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Designing Markets
for Prediction
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anisms, including prediction markets and peer theory.” Whereas game theorists ask what outcome
prediction systems. We pay particular attention results from a game, mechanism designers ask what
to the design process, highlighting the objectives game produces a desired outcome. In this sense, game theorists
and properties that are important in the design . L . . . .

of good prediction mechanisms. act like .sc1er}t15ts and mechanism designers like engineers.

In this article, we survey a number of mechanisms created to
elicit predictions, many newly proposed within the last decade.
We focus on the engineering questions: How do they work and
why? What factors and goals are most important in their
design?

The primary goal of a prediction mechanism is to obtain and
aggregate dispersed information, which often exists in tacit
forms as beliefs, opinions, or judgements of agents. Coalescing
information is a necessary first step for decision making in
almost all domains. For example, consider seasonal influenza, a
significant cause of illness and death around the world.
Although it recurs every year, the geographic location, timing,
magnitude, and duration of outbreaks vary widely. Many peo-
ple possess relevant pieces of the full information puzzle,
including doctors who meet patients, clinical microbiologists
who perform respiratory culture tests, pharmacists who fill pre-
scriptions, people who have the flu, and people who know peo-
ple who have the flu. Aggregating such information quickly and
accurately is crucial for influenza surveillance since timing is
very important for both prevention and treatment of influenza.

Prediction Markets

A prediction market is one type — probably the most common
and well known type — of prediction mechanism. A prediction
market offers contracts whose future payoff is tied to outcomes
of an event of particular interest and attracts participants to
trade the contract. For instance, a contract that pays $1 if avian
flu is confirmed in the United States before March 31, 2011, and
$0 otherwise can be used to predict the likelihood of an avian
flu outbreak. Wagering on the event outcome through buying
or selling the contract in the market, agents can express their

W We survey the literature on prediction mech- Mechanism design has been described as “inverse game
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opinions in a credible way. A risk-neutral agent
who believes that the probability for avian flu to
be confirmed by the deadline is o can make profits
on expectation by buying the contract if the cur-
rent market price is lower than o, and selling the
contract if the current market price is higher than
o.. The market price hence incorporates the infor-
mation of participants and approximately repre-
sents a real-time consensus forecast for the event.
For example, the Iowa Electronic Markets (IEM)
offer contracts on political elections and Intrade
supports trading on a range of events including
avian flu, global average temperature, and Osama
bin Laden’s capture.

The use of prediction markets for information
aggregation was inspired by the informational effi-
ciency of financial markets (Fama 1970, Hayek
1945). Most of the prediction markets nowadays
use the same continuous double auction mecha-
nism as stock markets. However, as prediction mar-
kets have shown great potential as highly effective
information aggregation tools in their early adop-
tions — market forecasts often outperform other
forecasting methods in a diverse array of settings
(Forsythe et al. 1991; Berg et al. 2001; Chen and
Plott 2002; Chen, Fine, and Huberman 2003;
Cowgill, Wolfers, and Zitzewitz 2008; Wolfers and
Zitzewitz 2004; Pennock et al. 2002; Chen et al.
2005) — recent research is not constrained by the
framework of financial markets and has been
focusing on understanding and achieving proper-
ties that are important for the purpose of informa-
tion aggregation.

Peer Prediction Systems

Prediction markets elicit forecasts for events with a
clear, objective outcome that can be reliably dis-
cerned after the fact: for example, the winner of an
election as reported in the New York Times or the
prevalence of flu according to the Centers for Dis-
ease Control and Prevention. Many information-
aggregation tasks do not conform to this require-
ment, either because the outcome is subjective —
the quality of a movie — or unmeasurable — the
extinction of the human race. Peer prediction sys-
tems operate by evaluating each agent’s prediction
not against an objective reality but against the oth-
er agents’ predictions. Remarkably, under certain
conditions such systems can induce truth telling
in equilibrium, meaning that if others are playing
honestly the best response is to play honestly as
well, yielding aggregate assessments of subjective
or unmeasurable outcomes.

Design Objectives

The goal of a prediction mechanism is to acquire
and aggregate information. Social efficiency, or
making participants happier to the greatest extent
possible, is not necessarily an objective at all. On

this point, prediction mechanisms differ from
almost every other mechanism we can think of,
including auction, voting, and matching mecha-
nisms. In a prediction mechanism, trade is a means
to an end, not an end in itself. Thus prediction
mechanisms must be compared against nonmarket
approaches like polling, forecasting, modeling,
machine learning, and belief aggregation designed
to achieve the same ends (Goel et al. 2010).

Prediction mechanisms are unusual in other
ways. A pure prediction mechanism may reason-
ably operate at a loss; maximizing revenue or even
balancing the budget may not be a concern. If the
operator wants information, she may be perfectly
happy to pay for it. On the other hand, two some-
what nonstandard properties are important:
expressiveness and liquidity. An expressive mech-
anism offers agents flexibility in how they com-
municate information; at the extreme, agents can
provide any information they have in any form
they like. Liquidity ensures that agents can be
compensated for their information at any time,
even when few others are around.

