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ABSTRACT
We propose a general framework for the design of securi-
ties markets over combinatorial or infinite state or outcome
spaces. The framework enables the design of computation-
ally efficient markets tailored to an arbitrary, yet relatively
small, space of securities with bounded payoff. We prove
that any market satisfying a set of intuitive conditions must
price securities via a convex cost function, which is con-
structed via conjugate duality. Rather than deal with an
exponentially large or infinite outcome space directly, our
framework only requires optimization over a convex hull.
By reducing the problem of automated market making to
convex optimization, where many efficient algorithms exist,
we arrive at a range of new polynomial-time pricing mecha-
nisms for various problems. We demonstrate the advantages
of this framework with the design of some particular mar-
kets. We also show that by relaxing the convex hull we can
gain computational tractability without compromising the
market institution’s bounded budget.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; G.1.6
[Numerical Analysis]: Optimization

General Terms
Algorithms, Economics, Theory

1. INTRODUCTION
Securities markets play a fundamental role in economics

and finance. A securities market offers a set of contingent
securities whose payoffs depend on the future state of the
world. For example, an Arrow-Debreu security pays $1 if
a particular state of the world is reached and $0 other-
wise [3, 4]. Consider an Arrow-Debreu security that will pay
off in the event that a category 4 or higher hurricane passes
through Florida in 2011. A Florida resident who worries
about his home being damaged might buy this security as
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a form of insurance to hedge his risk; if there is a hurricane
powerful enough to damage his home, he will be compen-
sated. Additionally, a risk-neutral trader who has reason to
believe that the probability of a category 4 or higher hur-
ricane landing in Florida in 2011 is p should be willing to
buy this security at any price below p or (short) sell it at
any price above p to capitalize his information. For this rea-
son, the market price of the security can be viewed as the
traders’ collective estimate of how likely it is that a power-
ful hurricane will occur. Securities markets thus have dual
functions: risk allocation and information aggregation

Insurance contracts, options, futures, and many other fi-
nancial derivatives are examples of contingent securities. A
securities market primarily focused on information aggrega-
tion is often referred to as a prediction market. The forecasts
of prediction markets have proved to be accurate in a variety
of domains [5, 24, 33]. While our work builds on ideas from
prediction market design [2, 10, 28], our framework can be
applied to any contingent securities.

A securities market is said to be complete if it offers |O|−1
independent securities over a set O of mutually exclusive
and exhaustive states of the world, which we refer to as out-
comes [3, 4, 25]. For example, a prediction market with
n Arrow-Debreu securities for n outcomes is complete. In a
complete securities market without transaction fees, a trader
may bet on any combination of the securities, allowing him
to hedge any possible risk he may have. It is generally as-
sumed that the trader may short sell a contract, betting
against the given outcome; in a market with short selling,
the nth security is not strictly necessary, as a trader can
substitute the purchase of this contract by short selling all
others. Furthermore, traders can change the market prices
to reflect any valid probability distribution over the outcome
space, allowing them to reveal any belief. Completeness
therefore provides expressiveness for both risk allocation and
information aggregation.

Unfortunately, completeness is not always achievable. In
many real-world settings, the outcome space is exponentially
large or even infinite. For instance, a competition among n
candidates results in an outcome space of n! rank orders,
while the future price of a stock has an infinite outcome
space, namely R+. In such situations operating a complete
securities market is not practical for two reasons: (a) hu-
mans are notoriously bad at estimating small probabilities
and (b) it is computationally intractable to manage such
a large set of contracts. Instead, it is natural to offer a
smaller set of structured securities. For example, rather
than offer a security corresponding to each rank ordering,



in pair betting a market maker offers securities of the form
“$1 if candidate A beats candidate B” [11]. There has been
a surge of recent research examining the tractability of run-
ning standard prediction market mechanisms (such as the
popular Logarithmic Market Scoring Rule (LMSR) market
maker [20]) over combinatorial outcome spaces by limiting
the space of available securities [29]. While this line of re-
search has led to a few positive results [1, 13, 14, 19], it has
led more often to hardness results [12, 14] or to markets with
undesirable properties such as unbounded loss of the market
institution [16].

In this paper, we propose a general framework to design
automated market makers for securities markets. An auto-
mated market maker is a market institution that adaptively
sets prices for each security and is always willing to accept
trades at these prices. Unlike previous research aimed at
finding a space of securities that can be efficiently priced us-
ing an existing market maker like LMSR, we start with an
arbitrary space of securities and design a new market maker
tailored to this space. Our framework is therefore extremely
general and includes both the LMSR and Quad-SCPM [2]
market makers.

We take an axiomatic approach. Given a relatively small
space of securities with bounded payoff, we define a set of
intuitive conditions that a reasonable market maker should
satisfy. We prove that a market maker satisfying these con-
ditions must price securities via a convex potential function
(the cost function), and that the space of reachable security
prices must be precisely the convex hull of the payoff vectors
for each outcome (that is, the set of vectors, one per out-
come, denoting the payoff for each security if that outcome
occurs). We then incorporate ideas from online convex opti-
mization [22, 31] to define a convex cost function in terms of
an optimization over this convex hull; the vector of prices is
chosen as the optimizer of this convex objective. With this
framework, instead of dealing with the exponentially large or
infinite outcome space, we only need to deal with the lower-
dimensional convex hull. The problem of automated market
making is reduced to the problem of convex optimization,
for which we have many efficient techniques to leverage.

To demonstrate the advantages of our framework, we pro-
vide two new computationally efficient markets. The first
market can efficiently price subset bets on permutations,
which are known to be #P-hard to price using LMSR [12].
The second market can be used to price bets on the landing
location of an object on a sphere.

Finally, for situations where the convex hull cannot be ef-
ficiently represented, we show that we can relax the convex
hull to gain computational tractability without compromis-
ing the market maker’s bounded budget. This allows us
to provide a computationally efficient market maker for the
aforementioned pair betting, which is also known to be #P-
hard to price using LMSR [12]. In addition, this relaxation
could potentially allow the market maker to charge transac-
tion fees so that the depth of the market can be dynamically
increased as the number of trades increases. This desirable
property is discussed in Othman et al. [28] who proposed a
corresponding market that extends the LMSR; utilizing our
techniques for this purpose is left for future work.

This paper builds upon intuitions from earlier work [10]
exploring the striking mathematical connections between
complete, cost function based prediction markets and no-
regret learning and online convex optimization. In this pa-

per, we pursue a general convex optimization framework for
pricing an arbitrary set of securities over a potentially very
large outcome space. Agrawal et al. [2] and Peters et al. [30]
also use convex optimization for automated market making.
In addition to only considering complete markets, they for-
mulate the convex optimization quite differently – their for-
mulation is for limit orders and does not explicitly make the
connection with conjugate duality as our framework does.
To the best of our knowledge, this paper is the first work on
designing markets that are tailored to the incomplete secu-
rity spaces without explicitly reasoning over a large outcome
space.

2. PRELIMINARIES
A simple cost function based market maker [9, 10, 20, 21]

offers |O| Arrow-Debreu securities, each corresponding to
a potential outcome. The market maker determines how
much each security should cost using a differentiable cost
function, C : R|O| → R, which is simply a potential function
specifying the amount of money currently wagered in the
market as a function of the number of shares of each security
that have been purchased. If qo is the number of shares of
security o currently held by traders, and a trader would like
to purchase a bundle of ro shares for each security o ∈ O
(where some ro could be zero or even negative, representing
a sale), the trader must pay C(q + r)−C(q) to the market
maker. The instantaneous price of security o (that is, the
price per share of an infinitely small portion of a security)
is then ∂C(q)/∂qo, and is denoted po(q).

