a “less-simplified exploration
game”). First, we simulate each coalition C dividing its in-
tersection S¢ among its agents according to its allocation
rule, which may be randomized. Lone agents can be inter-
preted as coalitions of size one who assign their entire set to
themselves. Next, a simulated treasure location s* is chosen
uniformly at random from the grand intersection Sy of all
sets. Finally, each agent picks a uniformly random permu-
tation of her assigned set and explores in that order; the first
to find the treasure wins (ties broken uniformly at random).

This exploration game extends the notion of fairness in
the natural way. We will similarly use this exploration game
as the basis for our composable mechanism, Mechanism 3.
In analogy with Mechanism 2, we assign digging locations
to coalitions randomly according to their probability of win-
ning the “less-simplified” exploration game (more specif-
ically, the probability that one of their members wins the
game).

We do not know of a polynomial-time computable closed-
form expression for the winning probabilities of the less-
simplified exploration game. However, we still have two op-
tions for implementing Mechanism 3. First: For each loca-
tion to be assigned, we simulate the exploration game once
and assign that location to the winner. Second, we can esti-
mate the winning probabilities of each agent by simulating

the game many times, as mentioned in the single-shot case;
a coalition’s winning probability is the sum of its agents’.

Mechanism 3: Composable Mechanism

Input: A set of coalitions C1, ..., Cy,.
Output: A coalition N whose members are the union of the
members in the input coalitions.

set Sy = N;Sc;;

output IV, whose set is Sy and whose allocation rule is as

follows:;

foreach coalition C; do

foreach agent i € C; do
set or approximate p; using the simulated exploration
game;

end

end

initialize each IT; = 0);

foreach s € Sy do

let ¢ be a random agent chosen with probability p;;

add s to I1;;

end

5.2 Incentives for the Composable Mechanism

The composable mechanism also satisfies our desired incen-
tive property, that truthful reporting maximizes probability
of winning. In addition, we also briefly consider incentives
for coalition formation.

Theorem 5. In Mechanism 3, given that other coalitions
are reporting their sets truthfully, each coalition C' maxi-
mizes the probability that an agent in that coalition finds the
treasure by reporting its true set Sc.

Proof. We use the same main idea as for the one-shot mech-
anism: Consider separately the cases of adding s to the re-
port Se, given that s ¢ S¢; and the case of removing s from
Se, given that s € Sc. However, we argue using the explo-
ration procedure rather than the winning probability formula
(as we do not have a closed-form formula for the winning
probabilities in this case). It is sufficient to show that an
agent exploring according to S¢ has a lower probability of
winning in the exploration game. The key idea will be to
take the random digging assignments and exploration orders
under a report S'C and either add or subtract a location, then
check how the probability of winning the treasure changes.

Adding a location to S‘c. Starting with 5‘0, let S”C =
ScU{s} with s & Sc,s & Sc. Note that the exploration
procedure for the case of S¢. is equivalent to the following:

Run the exploration procedure for Sc, then assign the addi-
tional location s to a member of C' using C’s allocation rule
to determine which agent gets s, then insert s in that agent’s
exploration procedure at a uniformly random position. This
gives the same distribution on explorations as the original
exploration procedure for the report S’é; But now, since s
does not contain the treasure, we see that this only decreases
the chance to win the treasure, since for any given random



draw of explorations, the insertion of s either has no effect
on the time until a member of C' explores s*, or increases
the time by one, which can only take C' from a winning or
tied position to a losing position and not the reverse. So C'
prefers not to include s in its report.

Removing a location from S’c. Starting with S’C, let
S¢ = Sc \ {s} with s € S¢,s € Sc. Suppose that the
treasure lies in S‘c (otherwise, nobody will ever win); given

this, with probability at least ﬁ, the treasure was located
C
in s. So
o 1S —1] A s
Pr{wins with S¢,] < ﬁ Pr{wins with S¢, | ™ # s].
c
3)

Next, we will argue that
Pr[wins with S¢] > ('SC'_l
Scl|

“

Inequalities 3 and 4 complete the proof, as they imply that

the chance of winning is lower when removing s and report-
ing S7,.

To show Inequality 4, view this inequality in a “reversed”

fashion: Suppose that C' began with report S"C and added

the location s, obtaining the set S“c; and condition on the
fact that s* # s. This is the scenario from the first part of
the proof: adding a useless location to the report. This time,
instead of upper-bounding this loss, we must lower-bound
it.

In the simplified exploration game, the agents in C' ex-
plore locations in a uniformly random order (with some lo-
cations explored in parallel; break ties at random). This or-
der can be obtained by the well-known Fisher-Yates shuffle,
which begins with the final element, swaps it with a uni-
formly randomly chosen element of index at most its own
index; then moves to the second-to-last position and repeats,
etc. First, consider the distribution of the order of s* when
reporting Sc. In particular, we know that on the first step
of the algorithm, with probability ‘ Slcl , the final element is
swapped with s*, and s* remains in the final position forever
by construction of the algorithm. With probability 1 — @
the final element is swapped with some other element. But
in this case the distribution of the location of s* is exactly

the same as when the report is S"C and s # s*. Thus,

N 1
Pr[wins with S¢] = —— Pr[wins | s* explored last]+

1 .
<|SCA|> Pr[wins with S, | s* # s].

