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Abstract. We study the equilibrium behavior of informed traders in-
teracting with two types of automated market makers: market scoring
rules (MSR) and dynamic parimutuel markets (DPM). Although both
MSR and DPM subsidize trade to encourage information aggregation,
and MSR is myopically incentive compatible, neither mechanism is in-
centive compatible in general. That is, there exist circumstances when
traders can benefit by either hiding information (reticence) or lying about
information (bluffing). We examine what information structures lead to
straightforward play by traders, meaning that traders reveal all of their
information truthfully as soon as they are able. Specifically, we analyze
the behavior of risk-neutral traders with incomplete information playing
in a finite-period dynamic game. We employ two different information
structures for the logarithmic market scoring rule (LMSR): conditionally
independent signals and conditionally dependent signals. When signals
of traders are independent conditional on the state of the world, truthful
betting is a Perfect Bayesian Equilibrium (PBE) for LMSR. However,
when signals are conditionally dependent, there exist joint probability
distributions on signals such that at a PBE in LMSR traders have an
incentive to bet against their own information—strategically misleading
other traders in order to later profit by correcting their errors. In DPM,
we show that when traders anticipate sufficiently better-informed traders
entering the market in the future, they have incentive to partially with-
hold their information by moving the market probability only partway
toward their beliefs, or in some cases not participating in the market at
all.

1 Introduction

The strongest form of the efficient markets hypothesis [1] posits that informa-
tion is incorporated into prices fully and immediately, as soon as it becomes
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available to anyone. A prediction market is a financial market specifically de-
signed to take advantage of this property. For example, to forecast whether a
product will launch on time, a company might ask employees to trade a security
that pays $1 if and only if the product launches by the planned date. Everyone
from managers to developers to administrative assistants with different forms
and amounts of information can bet on the outcome. The resulting price con-
stitutes their collective probability estimate that the launch will occur on time.
Empirically, prediction markets like this outperform experts, group consensus,
and polls across a variety of settings [2–10].

Yet the double-sided auction at the heart of nearly every prediction market is
not incentive compatible. Information holders do not necessarily have incentive
to fully reveal all their information right away, as soon as they obtain it. The
extreme case of this is captured by the so-called no trade theorems [11]: When
rational, risk-neutral agents with common priors interact in an unsubsidized
(zero-sum) market, the agents will not trade at all, even if they have vastly
different information and posterier beliefs. The informal reason is that any offer
by one trader is a signal to a potential trading partner that results in belief
revision discouraging trade.

The classic market microstructure model of a financial market posits two
types of traders: rational traders and noise traders [12]. The existence of noise
traders turns the game among rational traders into a positive-sum game, thereby
resolving the no-trade paradox. However, even in this setting, the mechanism is
not incentive compatible. For example, monopolist information holders will not
fully reveal their information right away: instead, they will leak their information
into the market gradually over time and in doing so will obtain a greater profit
[13].

Instead of assuming or subsidizing noise traders, a prediction market designer
might choose to directly subsidize the market by employing an automated market
maker that expects to lose some money on average. Hanson’s market scoring rule
market maker (MSR) is one example [14, 15]. MSR requires a patron to subsidize
the market, but guarantees that the patron cannot lose more than a fixed amount
set in advance, regardless of how many shares are exchanged or what outcome
eventually occurs. The greater the subsidy, the greater the effective liquidity of
the market. Since traders face a positive-sum game, even rational risk-neutral
agents have incentive to participate. In fact, even a single trader can be induced
to reveal information, something impossible in a standard double auction with
no market maker. Hanson proves that myopic risk-neutral traders have incentive
to reveal all their information, however forward-looking traders may not.

Pennock’s dynamic parimutuel market (DPM) [16, 17] is another subsidized
market game that functions much like a market maker. Players compete for
shares of the total money wagered by all players, where the payoff of each share
varies depending on the final state of the system. Whereas in a standard predic-
tion market for a binary outcome the payoff of every winning share is exactly
$1, the payoff in DPM is at least $1, but could be more.



Though subsidized market makers improve incentives for information rev-
elation, the mechanisms are still not incentive compatible. Much of the allure
of prediction markets is the promise to gather information from a distributed
group quickly and accurately. However, if traders have demonstrable incentives
to either hide or falsify information, the accuracy of the resulting forecast may
be in question.

In this paper, we examine the strategic behavior of (non-myopic) risk-neutral
agents participating in prediction markets using two-outcome MSR and DPM
mechanisms. We model the market as a dynamic game and solve for equilibrium
trading strategies. We employ two different information structures for LMSR
with incomplete information: conditionally independent signals and conditionally
dependent signals. The equilibrium concept that we use is the Perfect Bayesian
Equilibrium (PBE) [18]. We prove that with conditionally independent signals,
a PBE of LMSR with finite players and finite periods consists of all players
truthfully revealing their private information at their first chance to bet. With
conditionally dependent information, we show that in LMSR there exist joint
probability distributions on signals such that traders have an incentive to bluff,
or bet against their own information, strategically misleading other traders in
order to later correct the price. DPM is shown, via a two-player, two-stage game,
to face another problem: traders may have incentives to completely withhold
their private information or only partially reveal their information when they
anticipate sufficiently better-informed agents trading after them. Due to lack of
space, we omit or abridge some proofs of lemmas and theorems in this paper;
full proofs can be obtained as an Appendix by request.