The market designer is free to choose any differentiable
cost function C that satisfies a few basic properties. First,
it must be the case that for every o ∈ O and every q ∈ R|O|,
po(q) ≥ 0. This ensures that the price of a security is never
negative. Second, assuming short sells are allowed, if the
market designer wishes to prevent arbitrage, it must be the
case that for every q ∈ R|O|,

P
o∈O po(q) = 1. That is, the

sum of the instantaneous prices of the securities must always
be 1. If the prices summed to something less than (respec-
tively, greater than) 1, then a trader could purchase (re-
spectively, sell) small equal quantities of each security for a
guaranteed profit.1 These conditions ensure that the current
prices can always be viewed as a probability distribution over
the outcome space. One example of a cost function based
market that has received considerable attention is Hanson’s
Logarithmic Market Scoring Rule (LMSR) [9, 20, 21]. The

cost function of the LMSR is C(q) = b log
P

o∈O eqo/b,
where b > 0 is a parameter of the market controlling the rate
at which prices change. The corresponding price function for
each security o is po(q) = ∂C(q)/∂qo = eqo/b/

P
o′∈O eqo′/b.

When |O| is large or infinite, calculating the cost of a pur-
chase becomes intractable in general. Recent research has
focused on restricting the allowable securities over a combi-
natorial outcome space and examining whether LMSR prices
can be computed efficiently in the restricted space. If the
outcome space contains n! rank orders of n competing can-
didates, it is #P-hard to price pair bets (e.g., “$1 if and
only if candidate A beats candidate B”) or subset bets (e.g.,
“$1 if one of the candidates in subset C finishes at position

1This no-arbitrage condition, while sometimes desirable, is
not necessary. Othman et al. [28] recently analyzed a vari-
ation of LMSR in which

P
o∈O po(q) ≥ 1. We also explore

relaxations of the no-arbitrage condition in Section 5.



k”) using LMSR on the full set of permutations [12]. If the
outcome space contains 2n Boolean values of n binary base
events, it is #P-hard to price securities on conjunctions of
any two base events (e.g., “$1 if and only if a Democrat
wins Florida and Ohio”) using LMSR [12]. This line of re-
search has led to some positive results when the uncertain
event enforces particular structure on the outcome space. In
particular, for a single-elimination tournament of n teams,
securities such as “$1 if and only if team A wins a kth round
game” and “$1 if and only if team A beats team B given
they face off” can be priced efficiently using LMSR [13]. For
a taxonomy tree on some statistic where the value of the
statistic of a parent node is the sum of those of its children,
securities such as “$1 if and only if the value of the statistic
at node A belongs to [x, y]” can be priced efficiently using
LMSR [19].

The framework we will introduce next takes a drastically
different approach. Instead of searching for supportable
spaces of securities for existing market makers, we design
new market makers tailored to any security space of inter-
est. Additionally, rather than requiring that securities have
a fixed $1 payoff when the underlying event happens, we
allow more general contingent securities with arbitrary, effi-
ciently computable and bounded payoffs.

3. A FRAMEWORK FOR MARKET-
MAKING FOR COMPLEX SECURITIES

In the complete cost function based markets described
above, the market maker offers an Arrow-Debreu security
corresponding to each potential outcome. We consider a
market-design scenario where the outcome space O could
potentially be quite large, or even infinite, making it infea-
sible to run such a market. Instead, we allow the market
maker to offer a menu of K securities for some reasonably-
sized K, with the (nonnegative) payoff of each security de-
scribed by an arbitrary but efficiently-computable function
ρ : O → RK+ . Specifically, if a trader purchases a share of
security i and the outcome is o, then the trader is paid ρi(o).
We call such security spaces complex. A complex security
space reduces to the complete security space if K = |O| and
for each i ∈ {1, · · · ,K}, ρi(o) = 1 if o is the ith outcome
and 0 otherwise. We consider traders that purchase security
bundles r ∈ RK . Negative elements of r encode sales. The
payoff for r upon outcome o is exactly ρ(o) · r, where ρ(o)
denotes the vector of payoffs for each security for outcome
o. Let ρ(O) := {ρ(o)|o ∈ O}.

While it is easy to put intuitive constraints on market
prices to ensure that a complete market is “well-behaved”,
determining the comparable constraints on market prices for
an arbitrary set of complex securities is challenging. In par-
ticular, while the no-arbitrage condition easily leads to the
restriction that the security prices in a complete market need
to sum to 1, it is much less clear what space of security prices
should be allowed in order to prevent arbitrage in markets
over complex securities. This is because the events under
which complex securities will pay out are no longer mutu-
ally exclusive. This challenge leads us to take an axiomatic
approach to understand what constraints a “well-behaved”
market maker for complex securities must satisfy.

We do not presuppose a cost function based market. How-
ever, in Section 3.1, we show that the use of a convex cost
function is necessary given the assumption of path indepen-

dence on the contract purchases. We then derive additional
constraints on the form of this cost function. In Sections 3.2–
3.4, we go on to show how to design an appropriate cost
function by employing techniques from online convex opti-
mization.

3.1 Imposing Some Natural Restrictions on
the Market Maker

In this section we introduce a sequence of conditions or
axioms that one might expect a market to satisfy, and show
that these conditions lead to some natural mathematical re-
strictions on the costs of security bundles. (We consider
relaxations of these conditions in Section 5.) Similar con-
ditions were suggested for complete markets by Chen and
Vaughan [10], who defined the notion of a valid cost func-
tion, and by Othman et al. [28], who discussed properties
similar to our notions of path independence and expressive-
ness, among others. However, no similar conditions have
been described for complex markets.

Imagine a sequence of traders entering the marketplace
and purchasing security bundles. Let r1, r2, r3, . . . be the
sequence of security bundles purchased. After t − 1 such
purchases, the tth trader should be able to enter the market-
place and query the market maker for the cost of arbitrary
bundles. The market maker must be able to furnish a cost
Cost(r|r1, . . . , rt−1) for any bundle r given a previous trade
sequence r1, . . . , rt−1. If the trader chooses to purchase rt
at a cost of Cost(rt|r1, . . . , rt−1), the market maker may
update the costs of each bundle accordingly. Our first con-
dition requires that the cost of acquiring a bundle r must be
the same regardless of how the trader splits up the purchase.

Condition 1 (Path Independence). For any r, r′,
and r′′ such that r = r′ + r′′, for any r1, . . . , rt,

Cost(r|r1, . . . , rt) = Cost(r′|r1, . . . , rt)+Cost(r′′|r1, . . . , rt, r
′).

Path independence helps to reduce both arbitrage oppor-
tunities and the strategic play of traders, as they no longer
need to reason about the optimal path leading to some tar-
get position. However, it is worth pointing out that there are
interesting markets not satisfying this condition, for exam-
ple, the continuous double auction (CDA) and the market
maker for CDA considered by Das [15], which in our opinion
deserve separate treatment.