Prediction mechanisms share at least three more
common objectives: incentive compatibility, com-
putational tractability, and individual rationality.
Incentive compatibility means that every agent'’s
best strategy is to honestly report all of their infor-
mation as soon as they have it, an important prop-
erty that’s difficult to achieve in general. Compu-
tational tractability means that the outputs of the
mechanism, like allocations and prices, can be
computed in a reasonable amount of time. Indi-
vidual rationality simply means that agents are
better off for playing the game than not.

Summarizing, the ultimate objective of a predic-
tion mechanism is to aggregate information. Oth-
er objectives are in service of the primary. These
include liquidity, incentive compatibility, expres-
siveness, computational tractability , and individ-
ual rationality. Common design objectives that are
often not important for prediction mechanisms
include social efficiency, revenue optimization,
and budget balance.

In this article, we survey recent progresses on
understanding and designing prediction mecha-
nisms according to these objectives. In particular,
many automated market maker mechanisms have
been designed to provide (effectively infinite) lig-
uidity for prediction markets; much effort has been
put into understanding manipulation in predic-
tion markets and designing prediction mecha-
nisms to achieve incentive compatibility; and
research on combinatorial prediction markets has
advanced our understanding of the computation-
al tractability of operating combinatorial predic-
tion markets when we increase expressiveness.
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Scoring Rules

The simplest prediction mechanism is a scoring
rule, or payment to a single expert in return for her
information. The payment amount depends on
the expert’s prediction and the actual outcome in
a way that motivates the expert to be honest (Good
1952, Winkler 1969, Savage 1971, Gneiting and
Raftery 2007). Formally, let v represent a discrete
random variable with m mutually exclusive and

exhaustive outcomes and r= (r, 1, ,..., 1) be a
reported probability estimate for the random vari-
able v. A scoring rule § = {s,(r), s,(r), ..., s,,(r)}

assigns a score s,(r) to the agent who reports r if
outcome i is realized. A regular scoring rule implies
that s,(r) is finite whenever r; > 0. A regular scoring
rule is (strictly) proper if truthful reporting (strictly)
maximizes the expected score of a risk-neutral
agent. In other words, proper scoring rules are
incentive compatible for risk-neutral agents when
eliciting probability assessments. For example, the
logarithmic scoring rule,

si(r) = a;+ blog(r) (1)
where b > 0, is a widely used proper scoring rule. In
fact, every bounded convex and differentiable
function of r defines a proper scoring rule
(McCarthy 1956, Hendrickson and Buehler 1971,
Savage 1971).

To obtain multiple forecasts, the operator could
give separate scoring rule payments to everyone.
Or, he could employ a shared scoring rule that
rewards each expert according to only the differ-
ence between her prediction and the average of the
others (Kilgour and Gerchak 2004). Now experts
risk losing money in addition to gaining it — the
system becomes a constant sum game — though
the mechanism is still incentive compatible assum-
ing experts don’t revise their beliefs. Lambert et al.
(2008) explore self-financing (budget-balanced)
wagering mechanisms of this type in an axiomatic
framework. Indeed, the line between scoring rules
and markets becomes blurred: for example, the
most common automated market maker used for
prediction markets can be viewed as a sequential
shared scoring rule, as we shall now see.

Liquidity and Market Makers

An auctioneer matches up willing traders with
each other — the auctioneer never takes on any
risk of his own. This is how most financial
exchanges like the stock market operate, and how
IEM, Intrade, and gambling exchanges like Betfair
operate.

An automated market maker, on the other hand,
will quote a price for any contract whatsoever.
Even a lone agent can trade with the market mak-
er as long as she accepts the price, greatly enhanc-
ing liquidity. The liquidity comes at a cost though:
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the market maker can and often does lose money,
though as we'll see in the following the loss can be
bounded.

Auctions work well for stock markets where
there are a large number of buyers and sellers and
finding a counterparty to trade is relatively easy.
However, when there are fewer participants per
outcome, auctions may suffer from illiquidity or
the thin market problem, potentially preventing
agents from revealing their information. An auc-
tion is a zero-sum game for traders. As such,
according to the no-trade theorem (Milgrom and
Stokey 1982) paradox, rational risk-neutral traders
will never trade, each reasoning roughly that any
willing trading partner must know something that
he or she doesn’t know. The market maker’s loss is
the traders gain, turning the mechanism into a
positive-sum game that even rational risk-neutral
agents should play.

Market scoring rules (MSRs) are a family of auto-
mated market maker mechanisms proposed by
Hanson (2003, 2007). An MSR is a sequential
shared version of a proper scoring rule. The market
maker starts the market with some initial proba-
bility r° over the outcomes. Given a proper scoring
rule, every trader in the market may change the
current probability estimate to a new estimate of
its choice at any time as long as it agrees to pay the
scoring rule payment associated with the current
probability estimate and receive the scoring rule
payment associated with the new estimate. If out-
come i is realized, a trader that changes the proba-
bility estimate from r°! to r"®" pays s,(r°!9) and
receives s,(r"*"). The market maker only pays the
last trader and receives payment from the first trad-
er. Because there is a large class of proper scoring
rules, MSRs are a large family of market makers.
From the previous description, MSRs don’t seem to
closely resemble markets, as no contracts are trad-
ed and participants sequentially report probabili-
ties. However, under mild conditions, any MSR is
proven to be equivalent to a cost-function-based
market maker that offers contracts to trade and is
more natural for implementation purposes (Chen
and Pennock 2007).