Related Work Theoretical work on price manipulation in financial markets [19,
13, 20] explains the logic of manipulation and indicates that double auctions are
not incentive compatible. There are some experimental and empirical studies
on price manipulation in prediction markets using double auction mechanisms;
the results of which are mixed, some giving evidence for the success of price
manipulation [21] and some showing the robustness of prediction markets to
price manipulation [22–25]. The paper by Dimitrov and Sami [26], completed
independently and first published simultaneously with an early version of this
paper, is the most directly related work that we are aware of. Dimitro and Sami,
with the aid of a projection game, study non-myopic strategies in LMSR with
two players. By assuming signals of players are unconditionally independent and
the LMSR market has infinite periods, they show that truthful betting is not an
equilibrium strategy in general. Our study of LMSR with incomplete information
in Sections 3 and 4 complements their work. Dimitro and Sami examine infinite
periods of play, while we consider finite periods and finite players. On the one
hand, the conditionally independent signals case that we examine directly implies
that signals are unconditionally dependent unless they are not informative. On
the other hand, the conditional dependence of signals assumption overlaps with
Dimitro and Sami’s unconditional independence of signals.



2 Background

Consider a discrete random variable X that has n mutually exclusive and exhaus-
tive outcomes. Subsidizing a market to predict the likelihood of each outcome,
two classes of mechanisms, MSR and DPM, are known to guarantee that the
market maker’s loss is bounded.

2.1 Marketing Scoring Rules

Hanson [14, 15] shows how a proper scoring rule can be converted into a market
maker mechanism, called market scoring rules (MSR). The market maker uses a
proper scoring rule, S = {s1(r), . . . , sn(r)}, where r = 〈r1, . . . , rn〉 is a reported
probability estimate for the random variable X. Conceptually, every trader in
the market may change the current probability estimate to a new estimate of
its choice at any time as long as it agrees to pay the scoring rule payment
associated with the current probability estimate and receive the scoring rule
payment associated with the new estimate. If outcome i is realized, a trader
that changes the probability estimate from rold to rnew pays si(rold) and receives
si(rnew).

Since a proper scoring rule is incentive compatible for a risk-neutral agents,
if a trader can only change the probability estimate once, this modified proper
scoring rule still incentivizes the trader to reveal its true probability estimate.
However, when traders can participate multiple times, they might have incentives
to manipulate information and mislead other traders.

Because traders change the probability estimate in sequence, MSR can be
thought of as a sequential shared version of the scoring rule. The market maker
pays the last trader and receives payment from the first trader. For a logarithmic
market scoring rule market maker (LMSR) with the scoring function si(r) =
b log(ri) and b > 0, the maximum amount the market maker can lose is b log n.

An MSR market can be equivalently implemented as a market maker offering
n securities, each corresponding to one outcome and paying $1 if the outcome is
realized [14, 27]. Hence, changing the market probability of outcome i to some
value ri is the same as buying the security for outcome i until the market price
of the security reaches ri. Our analysis in this paper is facilitated by directly
dealing with probabilities.

2.2 Dynamic Parimutuel Market

A dynamic parimutuel market (DPM) [16, 17] is a dynamic-cost variant of a
parimutuel market. There are n securities offered in the market, each corre-
sponding to an outcome of X. As in a parimutuel market, traders who wager on
the true outcome split the total pool of money at the end of the market. However,
the price of a single share varies dynamically according to a price function, thus
allowing traders to sell their shares prior to the determination of the outcome
for profits or losses.



From a trader’s perspective, DPM acts as a market maker. A particularly
natural way for the market maker to set security prices is to equate the ratio of
prices of any two securities by the ratio of number of shares outstanding for the
two securities. Let q = 〈q1, . . . , qn〉 be the vector of shares outstanding for all
securities. Then the total money wagered in the market is

C(q) = κ

√√√√ n∑
j=1

q2j , (1)

while the instantaneous price is

pi(q) =
κqi√∑n
j=1 q

2
j

∀i, (2)

where κ is a free parameter. When a trader buys or sells one or more securities, it
changes the vector of outstanding shares from qold to qnew and pays the market
maker the amount C(qnew) − C(qold), which equals the integral of the price
functions from qold to qnew. If outcome i occurs and the quantity vector at the
end of the market is q f , the payoff for each share of the winning security is

oi =
C(q f )

qfi
=
κ
√∑

j(q
f
j )2

qfi
. (3)

Unlike LMSR where the market probability of an outcome is directly listed, the
market probability of outcome i in DPM with the above described cost, price,
and payoff functions is given by πi = pi(q)

C(q)/qi
or, in terms of the shares directly,

πi(q) =
q2i∑n
j=1 q

2
j

. (4)

For traders whose probabilities are the same as the market probabilities, they
can not expect to profit from buying or selling securities if the DPM market
liquidates in the current state.

A trader wagering on the correct outcome is guaranteed non-negative profit
in DPM, because pi is always less than or equal to κ and oi is always greater
than or equal to κ. Setting κ = 1 yields a natural version where prices are less
than or equal to 1 and payoffs are greater than or equal to 1. Because the price
functions are not well-defined when q = 0, the market maker needs to initialize
the market with a non-zero quantity vector q 0 (which may be arbitrarily small).
Hence, the market maker’s loss is at most C(q 0) whichever outcome is realized.

Compared with a parimutuel market, where traders are never worse off for
waiting until the last minute to put their money in, the advantage of DPM is
that it provides some incentive for informed traders to reveal their information
earlier, because the price of a security increases (decreases) when more people
buy (sell) the security. But it is not clear whether traders are better off by always
and completely revealing their information as soon as they can.