It turns out that the path independence alone implies that
prices can be represented by a cost function C, as illustrated
in the following theorem. The proof is by induction on t.2

Theorem 1. Under Condition 1, there exists a cost func-
tion C : RK → R such that we may always write

Cost(rt|r1, . . . , rt−1)

= C(r1 + . . .+ rt−1 + rt)− C(r1 + . . .+ rt−1).

With this in mind, we drop the cumbersome
Cost(r|r1, . . . , rt) notation from now on, and write the cost
of a bundle r as C(q + r)−C(q), where q = r1 + . . .+ rt is
the vector of previous purchases.

Now, recall that one of the functions of a securities mar-
ket is to aggregate traders’ beliefs into an accurate pre-
diction. Each trader may have his own (potentially se-
cret) information about the future, which we represent as
2All omitted proofs appear in the appendix.



a distribution p ∈ ∆|O| over the outcome space, where
∆n = {x ∈ Rn≥0 :

Pn
i=1 xi = 1}, the n-simplex. The pric-

ing mechanism should therefore incentivize the traders to
reveal p, but simultaneously avoid providing arbitrage op-
portunities. Towards this goal, we introduce four additional
conditions on our pricing mechanism.

The first condition ensures that the gradient of C is always
well-defined. If we imagine that a trader can buy or sell an
arbitrarily small bundle, we would like the cost of buying
and selling an infinitesimally small quantity of any particular
bundle to be the same. If ∇C(q) is well-defined, it can
be interpreted as a vector of instantaneous prices for each
security, with ∂C(q)/∂qi representing the price per share of
an infinitesimally small amount of security i. Additionally,
we can interpret ∇C(q) as the traders’ current estimates of
the expected payoff of each security, in the same way that
∂C(q)/∂qo was interpreted as the probability of outcome o
when considering the complete security space.

Condition 2 (Existence of Instantaneous Prices).
C is continuous and differentiable everywhere.

The next condition encompasses the idea that the market
should react to trades in a sensible way in order to incorpo-
rate the private information of the traders. In particular, it
says that the purchase of a security bundle r should never
cause the market to lower the price of r. It turns out that
this condition is closely related to incentive compatibility for
a myopic trader. It is equivalent to requiring that a trader
with a distribution p ∈ ∆|O| can never find it simultaneously
profitable (in expectation) to buy a bundle r or to buy the
bundle −r. In other words, there can not be more than one
way to express one’s information.

Condition 3 (Information Incorporation). For
any q and r ∈ RK , C(q+2r)−C(q+r) ≥ C(q+r)−C(q).

The no arbitrage condition states that it is never possible
for a trader to purchase a security bundle r and receive a
positive profit regardless of the outcome.

Condition 4 (No Arbitrage). For all q, r ∈ RK ,
there exists an o ∈ O such that C(q + r)− C(q) ≥ r · ρ(o).

Finally, the expressiveness condition specifies that any
trader can set the market prices to reflect his beliefs about
the expected payoffs of each security if arbitrarily small por-
tions of shares may be purchased. Here R̄ denotes the ex-
tended real numbers, [−∞,∞].

Condition 5 (Expressiveness). For any p ∈ ∆|O|,

∃q ∈ R̄K for which ∇C(q) = Eo∼p[ρ(o)].

For any subset S of Rd, let H(S) denote the convex hull
of S. Recall that ρ(O) := {ρ(o)|o ∈ O}. We characterize
the form of the cost function under these conditions.

Theorem 2. If H(ρ(O)) is closed,3 then under Condi-
tions 2-5, C must be convex with {∇C(q) : q ∈ RK} =
H(ρ(O)).
3The closure assumption is not strictly necessary, but is per-
fectly natural in typical settings. We include it for con-
venience. Without it, the conclusion can be modified to
{∇C(q) : q ∈ RK} = closure(H(ρ(O))).

Proof. We first prove convexity. Assume C is non-
convex somewhere. Then there must exist some q and r
such that C(q) > (1/2)C(q + r) + (1/2)C(q − r). This
means C(q + r) − C(q) < C(q) − C(q − r), which contra-
dicts Condition 3, so C must be convex.

Now, Condition 2 trivially guarantees that ∇C(q) is well-
defined for any q. To see that {∇C(q) : q ∈ RK} ⊆
H(ρ(O)), let us assume there exists some q′ for which
∇C(q′) /∈ H(ρ(O)). This can be reformulated in the fol-
lowing way: There must exists some halfspace, defined by a
normal vector r, that separates ∇C(q′) from every member
of ρ(O). More precisely

∇C(q′) /∈ H(ρ(O)) ⇐⇒ ∃r∀o ∈ O : ∇C(q′)·r < ρ(o)·r,

where the strict inequality is because H(ρ(O)) is closed. On
the other hand, letting q := q′−r, we see by convexity of C
that C(q+r)−C(q) ≤ ∇C(q′) ·r. Combining these last two
inequalities, we see that the price of bundle r purchased with
history q is always smaller than the payoff for any outcome.
This implies that there exists some arbitrage opportunity,
contradicting Condition 4.

Finally, since H(ρ(O) = {Eo∼p[ρ(o)]|p ∈ ∆|O|}, Condi-

tion 5 implies that H(ρ(O)) ⊆ {∇C(q) : q ∈ RK}.

What we have arrived at from the set of proposed condi-
tions is that (a) the pricing mechanism is always described
precisely in terms of a convex cost function C and (b) the set
of reachable prices, that is the set {∇C(q) : q ∈ RK}, must
be identically the convex hull of the payoff vectors for each
outcome H(ρ(O)). For complete markets, those with a sin-
gle security corresponding to each of the n distinct outcomes,
this would imply that the set of reachable prices should be
the convex hull of the n standard basis vectors. Indeed, this
comports exactly with the natural assumption that the vec-
tor of security prices in complete markets should represent
a probability distribution, or equivalently that it should lie
in the n-simplex.

3.2 Designing the Cost Function via Conju-
gate Duality

The natural conditions we introduced above imply that
to design a market for a set of K securities with payoffs
specified by an arbitrary payoff function ρ : O → RK+ , we
should use a cost function based market with a convex, dif-
ferentiable cost function such that {∇C(q) : q ∈ RK} =
H(ρ(O)). We now provide a general technique that can be
used to design and compare properties of cost functions that
satisfy these criteria. In order to accomplish this, we make
use of tools from convex analysis.

It is well known4 that any closed, convex, differentiable
function C : RK → R can be written in the form C(q) =
supx∈dom(R) x · q − R(x) for a strictly convex function R
called the conjugate of C, where dom(R) denotes the domain
of R. (The strict convexity of R follows from the differentia-
bility of C.) Furthermore, any function that can be written
in this form is convex. As we will show in Section 3.3, the
gradient of C can be expressed in terms of this conjugate:
∇C(q) = argmaxx∈dom(R) x·q−R(x). To generate a convex
cost function C such that ∇C(q) ∈ Π for all q for some set

4For a detailed discussion of convex conjugates and their
properties, refer to a good text on convex optimization
such as Boyd and Vandenberghe [6] or Hiriart-Urruty and
Lemaréchal [23].



Π, it is therefore sufficient to choose an appropriate conju-
gate function R, restrict the domain of R to Π, and define
C as

C(q) = sup
x∈Π

x · q−R(x) . (1)

We call such a market a complex cost function based mar-
ket. To generate a cost function C satisfying our five condi-
tions, we need only to set Π = H(ρ(O)) and select a strictly
convex function R to serve as the conjugate.