To predict the outcome of random variable v, a
cost-function-based market maker offers m Arrow-
Debreu contracts, one for each possible outcome.
An Arrow-Debreu contract pays $1 if the corre-
sponding outcome is realized and $0 otherwise. Let
g; be the total quantity of contract i held by all
traders combined, and let q be the vector of all
quantities held. The market maker utilizes a cost
function C(q) that records the total amount of
money traders have spent as a function of the total
number of shares held of each contract. A trader
who wants to buy any bundle of contracts such
that the total number of outstanding shares
changes from @ to " must pay C(q"") — C(q"")



dollars to the market maker. Negative quantities
encode sell orders, and negative “payments”
encode sale proceeds earned by the trader. At any
time, the instantaneous price of contract i is p,(q) =
0C(q)/0q, representing the cost per share for pur-
chasing or selling an infinitesimal quantity of con-
tract i. Any C(q) that is (1) differentiable, (2)
monotonically increasing, that is, if q 2 q’, C(q) 2
C(q'), and (3) positive translation invariant, which
is defined as C(q + k1) = C(q) + k for any q and k,
defines a valid cost-function-based market maker
such that p,(q) is nonnegative and

Spia =1

for all q (Chen and Vaughan 2010).

An MSR can be equivalently implemented as a
cost-function-based market maker if an agent who
changes the market prices from p to p’ by trading
in a cost-function-based market gets the same prof-
it (under every outcome) as if it changes the mar-
ket probability from p to p’ in the MSR. For a log-
arithmic market scoring rule (LMSR) market maker
that uses the logarithmic scoring rule (1) (Hanson
2003, Chen and Pennock 2007), the cost and price
functions are

C(q)= blogzm:eqf/b
=

and

/b
eq,/

= m °
S
j=1

More recently, Chen and Vaughan (2010) have
established a one-to-one mapping between the
class of strictly proper MSR and the class of convex
cost-function-based market makers. An MSR with
strictly proper scoring rule {s,(r)} and a cost-func-
tion-based market maker with convex C(q) map to
each other if and only if

C (q) :pseuﬁ,,, Zpiqi - Zpisi (p) 2)
i1 i1

pi(q)

where A is the probability simplex. Given a strict-
ly proper MSR, (2) gives the cost function for the
corresponding cost-function-based market maker
in terms of a convex optimization problem. The
optimal p to the optimization problem gives the
market prices p(q). Chen and Vaughan (2010) also
provide the expression of {s,(r)} given any convex
C(q). The pair of markets are equivalent in terms of
trader profits when prices for all outcomes are pos-
itive. This mapping allows the easy conversion
between MSR and cost-function-based market
makers.

The cost-function-based market makers and
hence the MSRs have an interesting connection to
no-regret learning. In the framework of learning
from expert advice, an algorithm makes a sequence

of predictions based on the advice of a set of
experts and receives a corresponding sequence of
losses. At every time step t, every expert i receives
aloss /;,. The algorithm maintains a weight w; , for
each expert i at time ¢, where

dow,=1.

The loss received by the algorithm at time step ¢
is the weighted sum of the expert losses. The goal
of the algorithm is to adjust weights of experts to
achieve a cumulative loss that is “almost as low” as
the cumulative loss of the best performing expert,
even if expert losses are chosen by an adversary.
Chen and Vaughan (2010) show that any cost-
function-based market maker can be interpreted as
an algorithm for the learning from expert advice
problem by treating outcomes as experts and
equating trades made in the market with expert
losses observed by the learning algorithm. More-
over, there is a one-to-one mapping between the
class of convex cost-function-based market makers
and the class of Follow the Regularized Leader algo-
rithms for the learning from expert advice prob-
lem.

Two other families of market maker mechanisms
have been proposed based on different rationales
but have some equivalence relationships with
MSRs and cost-function-based market makers.
Chen and Pennock (2007) introduced utility-based
market makers. A utility-based market maker has a
utility function of money and a subjective proba-
bility distribution of the event. It sets the instanta-
neous market prices of Arrow-Debreu contracts as
its risk-neutral probabilities and hence keeps its
expected utility constant at any time of the mar-
ket. For the class of hyperbolic absolute risk aver-
sion utility functions, which contains many fre-
quently used utility functions, and the class of
weighted pseudospherical scoring rules, there is a
one-to-one mapping between the utility-based
market makers and MSRs. The sequential convex
parimutuel mechanism (SCPM) (Agrawal et al. 2009)
is a market maker designed for limit orders. In a
SCPM, traders specify a maximum quantity of
shares that they would like to buy and a maximum
price per share that they are willing to pay. The
market maker decides how many shares of trade to
accept by solving a convex optimization problem.
The payment of the accepted trade is determined
by a generalized VCG mechanism. Although SCPM
is defined differently and can more naturally incor-
porate limit orders and batch orders, the underly-
ing mathematics of SCPM are analogous to those
of cost-function-based market makers.