This implies Inequality 4, completing the proof. O

5.3 A note on coalition formation.

Two pirates are discussing their treasure-hunting strategies
on the ship as it sails to the island. They realize that they

) Prlwins with S, | s* # s].

would be better off sharing information, so they decide to
form a coalition using a fair contract-signing mechanism
(say, Mechanism 2). Later that evening, while scrubbing
the decks, they meet a group of three pirates who have al-
ready formed a coalition of their own. The two coalitions
talk things over and agree to merge to form a five-person
coalition, using Mechanism 3. And the process continues.

Since Mechanism 3 takes coalitions as input and produces
coalitions, it can be used recursively (i.e., the input coali-
tions had originally formed using Mechanism 3, possibly
from other coalitions, etc). We can think of the entire pro-
cess as being described by a formation tree, where the leaves
are individual agents and each node is a coalition. A node’s
parent, if any, is the coalition that the node joins.

This is primarily a direction for future work, and we do
not explore this question in any depth, but just consider one
initial question. Suppose we fix a formation tree and pick a
single agent. Would that agent’s choice be to join the tree
earlier or later than they currently join? We show that they
prefer to join as early as possible, up to a vanishing e. The
same holds for coalitions of agents. As a tool, we show e-
voluntary participation for the composable mechanism.

Theorem 6. There is an implementation of Mechanism 3
satisfying e-voluntary participation: For every coalition A,
the loss in probability of winning from participating in the
mechanism is bounded by ¢ < ("_‘ilj)»%&‘z’ql_l), where
MIN is the minimum, over other coalitions participating
in the mechanism, of the set sizes of members of these coali-
tions.

Proof. We proceed as in Theorem 4. The implementation
is as follows, using the simulated exploration game. First,
each player draws a permutation of his set uniformly at ran-
dom. Consider the “leaves” of the formation tree; that is,
the lowest-level coalitions. Each of these coalitions consid-
ers the players contained in the coalition and awards each
location s in its intersection to the member that explores s
earliest, breaking ties uniformly at random. Then, all mem-
bers of the coalition eliminate the locations they were not
assigned from their permutation. Note that the coalition has
successfully assigned locations to players with each location
assigned with probability equal to the probability the agent
wins the simplified exploration game (albeit the assignment
is correlated).

Next, we proceed “up” the formation tree one level and
repeat the process. Each coalition, awards each location s in
its intersection to the entity that explores s earliest, breaking
ties, and at the end all members of the coalition eliminate
locations they were not assigned. This procedure continues
all the way up the formation tree, and at the end, agents dig
in the order of their assigned permutation.

Now we have an entity A that is considering participating
at the “top” level (or root) of the formation tree. By the
exact same argument as in Theorem 4, any gain from not
participating is bounded by % times the probability that A
ties with at least two other entities B and C' in exploring
s*. Now, however, the probability that B explores a given
location s* at a given time x is no longer 1/|Sp|. Instead, it



is the probability that  equals the minimum time at which
some member of B explores s*.

This probability is maximized at z = 1 (because the
probability that x is the minimum decreases as x increases),

when it is 1 — (1 — m)lB‘, where MIN is the size of
the smallest set of a member of B. By Bernoulli’s inequal-
ity, this is at most 1 — (1 — |B|/MIN) = |B|/MIN. This
is a bound on the probability of tying with a member of B.
Thus, the probability of tying with some other pair of entities

is bounded by
Z 1B| - |C]
MIN?

where the sum is over all pairs of participating coalitions B
and C and M IN is the size of the smallest set of a member
of any other participating coalition besides A.

For a fixed set of n — | A| other agents total, this sum is
largest (one can check) when there are n — | A| other coali-

tions each of size 1, when the sum is (" ‘A|) T O

Theorem 7. There is an implementation of Mechanism 3
where entities always e-prefer to join a formation tree ear-
lier than they currently do. That is, for any fixed formation
tree, an entity A (coalition or agent) decreases its winning
probability by no more than € if removed from its current
parent node and attached to any node along a path from
that parent to a leaf. (It may increase its winning probabil-
ity arbitrarily.) € can be bounded by the %,
where MIN = mina- , the minimum set size of
some coalition other than A.

Proof. We extend our proofs of e-voluntary participation
(Theorems 4 and 6). We again have each player draw-
ing a permutation uniformly at random; the coalitions at
the “leaves” award locations and remove unassigned loca-
tions from their permutations, and we continue up the tree.
Now consider some entity A. Both A and another entity B
are participants in the forming of a coalition C. Call this
the “old” scenario. Define the “new” scenario to be when
A chooses instead to participates in the formation of some
coalition B, one step earlier in the formation tree, and then
this joint AB coalition participates in C.