This method of defining C is convenient for several rea-
sons. First, it leads to markets that are efficient to imple-
ment whenever Π can be described by a polynomial number
of simple constraints. The difficulty with combinatorial out-
come spaces is that actually enumerating the set of outcomes
can be challenging or impossible. In our proposed framework
we need only work with the convex hull of the payoff vectors
for each outcome when represented by a low-dimensional
payoff function ρ(·). This has significant benefits, as one
often encounters convex sets which contain exponentially
many vertices yet can be described by polynomially many
constraints. Moreover, as the construction of C is based
entirely on convex programming, we reduce the problem of
automated market making to the problem of optimization
for which we have a wealth of efficient algorithms. Similar
techniques have been applied to design learning algorithms
in the online convex optimization framework [22, 31], where
R plays the role of a regularizer, and have been shown to be
efficient in a variety of combinatorial applications, including
online shortest paths, online learning of perfect matchings,
and online cut set [8].

Second, this method yields simple formulas for properties
of markets that help us choose the best market to run. Two
of these properties, worst-case monetary loss and worst-case
information loss, are analyzed below.

Note that both the LMSR and Quad-SCPM [2] are exam-
ples of complex cost function based markets, though they
are designed for the complete market setting only.

3.3 Bounding Market Maker Loss and Loss of
Information

Before discussing market properties, it is useful to review
some helpful properties of conjugates. The first is a conve-
nient duality: For any convex, closed function C, the conju-
gate of the conjugate of C is C itself. This implies that if C
is defined as in Equation 1, we may write

R(x) = sup
q∈RK

q · x− C(q).

Since this maximization is unconstrained, and we are assum-
ing that our cost function C is differentiable, the maximum
occurs when ∇C(q) = x. (Note that this may hold for
many different values of q.) Suppose for a particular pair
(x∗,q∗) we have ∇C(q∗) = x∗. We can then rewrite this
equation as R(x∗) = q∗ · x∗ − C(q∗), which gives us that
C(q∗) = q∗ ·x∗−R(x∗). From Equation 1, this tells us that
x∗ must be a maximizer of x · q − R(x). In fact, it is the
unique maximizer due to strict convexity. This implies, as
mentioned above, that ∇C(q) = argmaxx∈Π x · q−R(x).

By a similar argument we have that for any q, if ∇R(x) =
q then x maximizes x · q − R(x) and therefore, as we have
just shown, x = ∇C(q). However, the fact that x = ∇C(q)
does not imply that ∇R(x) = q; in the markets we consider,
it is generally the case that x = ∇C(q) for multiple q.

We will make use of the notion of Bregman divergence.
The Bregman divergence with respect to a convex function
f is given by

Df (x,y) := f(x)− f(y)−∇f(y)(x− y).

It is clear by convexity that Df (x,y) ≥ 0 for all x and y.
Additionally, we will require notions like the interior and

boundary of a convex set, yet we must introduce more care-
ful terminology in order to consider the case that our price
space is not of full rank. Given a convex set S ⊂ Rd that
occupies d′-dimensional linear subspace, where potentially
d′ < d, we define the relative interior of S, relint(S), which
is the interior of S when restricted to the d′-dimensional
space (typically known as the affine hull of S). In addition,
we define the relative boundary of S, relbnd(S), as the set
closure(S) \ relint(S).

With these tools in hand, we are ready to examine some
market properties, and see how they depend on R.

3.3.1 Bounding the Market Maker’s Monetary Loss
When comparing market mechanisms, it is useful to con-

sider the market maker’s worst-case monetary loss,

sup
q∈RK

„
sup
o∈O

(ρ(o) · q)− C(q) + C(0)

«
.

This quantity is simply the worst-case difference between
the maximum amount that the market maker might have to
pay the traders (supo∈O ρ(o) · q) and the amount of money
collected by the market maker (C(q) − C(0)). The follow-
ing theorem provides a bound on this loss in terms of the
conjugate function.

Theorem 3. Consider any complex cost function based
market with Π = H(ρ(O)). The worst-case monetary loss
of the market maker is no more than

sup
x∈ρ(O)

R(x)− min
x∈H(ρ(O))

R(x). (2)

Furthermore, this above bound is tight, as the supremum of
the market maker loss, over all quantity vectors q and out-
comes o, is exactly the value in (2).

This theorem tells us that as long as the conjugate func-
tion is bounded on H(ρ(O)), the market maker’s worst-case
loss is also bounded.5 It says further that this loss is actually
realized, for a particular outcome o, at least when the price
vector approaches o. This suggests that loss to the market
maker is worst when the traders are the most certain about
the outcome.

3.3.2 Bounding Information Loss
Information loss can occur when securities are sold in

discrete quantities (for example, single units), as they are
in most real-world markets. Without the ability to pur-
chase arbitrarily small bundles, traders may not be able
to change the market prices to reflect their true beliefs
about the expected payoff of each security, even if expres-
siveness is satisfied. We will argue that the amount of in-
formation loss is captured by the market’s bid-ask spread

5In Section 5, we will state a more general, stronger bound
on market maker loss capturing the intuitive notion that the
market maker’s profits should be higher when the distance
between the final vector of prices and the payoff vector ρ(o)
of the true outcome o is large; see Theorem 6.



for the smallest trading unit. Given some q, the cur-
rent bid-ask spread of security bundle r is defined to be
(C(q + r)− C(q))− (C(q)− C(q− r)). This is simply the
difference between the current cost of buying the bundle r
and the current price at which r could be sold.

To see how the bid-ask spread relates to information loss,
suppose that the current vector of quantities sold is q. If se-
curities must be sold in unit chunks, a rational, risk-neutral
trader will not buy security i unless she believes the expected
payoff of this security is at least C(q + ei) − C(q), where
ei is the vector that has value 1 at its ith element and 0
everywhere else. Similarly, she will not sell security i unless
she believes the expected payoff is at most C(q)−C(q−ei).
If her estimate of the expected payoff of the security is be-
tween these two values, she has no incentive to buy or sell
the security. In this case, it is only possible to infer that the
trader believes the true expected payoff lies somewhere in
the range [C(q)−C(q−ei), C(q+ei)−C(q)]. The bid-ask
spread is precisely the size of this range.

The bid-ask spread depends on how fast instantaneous
prices change as securities are bought or sold. Intuitively,
the bid-ask spread relates to the depth of the market. When
the bid-ask spread is large, new purchases or sales can
change the prices of the securities dramatically; essentially,
the market is shallow. When the bid-ask spread is small,
purchases or sales may only move the prices slightly; the
market is deep. Based on this intuition, for complete mar-
kets, Chen and Pennock [9] use the inverse of ∂2C(q)/∂q2

ß

to capture the notion of market depth for each security i
independently. In a similar spirit, we define a market depth
parameter, β, for our complex securities markets with twice-
differentiable C. Larger values of β correspond to deeper
markets. We will bound the bid-ask spread in terms of this
parameter, and use this parameter to show that there ex-
ists a clear tradeoff between worst-case monetary loss and
information loss; this will be formalized in Theorem 4 below.

Definition 1. For any complex cost function based mar-
ket, if C is twice-differentiable, the market depth parameter
β(q) for a quantity vector q is defined as β(q) = 1/Vc(q),
where Vc(q) is the largest eigenvalue of ∇2C(q), the Hessian
of C at q. The worst-case market depth is β = infq∈RK β(q).