Another automated market maker mechanism is
the dynamic parimutuel market (DPM) (Pennock
2004; Chen, Pennock, and Kasturi 2008). DPM is a
dynamic-cost variant of a parimutuel market,
which is often used in horse racing. There are m
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contracts offered in a DPM market, each corre-
sponding to one outcome. As in a parimutuel mar-
ket, traders who wager on the true outcome in
DPM split the total pool of money at the end of the
market, in proportion to the amount they
wagered. However, unlike a parimutuel market, the
price of a single share in DPM varies dynamically
according to a price function, thus allowing traders
to sell their shares prior to the determination of
the outcome for profits or losses. From a trader’s
perspective, DPM acts as a market maker in a sim-
ilar way as cost-function-based market makers, the
major exception being that the payoff of a contract
is not fixed. The commonly used cost and price
functions of DPM are

and

Il
—_

15

ql

where ¢/ is the quantity vector at the end of the
market. DPM needs the market maker to seed the
market with some initial shares (money), which
can be arbitrarily small, because the price function
is not defined at q = 0.

Because automated market makers accept orders
without knowing the realized outcome of the
event, they can potentially lose money. A key
property that research on designing automated
market makers has focused on is bounded loss,
which ensures that no matter what happens in the
market and no matter which outcome is realized,
the loss of the market maker is bounded. For an
MSR, as the market maker pays the last trader and
gets paid by the first trader, the worst-case loss of
the market maker happens when traders change
the market probability of the realized outcome to
1. The worst-case loss of an MSR with scoring rule
{s(r)} and initial market probability 1° is bounded

by

max s 5, (r) =5, (1) =

max S; (ei) =S <I'0)

where ¢, is the vector with 1 assigned to its i-th ele-
ment and O everywhere else. Thus, any MSR mar-
ket maker with a regular proper scoring rule has
bounded loss. Given uniform initial market proba-
bility, the loss of an LMSR market maker is bound-
ed by b log m, where m is the number of outcomes
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(Hanson 2003). For cost-function-based market
makers, the worst-case loss bound can be charac-
terized as SUP g gm (sup; q; — (C(q@) — C(0))). For
DPM, the loss of the market maker is bounded by
its initial subsidy as the market is parimutuel.

LMSR has become the de facto market maker
mechanism for prediction markets. It is used by
many companies including Inkling Markets, Con-
sensus Point, Yahoo!, and Microsoft. However, set-
ting the value of b, often called the liquidity
parameter, in LMSR is more art than science in
practice. The b parameter determines how quickly
prices move with trades as well as the market mak-
er’'s worst-case loss. If b is too small, the price of a
contract changes dramatically after a small num-
ber of shares is traded. If b is too large, the price of
a contract barely moves even with a large volume
of trades. Othman et. al. (2010) propose a modified
LMSR where the liquidity parameter no longer
needs to be set fixed a priori. In this modified
LMSR, the value of b increases continuously with
the total number of shares of all contracts pur-
chased by all traders. Unlike the original LMSR
where the prices of all contracts always sum to 1,
the modified LMSR allows the sum of the prices to
be greater than 1. Intuitively, the modified LMSR
behaves as if it charges some transaction fees for
every infinitesimal trade and uses the collected
transaction fee to increase the value of the liquidi-
ty parameter.

Incentive Compatibility

For prediction markets, incentive compatibility
means that a risk-neutral agent maximizes its
expected profit by changing the market probabili-
ty to its probability assessment immediately. In
other words, the agent will reveal its information
truthfully and immediately. Incentive compatibility
provides simplification for mechanisms, because
agents do not need to strategize and simply reveal-
ing their information is the best response. More-
over, if agents lie about their information, infor-
mation aggregation may be put into question.
Prediction markets are not incentive compatible
in general. The no-trade theorem means that
rational traders should not trade at all in CDA. The
Kyle model of financial markets posits two types of
traders: rational traders and noisy traders (Kyle
1985). The existence of noisy traders makes CDA a
positive-sum game for the rational traders and
hence circumvents the no-trade theorem. Howev-
er, the mechanism is still not incentive compati-
ble. For example, monopolist information holders
will not fully reveal their information right away:
instead, they will leak their information into the
market gradually over time to obtain a greater prof-
it (Chakraborty and Yilmaz 2004). Market scoring
rules and most cost-function-based market makers



are myopically incentive compatible — a risk-neu-
tral agent will report its probability truthfully if it
only participates once.! But because an agent can
potentially influence other agents by its trading
action and can trade more than once, a forward-
looking agent may lie about its information to mis-
lead other agents (“bluff”) with the hope to obtain
greater profit by correcting their mistakes later.

While incentive compatibility in mechanism
design often means dominant-strategy incentive
compatibility, incentive compatibility for predic-
tion mechanisms typically refers to Bayesian-Nash
incentive compatibility. In fact, all existing pre-
diction mechanisms that involve direct or indirect
interactions of agents are not dominant-strategy
incentive compatible.? Researchers hence focus on
understanding and designing prediction mecha-
nisms to implement Bayesian-Nash incentive
compatibility. Some consider an even weaker
notion of truthfulness — whether the mechanism
converges to full information aggregation or
obtains a representative sample of agent opinions
at an equilibrium even if individual agents may
not play honestly.