2.3 Terminology

Truthful betting (TB) for a player in MSR and DPM is the strategy of immedi-
ately changing market probabilities to the player’s probabilities. In other words,
it is the strategy of always buying immediately when the price is too low and
selling when the price is too high according the the player’s information. Bluff-
ing is the strategy of betting contrary to one’s information in order to deceive
future traders, with the intent of capitalizing on their resultant misinformed
trading. Strategic reticence means withholding one’s information; that is, delay-
ing or abstaining from trading, or moving the market probabilities only partway
toward one’s actual beliefs. This paper investigates scenarios where traders with
incomplete information have an incentive to deviate from truthful betting.4

3 LMSR with Conditionally Independent Signals

In this part, we start with simple 2-player 3-stage games and move toward the
general finite-player finite-stage games to gradually capture the strategic behav-
ior in LMSR when players have conditionally independent signals.

3.1 General Settings

Ω = {Y,N} is the state space of the world. The true state, ω ∈ Ω, is picked
by nature according to a prior p0 = 〈p0

Y , p
0
N 〉 = 〈Pr(ω = Y ),Pr(ω = N)〉.

The prior is common knowledge to all players. A market, aiming at predicting
the true state ω, uses a LMSR market maker with initial probability estimate
r0 = 〈r0Y , r0N 〉.

Players are risk neutral. Each player gets a private signal, ci ∈ Ci, about
the state of the world at the beginning of the market. Ci is the signal space
of player i with |Ci| = ni. Players’ signals are independent conditional on the
state of the world. In other words, player i’s signal ci is independently drawn by
nature according to conditional probability distributions,

Pr(ci = Ci{1} | Y ), Pr(ci = Ci{2} | Y ), ... , Pr(ci = Ci{ni} | Y ) (5)

if the true state is Y , and analogously if the true state in N . Ci{1} to Ci{ni} are
elements of Ci. The signal distributions are common knowledge to all players.
Based on their private signals, players update their beliefs. Then players trade
in one or more rounds of LMSR.

3.2 Who Wants to Play First?

We first consider a simple 2-player sequence selection game. Suppose that Alice
and Bob are the only players in the market. Alice independently gets a signal
4 With complete information, traders should reveal all information right away in both

MSR and DPM, because the market degenerates to a race to capitalize on the shared
information first.



cA ∈ CA. Similarly, Bob independently gets a signal cB ∈ CB. Let |CA| = nA
and |CB| = nB .

In the first stage, Alice chooses who—herself or Bob—plays first. The se-
lected player then changes the market probabilities as they see fit in the second
stage. In the third stage, the other player gets the chance to change the market
probabilities. Then, the market closes and the true state is revealed.

Lemma 1. In a LMSR market, if stage t is player i’s last chance to play
and µi is player i’s belief over actions of previous players, player i’s best re-
sponse at stage t is to play truthfully by changing the market probabilities to
rt = 〈Pr(Y |ci, rt−1, µi),Pr(N |ci, rt−1, µi)〉, where rt−1 is the market probabil-
ity vector before player i’s action.

Proof. When a player has its last chance to play in LMSR, it is the same as the
player interacting with a logarithmic scoring rule. Because the logarithmic scor-
ing rule is strictly proper, player i’s expected utility is maximized by truthfully
reporting its posterior probability estimate given the information it has. �

Lemma 2. When players have conditionally independent signals, if player i
knows player j’s posterior probabilities 〈Pr(Y |cj),Pr(N |cj)〉, player i can infer
the posterior probabilities conditionally on both signals. More specifically,

Pr(ω|ci, cj) =
Pr(ci|ω) Pr(ω|cj)

Pr(ci|Y ) Pr(Y |cj) + Pr(ci|N) Pr(N |cj)
,

where ω ∈ {Y,N}.

Lemma 2 is proved using Bayes rule. According to it, with conditionally inde-
pendent signals, a player can make use of another player’s information when
knowing its posteriors, even if not knowing its signal distribution.

Let r be the posteriors of player j that player i observes. For simplicity,
let Cj{r} be a fictitious signal that satisfies 〈Pr(Y |Cj{r}),Pr(N |Cj{r})〉 = r.
Cj{r} does not necessarily belong to player j’s signal space Cj. When r is the
true posteriors of player j, 〈Pr(Y |ci,Cj{r}),Pr(N |ci,Cj{r})〉 is the same as
〈Pr(Y |ci, cj),Pr(N |ci, cj)〉. The following theorem gives a PBE of the sequence
selection game.

Theorem 1. When Alice and Bob have conditionally independent signals in
LMSR, a PBE of the sequence selection game is a strategy-belief pair with strate-
gies of (σA, σB) and belief µB, where on the equilibrium path

– Alice’s strategy σA is (select herself to be the first player in the first stage,
change the market probability to 〈Pr(Y |cA),Pr(N |cA)〉 in the second stage);

– Bob’s strategy σB is (take current market prices r as Alice’s posteriors and
change the market probability to 〈Pr(Y |CA{r}, cB),Pr(N |CA{r}, cB)〉 when
it’s his turn to play);

– Bob’s belief µB is that Pr(in the second stage Alice changes market proba-
bilities to 〈Pr(Y |cA),Pr(N |cA)〉)=1.



Sketch of Proof: Let EU IA be Alice’s expected utility conditional on her signal
when she selects herself as the first player and EU IIA be Alice’s expected utility
conditional on her signal when she selects Bob as the first player. The proof
reduces EU IA − EU IIA to the Kullback-Leibler divergence (also called relative
entropy or information divergence) [28] of two distributions, which is always
non-negative.