Let relint(Π) be the relative interior of Π. If C is twice-
differentiable, then for any q such that ∇C(q) ∈ relint(Π),
we have a correspondence between the Hessian of C at q
and the Hessian of R at ∇C(q). More precisely, we have
that u>∇2C(q)u = u>∇−2R(∇C(q))u for any u = x− x′

with x,x′ ∈ Π. (See, for example, Gorni [17] for more.)
This means that β(q) is equivalently defined as the smallest
eigenvalue of ∇2R(∇C(q))|Π; that is, where we consider the
second derivative only within the price region Π.

The definition of worst-case market depth implies that
1/β is an upper bound on the curvature of C, which implies
that C is locally bounded by a quadratic with Hessian I/β.
We can derive the following.

Lemma 1. Consider a complex cost function based mar-
ket with worst-case market depth β. For any q and r we
have

DC(q + r,q) ≤ ‖r‖
2

2β
.

It is easy to verify that the bid-ask spread can be written
in terms of Bregman divergences. In particular, C(q + r)−
C(q) − (C(q)− C(q− r)) = DC(q + r,q) + DC(q − r,q).
This implies that the worst-case bid-ask spread of a mar-
ket with market depth β can be upperbounded by a con-
stant times 1/β. That is, as the market depth parameter
increases, the bid-ask spread must decrease. The following
theorem shows that this leads to an inherent tension be-
tween worst-case monetary loss and information loss. Here
diam(H(ρ(O))) denotes the diameter of the hull of the pay-
off vectors for each outcome.

Theorem 4. For any complex cost function based mar-
ket with worst-case market depth β, for any r, q meeting
the conditions in Lemma 1, the bid-ask spread for bundle
r with previous purchases q is no more than ‖r‖2/β. The
worst-case monetary loss of the market maker is at least
β · diam2(H(ρ(O)))/8.

We can see that there is a direct tradeoff between the up-
per bound6 of the bid-ask spread, which shrinks as β grows,
and the lower bound of the worst-case loss of the market
maker, which grows linearly in β. This tradeoff is very in-
tuitive. When the market is shallow (small β), small trades
have a large impact on market prices, and traders cannot
purchase too many shares of the same security without pay-
ing a lot. When the market is deep (large β), prices change
slowly, allowing the market maker to gain more precise in-
formation, but simultaneously forcing the market maker to
take on more risk since many shares of a security can be pur-
chased at prices that are potentially too low. This tradeoff
can be adjusted by scaling R, which scales β. This is analo-
gous to adjusting the “liquidity parameter” b of the LMSR.

3.4 Selecting a Conjugate Function
We have seen that the choice of the conjugate function

R impacts market properties such as worst-case loss and
information loss. We now explore this choice in more detail.

In many situations, the ideal choice of the conjugate is a
function of the form

R(x) :=
λ

2
‖x− x0‖2. (3)

Here R(x) is simply the squared Euclidean distance between
x and an initial price vector x0 ∈ Π, scaled by λ/2. By uti-
lizing this quadratic conjugate function, we achieve a mar-
ket depth that is uniformly λ over the entire security space.
Furthermore, if x0 is chosen as the “center” of Π, namely
x0 = arg minx∈Π maxy∈Π ‖x−y‖, then the worst-case loss of
the market maker is maxx∈Π R(x) = (λ/8)diam2(Π). While
the market maker can tune λ appropriately according to the
desired tradeoff between worst-case market depth and worst-
case loss, the tradeoff is tightest when R has a Hessian that is
uniformly a scaled identity matrix, or more precisely where
R takes the form in Equation 3.

Unfortunately, by selecting a conjugate of this form, or
any R with bounded derivative, the market maker does in-
herit one potentially undesirable property: security prices
6Strictly speaking, as we are emphasizing the necessary
tradeoff between bid-ask spread and worst-case loss, we
should have a lower bound on the bid-ask spread. On the
other hand, if the worst-case market depth parameter is β
then there is some q and r such that DC(q + r,q)/‖r‖2 ≈
1/(2β) and this approximation can be made arbitrarily tight
for small enough r when C is twice differentiable.



may become constant when ∇C(q) reaches a point at
relbnd(Π), the relative boundary of Π (see Section 3.3).
That is, if we arrive at a total demand q where ∇C(q) =
ρ(o) for some outcome o, our mechanism begins offering se-
curities at a price equal to the best-case payoff, akin to asking
someone to bet a dollar for the chance to possibly win a dol-
lar. The Quad-SCPM for complete markets is known to
exhibit this behavior [2].

To avoid these undesirable pricing scenarios, it is sufficient
to require that our conjugate function satisfy one condition.
We say that a convex function R defined on Π is a pseudo-
barrier7 for Π if ‖∇R(xt)‖ → ∞ for any sequence of points
x1,x2, . . . ∈ Π which tends towards relbnd(Π). If we re-
quire our conjugate function R to be a pseudo-barrier, we
are guaranteed that the instantaneous price vector ∇C(q)
always lies in relint(Π), and does not become constant near
the boundary.

It is important to note that, while it is desirable that
‖∇R(xt)‖ → ∞ as xt approaches relbnd(Π), it is gener-
ally not desirable that R(xt) → ∞. Recall that the market
maker’s worst-case loss grows with the maximum value of
R on Π and thus we should hope for a conjugate function
that is bounded on the domain. A perfect example of con-
vex function that is simultaneously bounded and a pseudo-
barrier is the negative entropy function H(x) =

P
i xi log xi,

defined on the n-simplex ∆n. It is perhaps no surprise that
LMSR, the most common market mechanism for complete
security spaces, can be described by the choice R(x) :=
λH(x) where the price space Π = ∆n [2, 10].

4. EXAMPLES OF COMPUTATIONALLY
EFFICIENT MARKETS

In the previous section, we provided a general framework
for designing markets on combinatorial or infinite outcome
spaces. We now provide some examples of markets that can
be operated efficiently using this framework.

4.1 Subset Betting
Consider the scenario in which the outcome is some rank-

ing of a set of n competitors, such as n horses in a race.
The outcome of such a race is a permutation π : [n] → [n],
where π(i) is the final position of i, with π(i) = 1 being
best, and [n] denotes the set {1, · · · , n}. A typical market
for this setting might offer n Arrow-Debreu securities, with
the ith security paying off if and only if π(i) = 1. Addition-
ally, there might be separate, independent markets allowing
bets on horses to place (come in first or second) or show
(come in first, second, or third). However, running indepen-
dent markets for sets of outcomes with clear correlations is
wasteful in that information revealed in one market does not
automatically propagate to the others.

Chen et al. [11] proposed a betting language, subset betting
in which traders can place bets (i, j), for any candidate i and
any slot j, that pay out $1 in the event that π(i) = j and $0
otherwise.8 Chen et al. [12] showed that pricing bets of this

7We use the term pseudo-barrier to distinguish this from the
typical definition of a barrier function on a set Π, which is a
function that grows without bound towards the boundary of
Π. The term Legendre was introduced by Cesa-Bianchi and
Lugosi [7] for a similar notion, yet their definition requires
the stronger condition that Π contain a nonempty interior.
8The original definition of subset betting allowed bets of
the form “any candidate in set S will end up in slot j” or

form using LMSR is #P-hard and provided an algorithm
for approximating the prices by exploiting the structure of
the market. Using our framework, it is simple to design a
computationally efficient market for securities of this form.