Chen et. al. (2009) attempt to understand
whether there exists game-theoretic equilibrium at
which agents truthfully reveal their information as
soon as they can in prediction markets. They con-
sider a two-outcome LMSR market and model it as
an n-player, incomplete-information, dynamic
game. At the beginning of the market, each risk-
neutral player i gets a private signal s, that is sto-
chastically related to the outcome of the event .
The joint distribution of s;’s and o is common
knowledge. Players trade in the LMSR market
according to a prespecified sequence. The equilib-
rium behavior of the game depends on the infor-
mation structure of the players. When players have
conditionally independent signals (that is, condi-
tional on w, s;’s are independent), the unique Per-
fect Bayesian Equilibrium (PBE) of the game is the
truthful betting equilibrium where every player
truthfully reveals its information in the first round
it can trade. Information is fully aggregated after
everyone has traded. However, when the signals
are unconditionally independent, a complete char-
acterization of the equilibrium is unknown, but it
is known that truthfully revealing one’s informa-
tion is not an equilibrium strategy. In fact, it is
shown that there does not exist an equilibrium
where all information is aggregated within a finite
number of trades. A discounted LMSR where the b
parameter in the logarithmic scoring rule decreas-
es over time is then proposed to ensure that infor-
mation is fully aggregated in the limit with uncon-
ditionally independent signals. Jain and Sami
(2010) conduct lab experiments to test the previ-
ously mentioned theoretical results. They find that
the assumption of prespecified trading sequence is

crucial for the different behavior under the two
information structures. Information is better
aggregated in the experiments when the trading
sequence is prespecified, compared with when
traders endogenously decide when to trade. More-
over, when trading sequence is prespecified, Jain
and Sami find that there are more manipulative
behaviors with unconditionally independent sig-
nals than with conditionally independent signals,
while the difference is not observed without the
prespecified trading sequence.

Ostrovsky (2009) characterizes the condition of
a contract and an information structure under
which prediction markets converge to full infor-
mation aggregation at PBEs, even if traders may
not truthfully reveal their information at their first
round of trade. He considers both Kyle’s noisy-
trader model of CDA and MSR market makers. He
analyzes a dynamic game of n risk-neutral agents
each receiving a piece of private information. He
shows that if the contract together with the infor-
mation structure satisfies a separability condition,
information gets aggregated in the limit at any
PBE; if the separability condition is not satisfied,
there exists some prior distribution of event out-
comes such that at some PBE information is not
aggregated. lyer, Johari, and Moallemi (2010)
extend Ostrovsky’s work by considering risk-averse
agents. They study a setting where n risk-averse
agents with conditionally independent private sig-
nals participate in an automated market maker
mechanism. With risk-averse agents, lyer, Johari,
and Moallemi identify a smoothness condition of
the prices that together with some other reason-
able conditions of the market can ensure full infor-
mation aggregation in the limit at any PBE. Loose-
ly speaking, smoothness requires that there is no
bid-ask spread for purchasing or selling an infini-
tesimal quantity of any contract. For cost-func-
tion-based market makers, this is always satisfied
due to differentiability of the cost function. In fact,
Iyer, Johari, and Moallemi prove that for any cost-
function-based market maker that has bounded
loss, if the signal space of agents is finite, informa-
tion is always aggregated in the limit with risk-
averse agents at any pure-strategy PBE. In addition,
if there is at least one risk-neutral agent in the mar-
ket, the market price eventually reflects the poste-
rior probability of the event conditional on the
pooled information. It's worth mentioning that
although both Ostrovsky (2009) and lyer, Johari,
and Moallemi (2010) characterize conditions for
full information aggregation at PBEs, the existence
of such PBE:s is still an open question.

Manipulation

The work surveyed in this section so far all implic-
itly assumes that agents could not take actions to
influence the outcome of the event. This is often
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not true in the real world. For example, with an
internal prediction market to predict a software
delivery date, a developer of the software who pur-
chases contracts in the market may deliberately
take actions outside of the market to affect the soft-
ware delivery date so that the contracts he pur-
chased will pay off. Shi, Conitzer, and Guo (2009)
attempt to avoid such incentive misalignment.
They consider a setting where there is a principal
(for example, the company) who sets up a predic-
tion mechanism to collect information about an
event of interest. A group of agents who have
information about the event of interest can also
take actions to affect its outcome. The principal
has a preference over the event outcomes (for
example, on-time delivery of the software is pre-
ferred) and hence requires the prediction mecha-
nism to not only elicit information from agents
but also not incentivize the agents to take actions
that may harm the principal. Shi, Conitzer, and
Guo consider one-round MSR markets where every
agent can only participate once. Focusing on the
one-round mechanisms removes the complication
of strategic play within the market because agents
should play truthfully when they only participate
once. Given the utility vector of the principal for
event outcomes, they characterize “principal-
aligned” proper scoring rules that do not incen-
tivize the agent to take any action that may harm
the principal in expectation. When using a “prin-
cipal-aligned” proper scoring rule for a one-round
MSR with n agents, the principal in the worst case
needs to pay ©(n) times as much as he would pay
if incentive alignment is not required. The intu-
ition is that the principal needs to subsidize each
agent in a way such that the benefit that the agent
can get when the desired outcome happens is
higher than the possible benefit it can get within
the market by manipulating the event outcome.
Ultimately, information elicitation and aggrega-
tion are conducted to assist decision making. If
decisions will be made based on the information
conveyed by a prediction market, agents may have
incentives to manipulate the market in order to
achieve the desired decision outcome. Dimitrov
and Sami (2010) consider manipulations of predic-
tion markets due to a certain type of conflicting
incentives. Unlike previous work where strategic
agents only care about profits within a single mar-
ket, Dimitrov and Sami model a situation where an
agent’s trade in one market can influence the trad-
ing decision of another agent in a second market.
Specifically, they consider a simple two-player
three-stage model, where Alice trades in the first
market, Bob observing Alice’s action in the first
market makes his trading decision in the second
market, and Alice can then trade in the second
market. Alice can potentially manipulate the price
in the first market so that Bob’s trading decision in
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the second market leaves the market in a more
profitable state for Alice. Dimitrov and Sami char-
acterize the weak perfect Bayesian equilibria of the
game and find that the payoffs of Alice and Bob are
unique across all equilibria.