3.3 The Alice-Bob-Alice Game

We now consider a 3-stage Alice-Bob-Alice game, where Alice plays in the first
and third stages and Bob plays in the second stage. Alice may change the market
probabilities however she wants in the first stage. Observing Alice’s action, Bob
may change the probabilities in the second stage. Alice can take another action
in the third stage. Then, the market closes and the true state is revealed. We
study the PBE of the game when Alice and Bob have conditionally independent
signals.

Let r1 = 〈r1Y , r1N 〉 be the market probabilities that Alice changes to in the
first stage. Lemma 3 characterizes the equilibrium strategy of Alice in the third
stage. Theorem 2 describes a PBE of the Alice-Bob-Alice game.

Lemma 3. In a 3-stage Alice-Bob-Alice game in LMSR with conditionally in-
dependent signals, at a PBE Alice changes the market probabilities to r3 =
〈r3Y , r3N 〉 = 〈Pr(Y |CA{k},CB{l}),Pr(N |CA{k},CB{l})〉 in the third stage, when
Alice has signal CA{k} and Bob has signal CB{l}.

Theorem 2. When Alice and Bob have conditionally independent signals in
LMSR, a PBE of the 3-stage Alice-Bob-Alice game is a strategy-belief pair with
strategies (σA, σB) and beliefs (µA, µB) where on the equilibrium path

– Alice’s strategy σA is (change market probabilities to r1 = 〈Pr(Y |cA),Pr(N |cA)〉
in the first stage, do nothing in the third stage);

– Bob’s strategy σB is (take r1 as Alice’s posteriors and change market proba-
bilities to r2 = 〈Pr(Y |CA{r1}, cB),Pr(N |CA{r1}, cB)〉 in the second stage);

– Bob’s belief of Alice’s action in the first stage, µB, is (Pr(Alice changes
market probabilities to r1 = 〈Pr(Y |cA),Pr(N |cA)〉 in the first stage) = 1);

– Alice’s belief of Bob’s action in the second stage, µA, is (Pr(Bob changes
market probabilities to r2 = 〈Pr(Y |CA{r1}, cB),Pr(N |CA{r1}, cB)〉 in the
second stage) = 1);

Theorem 2 states that at a PBE of the Alice-Bob-Alice game, Alice truthfully
reports her posterior probabilities in the first stage, Bob believes that Alice is
truthful and reports his posterior probabilities based on both Alice’s report and
his private signal in the second stage, and Alice believes that Bob is truthful
and does nothing in the third stage because all information has been revealed in
the second stage. It’s clear that Bob never wants to deviate from being truthful
by Lemma 1. To prove that Alice does not want to deviate from being truthful
either, we show that deviating is equivalent to selecting herself as the second



player in a sequence selection game, while being truthful is equivalent to selecting
herself as the first player in the sequence selection game. Alice is worse off by
deviating.

3.4 Finite-Player Finite-Stage Game

We extend our results for the Alice-Bob-Alice game to games with a finite num-
ber of players and finite stages in LMSR. Each player can change the market
probabilities multiple times and all changes happen in sequence.

Theorem 3. In the finite-player, finite-stage game with LMSR, if players have
conditionally independent signals, a PBE of the game is a strategy-belief pair
where each player reports their posterior probabilities in their first stage of play
and all players believe that other players are truthful.

Proof. Given that every player believes that all players before it act truthfully,
we prove the theorem recursively. If it’s player i’s last chance to play, it will
truthfully report its posterior probabilities by Lemma 1. If it’s player i’s second
to last chance to play, there are other players standing in between its second to
last chance to play and its last chance to play. We can combine the signals of
those players standing in between as one signal and treat those players as one
composite player. Because signals are conditionally independent, the signal of the
composite player is conditionally independent of the signal of player i. The game
becomes an Alice-Bob-Alice game for player i and at the unique PBE player i
reports truthfully at its second to last chance to play according to Theorem 2.
Inferring recursively, any player should report truthfully at its first chance to
play. �

4 LMSR with Conditionally Dependent Signals

We now introduce a simple model of conditionally dependent signals and show
that bluffing can be an equilibrium. In our model, Alice and Bob each see an
independent coin flip and then participate in an LMSR prediction market with
outcomes corresponding to whether or not both coins came up heads. Thus
ω ∈ {HH, (HT|TH|TT)}. We again consider an Alice-Bob-Alice game structure.

Theorem 4. In the Alice-Bob-Alice LMSR coin-flipping game, where the prob-
ability of heads is p, truthful betting (TB) is not a PBE. Now restrict Alice’s first
round strategies to either play TB or as if her coin is heads (Ĥ). A PBE in this
game has Alice play TB with probability 1 + p

(1−(1−p)−1/p)(1−p) , and otherwise

play Ĥ.

Proof. TB cannot be an equilibrium because if Bob trusted Alice’s move in the
first round then her best response would be to pretend to have heads when she
has tails. By doing so Bob would, when he has heads, move the probability of



HH to 1. Alice would then move the probability to 0 in the last round and collect
an infinite payout.