Now consider the difference in winning probability for A
under the old and new scenarios. The argument will be sim-
ilar to Theorem 4 and will boil down to ties: The claim is
that, for any outcome of the random permutations and choice
of s*, if a member of A wins outright (no ties) in the old
scenario, then they also do so in the new scenario; and if
they draw with just one other entity in the old scenario, then
they win with the same probability in the new scenario. In
both the old and new scenarios, every member of A draws a
random permutation and A applies all of its allocation rules
(including for sub-coalitions). After this, each member of A
has a modified permutation. In the old scenario, each entity
in B participates in B’s allocation process, resulting in mod-
ified permutations, then A and B both participate in forming
C. In the new scenario, A participates in B’s allocation pro-
cess as well. But if a member of A wins outright in the old
scenario, then this participation will not remove location s*

from her permutation (as all members of B must explore s*
after this member, so this member will be awarded s*). And
the member will explore s* at least as early when consider-
ing any later coalition formation (since the only change can
be that some other locations than s* are removed from the
permutation), so the member will still win. The same argu-
ment goes if, in the old scenario, the member of A drew with
exactly one other agent; in the new scenario they still either
draw with that agent, winning with probability 0.5, or else
they win outright.

Thus, joining B can only decrease the winning probabil-
ity for members of A by % times the probability of a tie
with multiple entities in the old scenario (by the same ar-
gument as in 4, namely that under such a tie, the member
of A would only have won half the time). In the proof of

Theorem 6, this is bounded by (”_2|A‘) +riw» Where MIN
is the smallest set size of any other coalitions than A. Now,
we just check that the argument holds when A joins arbi-
trarily earlier in the formation tree: Again an outright win
remains an outright win and the same for a draw with one
other entity, by the same reasoning as above. Note that the
argument does not work for attaching A to a different part of
the formation tree (not rooted under ('), because we cannot
compare the old and new scenarios any more. In the argu-
ment above, A eventually participates in C' in both the old
and new scenarios and this is necessary to argue that a win
in the old scenario equates to a win in the new.

To notice that moving earlier can improve arbitrarily, con-
sider three agents, each of whom has a very large set, but
whose intersection is very small; furthermore, this intersec-
tion Sy is equal to the intersection of any pair of the three
agents. If any two of the agents form a coalition together and
then this coalition merges with the third agent, the third has
a much smaller winning probability than the first two (since
their coalition has a very small set and he has a very large
one). The third agent would be better off joining a step ear-
lier, when all three are symmetric and have the same prob-
ability of winning; and better still would be joining a step
earlier than that, i.e. joining with one of the two agents first,
before later forming a grand coalition with the other. O

6 Discussion and Future Work

The treasure hunting problem is one way to abstract the
problem of cooperation in competitive environments. We
identified the key goals in this setting as good incentives for
truthful reporting (allowing information aggregation), fair-
ness (preserving the spirit of the competition), and welfare
(reducing wasted search costs). We initially constructed
single-shot mechanisms for all agents to participate in, then
“composable” mechanisms in which coalitions can merge to
form larger coalitions.

This direction suggests the problem of dynamics of coali-
tion formation over time. If agents can strategically form
coalitions, but have incomplete information about others’
information, how will they behave? How can a mechanism
designer incentivize the formation of a simple, single grand
coalition rather than fragmented strategic formation? There
seem to be many potential avenues to explore this question.



Non-uniform distributions and Bayesian models. It is
natural to raise the question of a non-uniform distribution
on treasure locations, and the related (but separate) question
of a Bayesian model of agent beliefs.

For a non-uniform distribution, one approach could be to
“re-cut” the island into pieces of equal probability to recover
a uniform distribution; but the pieces might not take the
same time to explore, raising new challenges. In this light,
the uniform distribution assumption might be interpreted as
saying that probability of finding the treasure in a location
is proportional to the work it takes to explore that location.
Non-uniform distributions also raise the question of what to
do if the designer does not know the distribution or if agents
have differing or irreconcilable beliefs.

A Bayesian model of the treasure hunting problem would
have the potential to address many different questions than
the ones considered in this paper. It would require stricter
assumptions than this paper: In a Bayesian game, agents
must form beliefs about the knowledge and actions of others.
We allowed agents to be agnostic as to others’ information
and digging strategies, not requiring (for instance) common
knowledge of the information structure. (A Bayesian model
in which the treasure is uniformly distributed over the island
would be compatible with our assumptions, but would make
stronger assumptions that we do not need.) However, the
obvious benefit of a Bayesian model would be to consider
more sophisticated information models and perhaps focus
on strategic aspects of play.

One could apply the “simplified-game” approach in this
paper to construct a “direct-revelation” Bayesian incentive-
compatible mechanism: Ask each agent to report, not just
their set .S;, but additionally a strategy for exploring the is-
land. Simulate the exploration game using these reported
strategies (rather than uniform random exploration as in this
paper), and allocate states from the intersection according to
winning probabilities. Alternatively, the mechanism could
collect only reports of the sets .S;, attempt to compute a
Bayes-Nash equilibrium on behalf of the players (or a corre-
lated equilibrium), and simulate equilibrium strategies. Two
challenges for this sort of approach are, first, how to model
information (in particular, what the mechanism needs to
know to aggregate reports or compute an equilibrium); and
second, how to define and achieve fairness in the Bayesian
setting.
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