Peer Prediction

Prediction markets rely on a verifiable “ground
truth” of the event of interest to evaluate reports of
agents. However, many events in the real world are
either subjective or nonverifiable. In the past six
years, a stream of work develops scoring rule based
methods that evaluate the report of an agent
against the reports of its peers to truthfully elicit
information for events where ground truth does
not exist or can not be obtained.

Miller, Resnick, and Zeckhauser (2005) propose
the first peer prediction method. Suppose o is the
event of interest, which is represented as a discrete
random variable. Each agent receives a signal s,
that is independent, and randomly drawn from a
probability distribution conditional on the true
state of . Both the prior distribution of ® and the
conditional probability distribution of signals s,|®
are common knowledge. The true state of o is not
verifiable. The peer prediction method makes use
of the stochastic correlation between signals of
agents to achieve a Bayesian Nash equilibrium
(BNE) where every agent truthfully reports its sig-
nals to the mechanism. If an agent i truthfully
reports its signal s, knowing the prior distribution
the mechanism calculates agent i’s posterior prob-
ability of the signal of a reference agent j, P(sjs;),
which can then be evaluated and rewarded using a
proper scoring rule according to agent j's reported
signal. Thus, if all other agents report truthfully,
agent i maximizes its expected reward by reporting
truthfully. However, truthful reporting is not a
unique equilibrium. There exist lying equilibria.
Jurca and Faltings (2006) improve the peer predic-
tion method by finding the incentive payment
computationally to reduce the total payment of
the mechanism. They further show that the peer
prediction method can be extended to make incen-
tive payment based on more than one reference
report, to deal with collusion and sybil attack, and
to ensure that truthful reporting is the unique
equilibrium (Jurca and Faltings 2007). Goel,
Reeves, and Pennock (2009) propose a collective
revelation mechanism that not only admits a
truthful reporting BNE but also weights the esti-
mates of agents by their relative information con-
tent.

The peer prediction method, its extensions, and
the collective revelation mechanism are based on
the assumption of common knowledge of com-
mon prior. Agents are assumed to have a common
prior of the event and signals, and the mechanism
makes use of the common prior in determining



incentive payments. The Bayesian Truth Serum
(BTS), introduced by Prelec (2004), has a slightly
weaker assumption. It still assumes that agents
have common prior, but the prior can be unknown
and the mechanism does not explicitly use the pri-
or distribution. Consider an opinion poll. BTS
works by asking each agent to report its subjective
answer to the poll and an estimate of the final dis-
tribution over possible answers. The reward of the
agent consists of two parts: an information score
for the answer, which is higher for answers that are
surprisingly more common than collectively pre-
dicted, and a prediction score that is inversely pro-
portional to the Kullback-Leibler divergence of the
estimated answer distribution from the actual
answer distribution of the poll. Truthful reporting
of both the subjective answer and the estimate of
the answer distribution is a BNE for BTS. One lim-
itation of BTS is that partial poll results can not be
revealed before the end of the poll. To overcome
this limitation, Jurca and Faltings (2008) propose a
mechanism that encourages a more general notion
of truthful reporting for online polls where each
agent knows the partial poll result before its par-
ticipation. At a BNE of this mechanism, the reports
of agents are not necessarily truthful, but they
always reduce the gap between the updated partial
poll result and the subjective belief of the reporter
regarding the poll outcome. The poll result hence
converges to the correct outcome, that is, the true
fractions of agents who endorse different poll
answers.

Lambert and Shoham (2008) take a different
approach. Instead of seeking truthful reports of
agents, they propose a mechanism that can extract
a representative sample of opinions. The mecha-
nism selects a group of agents and the payment to
each agent depends only on the reports of the
selected agents. Unlike the previous methods, the
mechanism does not need the existence of a com-
mon prior. When at least one participant may be
trusted, the mechanism ensures that at all Nash
equilibria true samples of opinions are obtained.
Lambert and Shoham (2009) further give necessary
and sufficient conditions for the existence of
incentive payments that induce truthful answers
in online questionnaires at an equilibrium, and
provide characterizations of such payments.