In order to set up such a combinatorial market within our
framework, we must be able to efficiently work with the con-
vex hull of the payoff vectors for each outcome. Notice that,
for an outcome π, the associated payoff can be described by
a matrix Mπ, with Mπ(i, j) = I[π(i) = j], where I[·] is the
indicator function. Taking this one step further, it is easy
to verify that the convex hull of the set of permutation ma-
trices is precisely the set of doubly stochastic matrices, that
is the set

Π =

8<:X ∈ Rn×n≥0 :

nX
i′=1

X(i′, j) =

nX
j′=1

X(i, j′) = 1 ∀ i, j

9=; ,

where X(i, j) represents the element at the ith row and jth
column of the matrix X. Notice, importantly, that this set
is described by only n2 variables and O(n) constraints.

To fully specify the market maker, we must also select
a conjugate function R for our price space. While the
quadratic conjugate function is an option, there is a natural
extension of the entropy function, whose desirable proper-
ties were discussed in the previous section, for the space of
stochastic matrices. For any X ∈ Π, let us set

R(X) = λ
X
i,j

X(i, j) logX(i, j).

The worst-case market depth is computed as the minimum
of the smallest eigenvalue of the Hessian of R within the
relint(Π). This occurs at the matrix with all values 1/n,
hence the worst-case depth is nλ. The worst-case loss, on
the other hand, is easily computed as λn logn.

4.2 Sphere Betting
We now consider an example in which the outcome space

is infinite. An object orbiting the planet, perhaps a satel-
lite, is predicted to fall to earth in the near future and will
land at an unknown location, which we would like to predict.
We represent locations on the earth as unit vectors u ∈ R3.
The difficulty of this example arises from the fact that the
outcome must be a unit vector, imposing constraints on the
three coordinates. We will design a market with three secu-
rities, each corresponding to one coordinate of the final loca-
tion of the object. In particular, security i will pay off ui+1
dollars if the object lands in location u. (The addition of
1, while not strictly necessary, ensures that the payoffs, and
therefore prices, remain positive, though it will be necessary
for traders to sell securities to express certain beliefs.) This
means that traders can purchase security bundles r ∈ R3

and, when the object lands at a location u, receive a payoff
(u + 1) · r. Note that in this example, the outcome space is
infinite, but the security space is small.

The price space H(ρ(O)) for this market will be the 2-
norm unit ball centered at 1. To construct a market for this
scenario, let us make the simple choice of R(x) = λ‖x−1‖2
for some parameter λ > 0. When ‖q‖ ≤ 2λ, there exists
an x such that ∇R(x) = q. In particular, this is true for
x = (1/2)q/λ + 1, and q · x − R(x) is minimized at this

“candidate i will end up in one of the slots in set S.” A
bet of this form can be constructed easily using our betting
language by bundling multiple securities.



point. When ‖q‖ > 2λ, q · x − R(x) is minimized at an x
on the boundary of H(ρ(O)). Specifically, it is minimized
at x = q/||q||+ 1. From this, we can compute

C(q) =

(
1

4λ
‖q‖2 + q · 1, when ‖q‖ ≤ 2λ,

‖q‖+ q · 1− λ, when ‖q‖ > 2λ.

The market depth parameter β is 2λ; in fact, β(x) = 2λ for
any price vector x in the interior ofH(ρ(O)). By Theorem 3,
the worst-case loss of the market maker is no more than λ,
which is precisely the lower bound implied by Theorem 4.
Finally, the divergence DC(q + r,q) ≤ ‖r‖2/(4λ) for all
q, r, with equality when ‖q‖, ‖q + r‖ ≤ 2λ, implying that
the bid-ask spread scales linearly with ‖r‖2/λ.

5. COMPUTATIONAL COMPLEXITY
AND RELAXATIONS

In Section 3, we argued that the space of feasible price
vectors should be precisely H(ρ(O)), the convex hull of the
payoff vectors for each outcome. In each of our examples,
we have discussed market scenarios for which this hull has a
polynomial number of constraints, allowing us to efficiently
set prices via convex optimization 9. Unfortunately, one
should not necessarily expect that a given payoff function
and outcome space will lead to an efficiently describable con-
vex hull. In this section, we explore a couple of approaches
to overcome such complexity challenges. First, we discuss
the case in which H(ρ(O)) has exponentially (or infinitely)
many constraints yet gives rise to a separation oracle. Sec-
ond, we show that the price space Π can indeed be relaxed
beyond H(ρ(O)) without increasing the risk to the market
maker. Finally, we show how this relaxation applies in prac-
tice.

5.1 Separation Oracles
If we encounter a convex hullH(ρ(O)) with exponentially-

many constraints, all may not be lost. Recall that, in order
to set prices, we need to solve the optimization problem
maxx∈H(ρ(O)) q ·x−R(x). Under certain circumstances this
can still be solved efficiently.

Consider a convex optimization problem with a concave
objective function f(x) and constraints gi(x) ≤ 0 for all i in
some index set I. That is, we want to solve:

max f(x)

s.t. x ∈ Rd

gi(x) ≤ 0 ∀ i ∈ I

This can be converted to a problem with a linear objective
in the standard way:

max c

s.t. x ∈ Rd, c ∈ R
f(x) ≥ c
gi(x) ≤ 0 ∀ i ∈ I

Of course, if I is an exponentially or infinitely large set we
will have trouble solving this problem directly. On the other

9A convex program can be solved with arbitrarily small error
ε in time polynomial of 1/ε and the size of the problem
input using standard techniques such as the interior-point
method. In this paper, we do not worry about finding the
exact solution to the convex programs.

hand, the constraint set may admit an efficient separation
oracle, defined as a function that takes as input a point
(x, c) and returns true if all the necessary constraints are
satisfied or, otherwise, returns false and specifies a vio-
lated constraint10. Given an efficient separation oracle one
has access to alternative methods for optimization, the most
famous being Khachiyan’s ellipsoid method, that run in poly-
nomial time. For more details see, for example, Grötschel et
al [18].

This suggests that a fruitful direction for designing compu-
tationally efficient market makers is to examine the pricing
problem on an instance-by-instance basis, and for a particu-
lar instance of interest, leverage the structure of the instance
to develop an efficient algorithm for solving the specific sep-
aration problem. We leave this for future research.

5.2 Relaxation of the Price Space
When dealing with a convex hull H(ρ(O)) that has a pro-

hibitively large constraint set and does not admit an efficient
separation oracle we still have one tool at our disposal: we
can modify H(ρ(O)) to get an alternate price space Π which
we can work with efficiently. Recall that in Section 3, we
arrived at the requirement that Π = H(ρ(O)) as a necessary
conclusion of the proposed conditions on our market maker.
If we wish to violate this requirement, we need to consider
which conditions must be weakened and revise the resulting
guarantees from Section 3.

We will continue to construct our markets in the usual
way, via the tuple (O,ρ,Π, R) whereO is the outcome space,
ρ is the payoff function, Π ⊆ Rd is a convex compact set of
feasible prices, and R : Rd → R is a strictly convex function
with domain Π. The market’s cost function C will be the
conjugate of R with respect to the set Π, as in Equation 1.
The only difference is that we now allow Π to be distinct
from H(ρ(O)). Not surprisingly, the choice of Π will affect
the interest of the traders and the market maker. We prove
several claims which will aid us in our market design. The-
orem 5 tells us that the expressiveness condition should not
be relaxed, while Theorem 6 tells us that the no-arbitrage
condition can be. Together, these imply that we may safely
choose Π to be a superset of H(ρ(O)).