To show that bluffing is a PBE in the restricted game, we show that Bob’s
best response makes Alice indifferent between her pure strategies. Bob’s best
response is, if he has heads, to set the probability of HH to the probability that
Alice has heads given that she plays Ĥ, or Pr(HH | ĤH). If Bob has tails he sets
the probability of HH to zero. Assuming such a strategy for Bob, we can compute
Alice’s expected utility for playing TB and Ĥ. It turns out that Alice’s expected
utility is the same whether she plays TB or Ĥ. Thus in a PBE Alice should,
with probability p

(1−(1−p)−1/p)(1−p) , pretend to have seen heads regardless of her

actual information. �

Note that conditional dependence of signals is not a sufficient condition for
bluffing in LMSR. Taking an extreme example, suppose that Alice and Bob again
predict whether or not two coins both come up heads. Alice observes the result
of one coin flip, but Bob with probability 1/2 observes the same coin flip as
Alice and otherwise observes nothing. Then Alice will want to play truthfully
and completely reveal her information in the first stage.

5 Withholding Information in DPM

Suppose Alice has the opportunity to trade in a two-outcome DPM with initial
shares q0 = 〈1, 1〉 for outcomes {Y,N}. According to equation (2), the initial
market prices for the two outcomes are 〈p0

Y , p
0
N 〉 = 〈κ/

√
2, κ/

√
2〉. The initial

market probabilities, according to equation (4), are 〈π0
Y , π

0
N 〉 = 〈1/2, 1/2〉.

Let p be Alice’s posterior probability of outcome Y given her private infor-
mation. If there are no other participants and p > 1/2 then Alice should buy
shares in outcome Y until the market probability πY reaches p. Thus, Alice’s
best strategy is to change market probabilities to 〈p, 1− p〉 when p > 1/2.

We now show that if Alice anticipates that a sufficiently better-informed
player will bet after her, then she will not fully reveal her information.

Theorem 5. Alice, believing that outcome Y will occur with probability p > 1/2,
plays in a two-outcome DPM seeded with initial quantities 〈1, 1〉. If a perfectly-
informed Oracle plays after her, Alice will move the market probability of out-
come Y to max(p2, 1/2).

Proof. Alice’s expected utility is:

κ

(
px

√
(1 + x+ g)2 + 1

1 + x+ g
−
(√

(1 + x)2 + 1−
√

2
))

. (6)

where x and g are the quantities of shares of Y purchased by Alice and the
Oracle, respectively. Without loss of generality, suppose the true outcome is
Y . Since the Oracle knows the outcome with certainty, we take the limit of
(15) as g approaches infinity, yielding: κ(px −

√
(1 + x)2 + 1 +

√
2). We find



the maximum using the first-order condition. This yields a function of p giving
the optimal number of shares for Alice to purchase, x∗ = max(0, p√

1−p2
− 1),

which is greater than zero only when p > 1/
√

2 ≈ 0.707. The new numbers of
shares are q = 〈x∗+ 1, 1〉,yielding the market probability of outcome Y equal to
max(p2, 1/2). �

By assuming that the second player is perfectly informed, we mimic the
scenario where a prediction market closes after the true outcome is revealed.

6 Conclusion

We have investigated the strategic behavior of traders in the MSR and DPM
prediction markets using dynamic games. Specifically, we examine different sce-
narios where traders at equilibrium bet truthfully, bluff, or strategically delay.

Two different information structures, conditional independence and condi-
tional dependence of signals, are considered for LMSR with incomplete informa-
tion. We show that traders with conditionally independent signals may be worse
off by either delaying trading or bluffing in LMSR. Moreover, truthful betting is
a PBE strategy for all traders in LMSR with finite traders and finite periods. On
the other hand, when the signals of traders are conditionally dependent there
may exist probability distributions on signals such that truthful betting is not
an equilibrium strategy; traders have an incentive to strategically mislead other
traders with the intent of correcting the errors made by others in a later period;
such bluffing can be a PBE strategy. DPM with incomplete information is shown
to face another problem: traders may have an incentive to completely or partially
withhold their private information if they anticipate sufficiently better-informed
traders in later periods.
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Appendix

A Complete Proofs

A.1 Proof of Lemma 2

Using Bayes rule, we have

Pr(Y |ci, cj) =
Pr(Y, ci|cj)
Pr(ci|cj)

=
Pr(ci|cj , Y ) Pr(Y |cj)

Pr(ci|cj , Y ) Pr(Y |cj) + Pr(ci|cj , N) Pr(N |cj)

=
Pr(ci|Y ) Pr(Y |cj)

Pr(ci|Y ) Pr(Y |cj) + Pr(ci|N) Pr(N |cj)
.

The third equality comes from the conditional independence of signals. Hence,

Pr(N |ci, cj) = 1− Pr(Y |ci, cj) =
Pr(ci|N) Pr(N |cj)

Pr(ci|Y ) Pr(Y |cj) + Pr(ci|N) Pr(N |cj)
.

A.2 Proof of Theorem 1

Let Cmax
A be the signal of Alice that gives the highest posterior probability for

the outcome Y and Cmin
A be the signal of Alice that gives the lowest posterior

probability for the outcome Y . Alice’s posterior probability given any possible
signal for the outcome Y is bounded by Pr(Y |Cmax

A ) and Pr(Y |Cmin
A ). Bob’s

complete belief profile µB in different stages of the game is:

– If Alice selects herself to be the first player and the market probabilities r1

that Alice changes to in the second stage are consistent with one of Alice’s
possible signals, Bob believes that r1 is Alice’s posteriors.

– If Alice selects herself to be the first player and the market probability r1Y
that Alice changes to in the second stage is higher than Pr(Y |Cmax

A ) or
lower than Pr(Y |Cmin

A ), Bob believes that 〈Pr(Y |Cmax
A ),Pr(N |Cmax

A )〉 or
〈Pr(Y |Cmin

A ),Pr(N |Cmin
A )〉 are Alice’s posteriors respectively.