Expressiveness and
Computational Tractability

Prediction mechanisms with more than a few out-
comes become unwieldy if agents must provide
information about each outcome individually, one
at a time. An expressive mechanism allows agents
to place combinatorial bids that say things about
sets of outcomes together, greatly simplifying and
reducing the communication needed.

For example, imagine a 539-outcome prediction
market for the U.S. presidential election with one
outcome for every possible number of electoral
votes between 0 and 538 that the Democratic can-
didate will receive. A prediction like “the Democ-
rat will receive between 269 and 312 electoral
votes” becomes tedious and inefficient if each of
the intervening 44 outcomes is traded separately. A
natural form of expressiveness here is to allow the
entire interval to be bought in a single transaction.

Combinatorial bids are useful in any market but
they are almost necessary when the outcome space
is itself combinatorial, for example, all possible
permutations of a horse race. A race among ten
horses has 10! outcomes and a prediction like
“horse A will finish ahead of horse B” involves half
of them, or over 1.8 million outcomes, too many
to deal with individually.

Combinatorial bids also allow for smarter
accounting so traders’ funds aren’t unnecessarily
locked up to cover two bets that provably can nev-
er lose together, for example “Horse A will not
win” and “Horse B will not win.”

Another form of expressiveness allows traders to
place indivisible bids that the mechanism must fill
either completely or not at all. In the context of
prediction markets, this option may not be so
important. Traders may be happy to receive par-
tially filled bids with both less risk and propor-
tionally less reward than they requested. If they are
willing to risk $100 to win $200, many would also
be willing to risk $50 to win $100 instead. Still,
some traders may want indivisible bids to guaran-
tee a minimum level of risk or insurance, otherwise
opting out and going elsewhere.

Allowing greater expressiveness comes at a
potential cost in the computational burden on the
mechanism. A prediction market auctioneer can
process combinatorial bids in time polynomial in
the number of outcomes using linear program-
ming if bids can be partially filled. If traders can
place indivisible bids, the problem becomes NP-
hard (Bossaerts, Fine, and Ledyard 2002, Fortnow
et al. 2004). The automated market maker algo-
rithms previously mentioned also run in polyno-
mial time in the number of outcomes. Optimal
accounting, or computing the maximum a trader
can lose in the worst case and thus the minimum
amount of cash or credit the center needs to
reserve for that trader, is typically polynomial in
the number of outcomes.

So, adding (divisible) combinatorial bids to mar-
kets with hundreds or even thousands of outcomes
is feasible, with almost no downside. Still, combi-
natorial bidding is not supported by the vast
majority of fielded prediction markets, including
IEM, Intrade, Inkling, Newsfutures, and HSX, and
the majority of financial and betting markets
broadly speaking. Exceptions include Othman and
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Sandholm’s Gates Hillman Prediction
Market (Othman and Sandholm 2010);
the Policy Analysis Market (PAM)3;
Bossaerts, Fine, and Ledyard’s (2002)
combined value-trading mechanism;
the parimutuel call market mechanism
(Agrawal et al. 2009; Baron and Lange
2005; Lange and Economides 2007;
Peters, So, and Ye 2007); and Yahoo!’s
Yoopick* and Predictalot® systems.

When the outcome space is combi-
natorial, expressivity poses a more dif-
ficult computational challenge. A run-
ning time that’s polynomial in the
number of outcomes is not good
enough, since the number of outcomes
is exponential in the number of base
objects. Across a range of combinatori-
al outcome settings, the auctioneer
problem is NP-hard and the LMSR mar-
ket maker pricing problem is #P hard.
There are a few special cases where lim-
iting expressivity enough can render
the problem tractable. Optimal
accounting in the combinatorial out-
come setting is NP-hard.

Some of the known results include
Boolean betting, tournament betting,
permutation betting, and taxonomy
betting.

Boolean Betting. Base objects are bina-
ry events, for example whether the
Democratic candidate wins Alabama,
Alaska, and so on, for all 50 states. Out-
comes are all possible combinations, in
this case all 259 ways the election might
swing. Predictions are phrased in
Boolean logic, for example “Ohio and
Florida but not Virginia.” (Condition-
als like “Nevada if California” can also
be handled without affecting the com-
plexity.) The auctioneer problem is NP-
hard and remains hard even if the most
complicated bet allowed is conjoining
two events. Allowing indivisible bids
makes the problem NP-hard even for a
small number of outcomes polynomial
in the number of base objects (Fortnow
et al. 2004). LMSR pricing is #P-hard
and inapproximable in general (Chen
et al. 2008).

Tournament Betting. This is a special
case of Boolean betting where base
objects are matches in a single-elimi-
nation tournament, a common struc-
ture in sports playoffs. LMSR pricing
remains hard, though if bets are
restricted to “team A advances to
round k” prices can be computed in
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polynomial time using a Bayesian net-
work (Chen, Goel, and Pennock 2008).