Theorem 5. For any complex cost function based mar-
ket, the worst-case loss of the market maker is unbounded if
ρ(O) * Π.

This (perhaps surprising) theorem tells us that expres-
siveness is not only useful for information aggregation, it is
actually necessary for the market maker to avoid unbounded
loss. The proof involves showing that if o is the final out-
come and ρ(o) 6∈ Π, then it is possible to make an infinite
sequence of trades such that each trade causes a constant
amount of loss to the market maker.

In the following theorem, which is a simple extension of
Theorem 3, we see that including additional price vectors
in Π does not adversely impact the market maker’s worst-
case loss, despite the fact that the no-arbitrage condition is
violated.

Theorem 6. Consider any complex cost function based
market with R and Π satisfying supx∈H(ρ(O)) R(x) <∞ and

10More precisely, a separation oracle returns any separating
hyperplane that divides the input from the feasible set.



H(ρ(O)) ⊆ Π. Assume that the initial price vector satisfies
∇C(0) ∈ H(ρ(O)). Let q denote the vector of quantities
sold and o denote the true outcome. The monetary loss of
the market maker is no more than

R(ρ(o))− min
x∈H(ρ(O))

R(x)−DR(ρ(o),∇C(q)).

This tells us that expanding Π can only help the market
maker; increasing the range of ∇C(q) can only increase the
divergence term. This may seem somewhat counterintuitive.
We originally required that Π ⊆ H(ρ(O)) as a consequence
of the no-arbitrage condition, and by relaxing this condition,
we are providing traders with potential arbitrage opportu-
nities. However, these arbitrage opportunities do not hurt
the market maker. As long as the initial price vector lies
in H(ρ(O)), any such situations where a trader can earn a
guaranteed profit are effectively created (and paid for) by
other traders! In fact, if the final price vector ∇C(q) falls
outside the convex hull, the divergence term will be strictly
positive, improving the bound.

To elaborate on this point, let’s consider an example where
Π is strictly larger than H(ρ(O)). Let q be the current
vector of purchases, and assume the associated price vector
x = ∇C(q) lies in the interior of H(ρ(O)). Consider a
trader who purchases a bundle r such that the new price
vector leaves this set, i.e., y := ∇C(q + r) /∈ H(ρ(O)). We
claim that this choice can be strictly improved in the sense
that there is an alternative bundle r′ whose associated profit,
for any outcome o, is strictly greater than the profit for r.

For simplicity, assume y is an interior point of Π \
H(ρ(O)) so that q + r = ∇R(y). Define π(y) :=
arg miny′∈H(ρ(O)) DR(y′,y), the minimum divergence pro-
jection of y into H(ρ(O)). The alternative bundle we con-
sider is r′ = ∇R(π(y)) − q. Our trader pays C(q + r) −
C(q + r′) less to purchase r′ than to purchase r. Hence, for
any outcome o, we see that the increased profit for r′ over r
is

ρ(o) · (r′ − r)− C(q + r′) + C(q + r)

> ρ(o) · (r′ − r) +∇C(q + r′) · (r− r′)

= (ρ(o)− π(y)) · (r′ − r). (4)

Notice that we achieve strict inequality precisely because
∇C(q + r′) 6= ∇C(q + r). Now use the optimality
condition for π(y) to see that, since ρ(o) ∈ H(ρ(O)),
∇π(y)(DR(π(y),y)) · (ρ(o) − π(y)) ≥ 0. It is easy to check
that ∇π(y)(DR(π(y),y)) = ∇R(π(y)) − ∇R(y) = r′ − r.
Combining this last expression with the inequality above
and (4) tells us that the profit increase is strictly greater
than (ρ(o) − π(y)) · (r′ − r) ≥ 0. Simply put, the trader
receives a guaranteed positive increase in profit for any out-
come o.

The next theorem shows that any time the price vector
lies outside of ρ(o), traders could profit by moving it back
inside. The proof uses a nice application of minimax duality
for convex-concave functions.

Theorem 7. For any complex cost function based mar-
ket, given a current quantity vector q0 with current price
vector ∇C(q0) = x0, a trader has the opportunity to earn a
guaranteed profit of at least minx∈H(ρ(O)) DR(x,x0).

When x0 ∈ H(ρ(O)), DR(x,x0) is minimized when x = x0

and the bound is vacuous, as we would expect. The more

interesting case occurs when the prices have fallen outside
of H(ρ(O)), in which case a trader is guaranteed a riskless
profit by moving ∇C(q) to the closest point in H(ρ(O)).

5.3 Pair Betting via Relaxation
We return our attention to the scenario where the outcome

is a ranking of n competitors, as described in Section 4.1.
Consider a complex market in which traders make arbitrary
pair bets: for every i, j, a trader can purchase a security
which pays out $1 whenever π(i) > π(j). Like subset bets,
pricing pair bets using LMSR is known to be #P-hard [12].

We can represent the payoff structure of any such outcome
π by a matrix Mπ defined by

Mπ(i, j) =

8><>:
1, if π(i) > π(j)
1
2
, if i = j

0, if π(i) < π(j).

We would like to choose our feasible price region as the set
H({Mπ : π ∈ Sn}), where Sn is the set of permutations on
[n]. Unfortunately, the computation of this convex hull is
necessarily hard: if given only a separation oracle for the
set H({Mπ : π ∈ Sn}), we could construct a linear program
to solve the “minimum feedback arc set” problem, which is
known to be NP-hard.

On the positive side, we see from the previous section that
the market maker can work in a larger feasible price space
without risking a larger loss. We thus relax our feasible price

region Π to the set of matrices X ∈ Rn
2

satisfying

X(i, j) ≥ 0 ∀i, j ∈ [n]

X(i, j) = 1−X(j, i) ∀i, j ∈ [n]

X(i, j) +X(j, k) +X(k, i) ≥ 1 ∀i, j, k ∈ [n]

This relaxation was first discussed by Meggido [26], who
referred to such matrices as generalized order matrices. He
proved that, for n ≤ 4, we do have Π = H({Mπ : π ∈ Sn}),
but gave a counterexample showing strict containment for
n = 13. By using this relaxed price space, the market maker
allows traders to bring the price vector outside of the convex
hull, yet includes a set of basic (and natural) constraints on
the prices. Such a market could be implemented with any
strongly convex conjugate function (e.g., quadratic).