– If Alice selects herself to be the first player, the market probability r1Y
that Alice changes to in the second stage is between Pr(Y |CA{i}) and
Pr(Y |CA{j}), no other signal of Alice can induce a posterior inbetween,
and Pr(Y |CA{j}) > Pr(Y |CA{i}) , Bob believes that with probabilities

Pr(Y |CA{j})−r1Y
Pr(Y |CA{j})−Pr(Y |CA{i}) and r1Y −Pr(Y |CA{i})

Pr(Y |CA{j})−Pr(Y |CA{i}) , Alice’s posteriors are
〈Pr(Y |CA{i}),Pr(N |CA{i})〉 and 〈Pr(Y |CA{j}),Pr(N |CA{j})〉 respectively.

– If Alice selects Bob to be the first player and the initial market probabilities
r0 are consistent with one of Alice’s possible signals, Bob believes that the
initial market probabilities 〈r0Y , r0N 〉 are Alice’s posteriors.

– If Alice selects Bob to be the first player and the initial market probabil-
ity r0Y is higher than Pr(Y |Cmax

A ) or lower than Pr(Y |Cmin
A ), Bob believes

that 〈Pr(Y |Cmax
A ),Pr(N |Cmax

A )〉 or 〈Pr(Y |Cmin
A ),Pr(N |Cmin

A )〉 are Alice’s
posteriors respectively.



– If Alice selects Bob to be the first player, the initial market probability r0Y is
between Pr(Y |CA{i}) and Pr(Y |CA{j}), no other signal of Alice can induce
a posterior inbetween, and Pr(Y |CA{j}) > Pr(Y |CA{i}) , Bob believes
that with probabilities Pr(Y |CA{j})−r1Y

Pr(Y |CA{j})−Pr(Y |CA{i}) and r1Y −Pr(Y |CA{i})
Pr(Y |CA{j})−Pr(Y |CA{i}) ,

〈Pr(Y |CA{i}),Pr(N |CA{i})〉 and 〈Pr(Y |CA{j}),Pr(N |CA{j})〉 are Alice’s
posteriors respectively.

Each player has only one chance to change the market probabilities. Hence,
by Lemma 1, both of them will truthfully reveal all information that they have
given their beliefs when it’s their turn to play no matter what selection Alice
makes in the first stage. If Alice is the first to play, she will change the market
probabilities to 〈Pr(Y |cA),Pr(N |cA)〉 in the second stage. Bob, believing that
prices in the second stage are Alice’s posteriors, can calculate his posteriors
based on both Alice’s and his own signals. Bob will further changes the market
probabilities to 〈Pr(Y |cA, cB),Pr(N |cA, cB)〉 in the third stage. On the contrary,
if Bob is selected as the first player, he will change the market probabilities to
〈Pr(Y |r0, cB , µB),Pr(N |r0, cB , µB)〉 in the second stage. Given Bob’s belief µB ,
〈Pr(Y |r0, cB , µB),Pr(N |r0, cB , µB)〉 equal one of the following

1. 〈Pr(Y |CA{r0}, cB),Pr(N |CA{r0}, cB)〉, when r0 are consistent with one of
Alice’s possible signals or when r0Y is between Pr(Y |CA{i}) and Pr(N |CA{j}).
CA{r0} satisfying 〈Pr(Y |CA{r0}),Pr(N |CA{r0})〉 = r0 is a fictitious sig-
nal.

2. 〈Pr(Y |Cmax
A , cB),Pr(N |Cmax

A , cB)〉 or 〈Pr(Y |Cmin
A , cB),Pr(N |Cmin

A , cB)〉, if
r0Y is higher than Pr(Y |Cmax

A ) or lower than Pr(Y |Cmin
A ).

To make her sequence selection in the first stage, Alice essentially compares her
expected utilities conditional on her own signal in the Alice-Bob and Bob-Alice
subgames.

Without lose of generality, suppose Alice has the signal CA{k}. Let EU IA
denote Alice’s expected utility conditional on her signal when the Alice-Bob
subgame is picked. EU IIA denotes Alice’s expected utility conditional on her
signal when the Bob-Alice subgame is picked. Then, for case 1,

EU IA =
1

Pr(CA{k})

nB∑
l=1

∑
ω∈{Y,N}

p{k,l,ω} log(
Pr(ω|CA{k})
Pr(ω|CA{r0})

), and (7)

EU IIA =
1

Pr(CA{k})

nB∑
l=1

∑
ω∈{Y,N}

p{k,l,ω} log(
Pr(ω|CA{k},CB{l})
Pr(ω|CA{r0},CB{l})

), (8)

where p{k,l,ω} represents the joint probability of cA = CA{k}, cB = CB{l},
and the true state is ω. The difference in expected utilities for Alice in the two



subgames is:

EU IA − EU IIA

=
1

Pr(CA{k})

nB∑
l=1

∑
ω∈{Y,N}

p{k,l,ω} log(
Pr(ω|CA{k}) Pr(ω|CA{r0},CB{l})
Pr(ω|CA{r0}) Pr(ω|CA{k},CB{l})

)

=
1

Pr(CA{k})

nB∑
l=1

∑
ω∈{Y,N}

p{k,l,ω}log(
Pr(CA{k},CB{l}) · Pr(CA{r0})
Pr(CA{r0},CB{l}) · Pr(CA{k})

)

=
nB∑
l=1

(
Pr(CB{l}|CA{k}) log(

Pr(CB{l}|CA{k})
Pr(CB{l}|CA{r0})

)
)

= KL
(
p(cB |CA{k})|p(cB |CA{r0})

)
, (9)

where p(cB |CA{k}) is the probability distribution of Bob’s signal conditional on
signal CA{k} and p(cB |CA{r0}) is the probability distribution of Bob’s signal
conditional on the fictitious signal CA{r0}. The second equality comes from
Bayes rule and the conditional independence of signals. KL(p|q) is the Kullback-
Leibler divergence (also called relative entropy or information divergence) [28]
of the distributions p and q. KL(p|q) ≥ 0. The equality holds only when
distributions p and q are the same. We thus have EU IA − EU IIA ≥ 0. When
〈Pr(Y |CA{k}),Pr(N |CA{k})〉 6= r0, p(cB |CA{k}) is different from p(cB |CA{r0})
and hence EU IA − EU IIA is strictly greater than 0.