Permutation Betting. Outcomes are
permutations of base objects, for exam-
ple all 10! possible finish orderings in a
10 horse race. Predictions are proper-
ties of the final ordering, for example
Horse B will finish ahead of horse D, or
Horse B will finish between 3rd and 7th
place. The auctioneer and LMSR pric-
ing problems are both intractable and
remain so even if all bets are pairwise:
“X will finish ahead of Y.” Interesting-
ly, the auctioneer problem becomes
tractable if all bets encode one-to-
many subsets of the form “Horse A will
finish in positions 1, 3, or 7” or “Hors-
es C or E will finish in position 2,”
although the pricing problem remains
hard (Chen et al. 2007). Ghodsi et al.
(2008) show that even subset betting is
hard for indivisible bids, unless bets are
turther restricted to candidate-rank
specifications like “Horse B will finish
in position 3.” Agrawal, Wang, and Ye
(2008) give a polynomial-time convex
optimization algorithm for the auc-
tioneer problem when bets are linear
combinations of candidate-rank speci-
fications. They also show how to use
maximum entropy to approximate the
full joint distribution over all n! per-
mutations from the #? marginal prices
for each candidate-rank pair main-
tained by their mechanism.

Taxonomy Betting. Base objects are
(discretized) numbers at the base or
leaves of a tree. An internal node in the
tree represents the sum of its children.
For example, the numbers might repre-
sent page views of a sports website
organized in a hierarchy by topic (foot-
ball, basketball, baseball), subtopic
(college, professional), subsubtopic,
and so on. Outcomes are the cross
product of the numbers at the leaves.
Bets can be placed on the range of any
node in the tree, for example “page
views of the NBA subsection will be
between 100K and 150K.” LMSR pric-
ing in this context is tractable using
dynamic programming, though slight
generalizations of the betting language
render it hard (Guo and Pennock
2009).

Why do we need or want combina-
torial-outcome markets? Simply put,
they allow for the collection of more
information. Combinatorial outcomes

allow traders to assess the correlations
among base objects, not just their inde-
pendent likelihoods, for example the
correlation between Democrats win-
ning in Ohio and Pennsylvania.
Understanding correlations is key in
many applications, including risk
assessment.

Although financial and betting
exchanges, bookmakers, and racetracks
are modernizing, turning their opera-
tions over to the computers and mov-
ing online, their core logic for process-
ing bids hasn’t changed much since
auctioneers were people. For simplicity,
they treat all bets like apples and
oranges, processing them independ-
ently, even when they are related. For
example, bets on a horse to win and to
finish in the top two are managed sep-
arately at the racetrack, as are options
to buy a stock at strike price 30 and
strike price 20 on the Chicago Board
Options Exchange. In both cases it’s a
logical truism that the first is worth less
than the second, yet the market pleads
ignorance, leaving it to traders to
enforce consistent pricing.

In a combinatorial market, a bet on
Democrats to win Ohio and Florida
automatically increases the odds on
Ohio alone, as it logically should.
Mindless mechanical tasks like this are
handled automatically, by algorithms
that are far better at it anyway, freeing
up traders for the primary task a pre-
diction market asks them to do: pro-
vide information. Traders are free to
express their information in whatever
form they find most natural, and it all
flows into the same pool of liquidity.
Especially in the context of a predic-
tion market, it makes sense to focus
traders on giving information rather
than content-free strategies like arbi-
trage.

It’s hard to imagine a combinatorial-
outcome market working in practice
without an automated market maker:
otherwise, traders are unlikely to find
each other in the sea of choices. We
don’t believe that markets need to
restrict themselves to polynomial-time
bidding languages, often a severe con-
straint. Instead, we believe that com-
puting approximate market maker
prices via sampling, the approach tak-
en by Yahoo!’s Predictalot system,
offers a route to practical general-pur-



pose systems. The sampling problem in
this setting is difficult and unsolved,
and requires care in order to ensure
that traders cannot game the market
maker for unbounded profit.

Beyond computational concerns,
the market operator should weigh any
potential gains in information against
the fact that traders’ attention and lig-
uidity will be severely fractured across
the nearly limitless things available to
bet on.

Conclusion

We surveyed the literature on predic-
tion markets and peer prediction sys-
tems with a focus on the properties
that are important for information elic-
itation and aggregation, the ultimate
objective of prediction mechanisms.
Prediction markets are used to elicit
and aggregate information about
uncertain events whose outcome can
be verified at a specific time in the
future. We reviewed recent research on
designing automated market maker
mechanisms that provide liquidity for
the market, understanding whether
information is truthfully aggregated in
prediction markets with strategic
agents, and developing combinatorial
prediction markets where market par-
ticipants have more expressiveness to
reveal their information. Peer predic-
tion systems are designed for eliciting
information on events where ground
truth does not exist or is unobtainable.
The most important challenge here is
how to elicit truthful reports from
strategic agents. We reviewed peer pre-
diction systems where truth telling is
induced in equilibrium.
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Notes

1. The requirement for a cost-function-
based market maker to be myopically incen-
tive compatible is that the prices span the
probability simplex. In other words, it is
always possible for a trader to change the
market probability to its probability assess-
ment.

2. Proper scoring rules for eliciting informa-
tion from individual agents are dominant-
strategy incentive compatible. There are no
interactions among agents.

3. See hanson.gmu.edu/policyanalysismar-
ket.html.

4. See sandbox.yahoo.com/yoopick.
5. See sandbox.yahoo.com/predictalot.
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