6. CONCLUSION
We conclude by mentioning one nice direction of work.

As we discussed, there is an inherent tradeoff between the
bid-ask spread and the worst-case loss of the market maker.
But if the market maker chooses to sell securities with an
additional transaction cost for each security sold, then this
money can not only help to cover the worst-case loss, but
can also lead to a profit. Furthermore, if a market becomes
popular, the market-maker may wish to increase the market
depth. This idea has been explored by Othman et al. [28] for
the case of complete markets, introducing a liquidity sensi-
tive market maker, and they provide a new model with profit
guarantees. Othman and Sandholm [27] recently extend the
work and characterize a family of market makers that are
liquidity sensitive. Via our framework, we can define an al-
ternative method for simultaneously including transaction
costs and guaranteeing profit. In particular, this is achieved
through relaxing the price space, as discussed in Section 5.2.
We leave the details to future work.
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APPENDIX
A. OMITTED PROOFS

A.1 Proof of Theorem 1
Let C(q) := Cost(q|∅). Clearly Cost(0|∅) = 0 and hence

we can assume C(0) = 0. We shall prove, via induction,
that for any t and any bundle sequence r1, . . . , rt,

Cost(rt|r1, . . . , rt−1)

= C(r1 + . . .+ rt−1 + rt)− C(r1 + . . .+ rt−1) . (5)

When t = 1, this holds trivially. Assume that Equation 5
holds for all bundle sequences of any length t ≤ T . By
Condition 1,

Cost(rT+1|r1, . . . , rT )

= Cost(rT+1 + rT |r1, . . . , rT−1)− Cost(rT |r1, . . . , rT−1)

= C

 
rT+1 + rT +

T−1X
t=1

rt

!
− C

 
T−1X
t=1

rt

!

−

 
C

 
rT +

T−1X
t=1

rt

!
− C

 
T−1X
t=1

rt

!!

= C

 
T+1X
t=1

rt

!
− C

 
TX
t=1

rt

!
,

and we see that Equation 5 holds for t = T + 1 too.

A.2 Proof of Theorem 3
Let q denote the final vector of quantities sold, ∇C(q)

denote the final vector of instantaneous prices, and o denote
the true outcome. From Equation 1, we have that C(q) =
∇C(q) · q − R(∇C(q)) and C(0) = −minx∈H(ρ(O)) R(x).
The difference between the amount that the market maker
must pay out and the amount that the market maker has
previously collected is then

ρ(o) · q− C(q) + C(0)

= ρ(o) · q− (∇C(q) · q−R(∇C(q)))− min
x∈H(ρ(O))

R(x)

= q · (ρ(o)−∇C(q)) +R(∇C(q))

− min
x∈H(ρ(O))

R(x) +R(ρ(o))−R(ρ(o))

= R(ρ(o))− min
x∈H(ρ(O))

R(x)

− (R(ρ(o))−R(∇C(q))− q · (ρ(o)−∇C(q))) (6)

≤ R(ρ(o))− min
x∈H(ρ(O))

R(x)

− (R(ρ(o))−R(∇C(q))

−∇R(∇C(q)) · (ρ(o)−∇C(q)))

= R(ρ(o))− min
x∈H(ρ(O))

R(x)−DR(ρ(o),∇C(q)) ,

where DR is the Bregman divergence with respect to R,
as defined above. The inequality follows from the first-order
optimality condition for convex optimization: when f is con-
vex and differentiable and minimized at x, then

∇f(x) · (y − x) ≤ 0 for any y ∈ Π.

We can then apply this inequality to the function f(x) =
R(x) − q · x whose minimum occurs at x = ∇C(q) via the
duality assumption, and we set y = ρ(o).

Since the divergence is always nonnegative, this is upper-
bounded by R(ρ(o)) −minx∈H(ρ(O)) R(x), which is in turn
upperbounded by supx∈ρ(O) R(x)−minx∈H(ρ(O)) R(x).

Finally, we show that this loss bound is tight. First,
select any ε > 0. Choose an outcome o so that
supo′∈O R(ρ(o′)) − R(ρ(o)) < ε/2. Next, choose some q′

so that DR(ρ(o),∇C(q′)) < ε/2. This is achievable because
the space of gradients of C is assumed to span H(ρ(O)),
and so we can ensure that ∇C(q′) is arbitrarily close to
ρ(o). Finally, let q := ∇R(∇C(q′)), and observe that by
construction we have ∇C(q) = ∇C(q′). To compute the
market maker’s loss for this particular choice of q and o, we
apply Equation 6 to obtain:

R(ρ(o))− min
x∈H(ρ(O))

R(x)

− (R(ρ(o))−R(∇C(q))− q · (ρ(o)−∇C(q)))

= R(ρ(o))− min
x∈H(ρ(O))

R(x)−DR(ρ(o),∇C(q))

> sup
o′∈O

R(ρ(o′))− min
x∈H(ρ(O))

R(x)− ε

where the first equality holds because q = ∇R(∇C(q)) and
by the definition of the Bregman divergence.

A.3 Proof of Theorem 4
The bound on the bid-ask spread follows immediately

from Lemma 1 and the argument above. The value β
lower-bounds the eigenvalues of R everywhere on Π. Hence,
if we do a quadratic lower-bound of R from the point
x0 = arg minx∈Π R(x) with Hessian defined by βI, then we
see that R(x) − R(x0) ≥ DR(x,x0) ≥ β

2
‖x − x0‖2. In the

worst-case, ‖x−x0‖ = diam(H(ρ(O)))/2, which finishes the
proof.

A.4 Proof of Theorem 5
Consider some outcome o such that ρ(o) /∈ Π. The feasible

price set Π = {∇C(q) : ∀q} is compact. Because ρ(o) /∈ Π,
there exists a hyperplane that strongly separates Π and ρ(o).
In other words, there exists an k > 0 such that ||ρ(o) −
∇C(q)|| ≥ k.

When outcome o is realized, B(q) = ρ(o) · q − C(q) +
C(0) is the market maker’s loss given q. We have ∇B(q) =
ρ(o)−∇C(q), which represents the instantaneous change of
the market maker’s loss. For some small ε > 0, let q′ =
q + ε (ρ(o)−∇C(q)). Then

B(q′) = B(q) +∇B(q) · [ε (ρ(o)−∇C(q))]

= B(q) + ε||ρ(o)−∇C(q)||2

≤ B(q) + εk2.

This shows that for any q we can find a q′ such that the mar-
ket maker’s worst-case loss is at least increased by εk2. This
process can continue for infinite steps. Hence, we conclude
that the market maker’s loss is unbounded.

A.5 Proof of Theorem 6
This proof is nearly identical to the proof of Theo-

rem 3. The only major difference is that now C(0) =
−minx∈Π R(x) instead of C(0) = −minx∈H(ρ(O)) R(x), but
this is equivalent since we have assumed that ∇C(0) ∈
H(ρ(O)). R(ρ(o)) is still well-defined and finite since we
have assumed that H(ρ(O)) ⊆ Π.

A.6 Proof of Theorem 7



A trader looking to earn a guaranteed profit when the
current quantity is q0 hopes to purchase a bundle r so that
the worst-case profit mino∈O ρ(o) · r − C(q0 + r) + C(q0)
is as large as possible. Notice that this quantity is strictly
positive since r = 0, which always has 0 profit, is one option.
Thus, a trader would like to solve the following objective:

max
r∈RK

min
o∈O

ρ(o) · r− C(q0 + r) + C(q0)

= min
x∈H(ρ(O))

max
r∈RK

x · r− C(q0 + r) + C(q0)

= min
x∈H(ρ(O))

max
r∈RK

x · (q + r)− C(q0 + r) + C(q0)− x · q0

= min
x∈H(ρ(O))

R(x) + C(q0)− x · q0

= min
x∈H(ρ(O))

R(x) + x0 · q0 −R(x0)− x · q0

≥ min
x∈H(ρ(O))

DR(x,x0).

The first equality with the min /max swap holds via Sion’s
Minimax Theorem [32]. The last inequality was obtained
using the first-order optimality condition of the solution
x0 = arg maxx∈Π x · q0 − R(x) for the vector x − x0 which
holds since x ∈ Π.