We can get the same result for case 2. Without lose of generality, assume
that r0Y > Pr(Y |Cmax

A ), then

ẼU IIA =
1

Pr(CA{k})

nB∑
l=1

∑
ω∈{Y,N}

p{k,l,ω} log(
Pr(ω|CA{k},CB{l})
Pr(ω|Cmax

A ,CB{l})
), (10)

while EU IA is the same as in (7). We obtain

EU IA − ẼU IIA

=
1

Pr(CA{k})

nB∑
l=1

∑
ω∈{Y,N}

p{k,l,ω} log(
Pr(ω|CA{k})
Pr(ω|Cmax

A )
)

+
∑

ω∈{Y,N}

Pr(ω|CA{k})) log
(

Pr(ω|Cmax
A )

r0ω

)
− ẼU IIA (11)

= KL
(
p(cB |CA{k})|p(cB |Cmax

A )

)
+

∑
ω∈{Y,N}

Pr(ω|CA{k})) log
(

Pr(ω|Cmax
A )

r0ω

)
.

The second term in the above expression is positive because r0Y > Pr(Y |Cmax
A ).

Hence, EU IA−ẼU IIA > 0. Alice does not want to deviate from selecting herself as
the first player. The described strategy-belief pair is a Bayesian Nash Equilibrium
of the game.



Considering off-equilibrium path of the game, Bob plays his best response in
any subgame given his belief and Bob’s belief is consistent with Alice’s strategy.
Thus, the equilibrium is a Perfect Bayesian Equilibrium.

A.3 Proof of Lemma 3

This is proved by applying Lemma 1 to both Bob and Alice. At a PBE, beliefs
are consistent with strategies. Alice and Bob act as if they know each other’s
strategy. Since Bob only gets one chance to play, according to Lemma 1 Bob
plays truthfully and fully reveals his signal. Because the third stage is Alice’s
last chance to change the probabilities, according to Lemma 1, Alice behaves
truthfully and fully reveals her information, including her own signal and Bob’s
signal inferred from Bob’s action in the second stage.

A.4 Proof of Theorem 2

By Lemma 1, Bob does not want to deviate in the second stage given that Alice
truthfully reports her posteriors in the first stage and Bob believes it.

Let Cmax
A be the signal of Alice that gives the highest posterior probability

for the outcome Y and Cmin
A be the signal of Alice that gives the lowest posterior

probability for the outcome Y . Alice’s posterior probability given any possible
signal for the outcome Y is bounded by Pr(Y |Cmax

A ) and Pr(Y |Cmin
A ). Bob’s

complete belief profile µB in the second stage of the game is:

– If the market probabilities r1 that Alice changes to in the first stage are
consistent with one of Alice’s possible signals, Bob believes that r1 is Alice’s
posteriors.

– If the market probability r1Y that Alice changes to in the first stage is higher
than Pr(Y |Cmax

A ) or lower than Pr(Y |Cmin
A ), Bob believes that Alice’s poste-

riors are 〈Pr(Y |Cmax
A ),Pr(N |Cmax

A )〉 or 〈Pr(Y |Cmin
A ),Pr(N |Cmin

A )〉 respec-
tively.

– If the market probability r1Y that Alice changes to in the first stage is between
Pr(Y |CA{i}) and Pr(Y |CA{j}), no other signal of Alice can induce a poste-
rior in-between, and Pr(Y |CA{j}) > Pr(Y |CA{i}) , Bob believes that with
probabilities Pr(Y |CA{j})−r1Y

Pr(Y |CA{j})−Pr(Y |CA{i}) and r1Y −Pr(Y |CA{i})
Pr(Y |CA{j})−Pr(Y |CA{i}) , Alice’s

posteriors are 〈Pr(Y |CA{i}),Pr(N |CA{i})〉 and 〈Pr(Y |CA{j}),Pr(N |CA{j})〉
respectively.

We show that Alice does not want to deviate by changing market probabilities
to r1 6= 〈Pr(Y |cA),Pr(N |cA)〉. Without loss of generality, assume that Alice’s
signal cA = CA{k}. Consider the two cases:

1. When Alice does not deviate: Alice changes market probabilities to her true
posteriors 〈Pr(Y |CA{k}),Pr(N |CA{k})〉 in the first stage; Bob changes the
probabilities to 〈Pr(Y |CA{k}, cB),Pr(N |CA{k}, cB)〉 in the second stage;
Alice does nothing in the third stage.



2. When Alice deviates: Alice changes market probabilities to r1 that is differ-
ent from 〈Pr(Y |CA{k}),Pr(N |CA{k})〉; Bob changes market probabilities
to 〈Pr(Y |r1, cB , µB),Pr(N |r1, cB , µB)〉 in the second stage, and Alice plays
a best response according to Lemma 3 by changing market probabilities to
〈Pr(Y |CA{k}, cB),Pr(N |CA{k}, cB)〉 in the third stage.

We compare Alice’s expected utilities conditional on her signal in these two
cases with the aid of the sequence selection game. The expected utility that Al-
ice gets from case 1 is the same as what she gets from the following sequence of
actions: (a)Alice changes market probabilities to r1 that are different from her
posteriors in the first stage; (b) A sequence selection game starts with initial mar-
ket probabilities r1; Alice selects herself to be the first player; (c)Alice changes
market probabilities to 〈Pr(Y |CA{k}),Pr(N |CA{k})〉; (d) Bob changes market
probabilities to 〈Pr(Y |CA{k}, cB),Pr(N |CA{k}, cB)〉. Similarly, the expected
utility that Alice gets from case 2 is the same as what she gets from the following
sequence of actions: (a’)Alice changes market probabilities to r1 that are different
from her posteriors in the first stage; (b’) A sequence selection game starts with
initial market probabilities r1; Alice selects Bob to be the first player; (c’)Bob
changes market probabilities to 〈Pr(Y |r1, cB , µB),Pr(N |r1, cB , µB)〉; (d’) Alice
changes market probabilities to 〈Pr(Y |CA{k}, cB),Pr(N |CA{k}, cB)〉. Alice’s
expected utility from (a) is the same as that from (a’). But according to Theo-
rem 1, Alice’s expected utility from (b), (c), and (d) is greater than or equal to
that from (b’), (c’), and (d’). Moreover, difference of the expected utilities under
cases 1 and 2 equals only when r1 = 〈Pr(Y |CA{k}),Pr(N |CA{k})〉, i.e. Alice
not deviating from being truthful when signals are informative. Hence, Alice gets
strictly higher expected utility by not deviating when players have informative
signals.

A.5 Proof of Theorem 4

TB cannot be an equilibrium because if Bob trusted Alice’s move in the first
round then her best response would be to pretend to have heads (move the
probability of HH to p) when she has tails. By doing so Bob would, when he has
heads, move the probability of HH to 1. Alice would then move the probability
to 0 in the last round and collect an infinite payout.

To show that playing TB with probability t is an equilibrium, we first com-
pute Bob’s best response to such a strategy and then show that Bob’s strategy
makes Alice indifferent between her pure strategies. Bob’s best response is, if he
has heads, to set the probability of HH to the probability that Alice has heads
given that she bets as if she does (we denote Alice betting as if she had heads



as Ĥ):

Pr(HH | ĤH) =
Pr(ĤH | HH) Pr(HH)

Pr(ĤH | HH) Pr(HH) + Pr(ĤH | TH) Pr(TH)

=
1 · p

p+ (1− t)(1− p)
= 1− (1− p)

1
p .

(12)

If Bob has tails he sets the probability of HH to zero. Assuming such a strategy
for Bob, we can compute Alice’s expected utility using for playing TB. This is
done by computing, for each outcome in {HH,HT,TH,TT}, her utility for moving
the probability from p0 to p or 0, plus her utility for moving the probability to
0 or 1 from where Bob moves it. (The payout in a binary LMSR (see Equation
??) for moving the market probability from α to β is log β

α if the event happens
or log 1−β

1−α if it doesn’t.)

p2
(

log p
p0

+ log 1
x

)
+p(1−p) log 1−p

1−p0 +(1−p)p log 1−0
1−p0 +(1−p)2 log 1−0

1−p0 (13)

where x is Bob’s probability when he has heads and Alice appears to have heads.
Similarly, Alice’s expected utility for always pretending to have heads in the first
stage is:

p2
(

log p
p0

+ log 1
x

)
+ p(1− p) log 1−p

1−p0 + (1− p)p
(

log 1−p
1−p0 + log 1−0

1−x

)
+ (1− p)2 log 1−p

1−p0 .
(14)

Since (13) and (14) are equal when x is set according to (12), Alice is indifferent
between truthfulness and bluffing when Bob expects her to play TB with proba-
bility t. It is therefore in equilibrium for Alice to play TB with probability t, that
is, Alice should, with 1− t probability, pretend to have seen heads regardless of
her actual information.

A.6 Proof of Theorem 5

Applying the cost function (1) and payoff function (3) for DPM, the following
gives Alice’s expected utility given that she buys x shares of outcome Y , believes
that with probability p outcome Y will occur and Oracle buys g shares of outcome
Y after her:

κ

(
px

√
(1 + x+ g)2 + 1

1 + x+ g
−
(√

(1 + x)2 + 1−
√

2
))

. (15)

Oracle knows with certainty the actual outcome. If Y is the true outcome, Oracle
will drive the market probability for outcome Y to 1 by buying infinite shares
of outcome Y . So we take the limit of (15) as g approaches infinity, yielding:

κ(px−
√

(1 + x)2 + 1 +
√

2).



This is concave in x so we find the maximum using the first-order condi-
tion, setting the partial derivative with respect to x equal to zero. This yields a
function of p giving the optimal number of shares for Alice to purchase,

x∗ = max(0,
p√

1− p2
− 1),

which is greater than zero only when p > 1/
√

2 ≈ 0.707. Alice’s opti-
mal purchase quantity plus one (the initial quantity) is the number of shares
outstanding for outcome Y after Alice makes her purchase. Thus we can set
q = 〈x∗ + 1, 1〉 in (4) yielding the market probability of outcome Y that Alice
moves to: max(p2, 1/2).


