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Abstract

Much evidence supports that financial markets have the ability to aggregate in-
formation. When tied to a random variable, a financial market can forecast the
value of the random variable. It then becomes a prediction market. We estab-
lish a model of prediction markets with aggregate uncertainty, and theoretically
characterize some fundamental properties of prediction markets. Specifically, we
have shown that a prediction market is guaranteed to converge to an equilibrium,
where traders have consensus on the forecast. The best possible prediction a
prediction market can make is the direct communication equilibrium. However,
prediction markets do not always converge to it. We have proved that a sufficient
condition for the convergence to the direct communication equilibrium under our
model is that the private information of each trader, conditioned on the state of the
world, is identically and independently distributed. Furthermore, if this condition
is satisfied, the prediction market converges in at most two rounds.

1 Introduction

Financial markets, including stock markets, futures markets, options markets, in-
surance markets, and even game markets, have a common characteristic: the out-
come of the traded security is uncertain at the time of trading. Security markets
allow traders to “bet” on outcomes of some future events or propositions. The
strong form ofefficient market hypothesison security markets states that market
price of the security incorporates all available information of all market traders.

This hypothesis has been supported to a large degree by many empirical stud-
ies [12, 19].

If market price can incorporate all available information of traders, it can be
viewed as the best prediction of the outcome of the traded security. This implies
that if we want to predict the value of a random variable, we can turn it into a
financial instrument (a security), whose payoff equals the realized value of the
random variable, and trade the security in a market. The market price of the
security is then an approximation of the expectation of the random variable. For
example, if we are interested in forecasting the value of a random variablea,
whose value in the future can be either1 or 0, we can form a securityb. b pays
off $1 in the future if the value ofa is 1, and it pays off $0 in the future if the
value ofa is 0. The securityb is then traded in the market. Traders gradually
reveal their information through their bids or offers on the securityb. In this way,
market price of the securityb eventually incorporates traders’ information and
is the best informed forecast of the value of the random variablea. A financial
market tied to a random variable is called a prediction market if it is designed
specifically for forecasting the value of the random variable. In the literature,
the name prediction market is used interchangeably with the name information
market because a market’s ability to aggregate information enables it to make
predictions.

Since any future event can be viewed as a random variable, prediction mar-
kets can function as a powerful tool for generating forecast about the event. Such
prediction markets have been proved effective in many domains, including pol-
itics [7, 8, 9], entertainment [22], and sports [4, 10]. Implemented properly,
prediction markets have the potential to assist businesses, universities, and gov-
ernments making critical decisions. Currently, prediction markets are in their
primitive stage. They are mainly used for experimental or entertaining purposes.
Before prediction markets can be used for real world decision making, much ef-
fort needs to be put into understanding how they work well, and how to design
reliable prediction markets to aggregate information efficiently and accurately.

This paper, aiming at obtaining deeper understanding of how prediction mar-
kets work, theoretically characterizes some fundamental properties of prediction
markets with aggregate uncertainty. What motivate our endeavor in the paper
are a series of questions: Will prediction markets converge to some kind of con-
sensus? What is the best prediction that a market can offer if there is aggregate
uncertainty? If a prediction market converges to a consensus, is this consensus
the same as the best prediction? Under what conditions will prediction markets
always converge to the best prediction?

The remainder of the paper is arranged as follow. Section 2 reviews previous



work on prediction markets. It includes results from theoretical analysis, labora-
tory experiments, and real world online game markets. In Section 3, we provide a
mathematical representation of prediction markets, on which the later analysis is
based. Computational properties of prediction markets are presented in Section 4.
Finally, Section 5 concludes our findings and indicates future research directions.

2 Related work

Research related to prediction markets usually take one of the three approaches:
theoretical modeling of prediction markets, experimental studies, and analysis
of real world online game markets. These three approaches provide insights to
prediction markets from different perspectives. Among the three approaches, the-
oretical study on prediction market is relatively weak, but its importance has al-
ready drawn much attention. This paper takes a theoretical approach.

2.1 Theoretical analysis of prediction markets

From theoretical approach, researchers try to develop models to formally under-
stand how prediction markets work and to suggest methods to improve its perfor-
mance. Research in this category is very fundamental and important.

Dating back to 1976, Aumann [1] presented the formal definition of common
knowledge and studied how two people can agree with each other. Aumann
proved that if two people have the same priors, and their posteriors for some
event are common knowledge, then these posteriors must be equal. However, it
is very rare that two people can have common knowledge about their posteriors
at the very beginning. Geanakoplos and Polemarchakis [11] extended Aumann’s
work by demonstrating that if two people with common priors successively an-
nounce their posteriors to each other, eventually this leads to a situation of com-
mon knowledge where their posteriors are equal. McKelvey and Page [14] gen-
eralized previous results ton persons and only required successively announcing
an aggregate statistic of individuals’ posteriors. When this statistic eventually
becomes common knowledge, all posteriors ofn persons are equal. Nielsen et
al. [15] contributed by extending conditional probability (posterior) to the case
of conditional expectation. The above mentioned four papers studied how people
disagree with each other can eventually reach an agreement. This process is anal-
ogous to the process of information aggregation. Market traders with different
information disagree with the expected value of the security at the beginning. By
trading in the market, they gradually reach an agreement, which is represented by

the market price.
Feigenbaum et al. [5] analyzed some computational properties of information

market. They modeled an information market, in which there is no aggregate
uncertainty. The random variable to be predicted is a function of all individual
information. Based on the results of Nielsen et al. [15], Feigenbaum et al. proved
that when the function takes a certain form, the equilibrium market price must
equal the value of the function. The number of rounds for the market to converge
to this equilibrium equals the number of traders in the market.

Theoretical work directly targeting prediction markets is still rare. Feigenbaum
et al. [5] appears to be the only one. More work in this area is needed to fully
understand the theoretical underpinnings of prediction markets.

2.2 Experimental studies

Early evidences from stock markets, futures markets, and options markets in-
dicate that markets can aggregate less-than-perfect information. However, mar-
ket structure and market traders can impact the preciseness and effectiveness of
this aggregation. Laboratory experiments, by systematically controlling some of
the market parameters, provide simplified environments for understanding per-
formances of prediction markets.

Plott and Sunder [19] set up experiments to examine the issues of information
aggregation when different traders have diverse information about an underly-
ing state of nature. The information structure did not have aggregate uncertainty,
which means that although no trader knows the state of nature, if traders pool
their information together the state can be identified with certainty. Their results
demonstrated that market structures are important for information aggregation.
Only with an appropriate market structure, can a market aggregate diverse infor-
mation. Lundholm [13] examined the effect of aggregate uncertainty and found
that markets aggregate information less efficiently when there is greater aggregate
uncertainty. Forsythe and Lundholm [6] studied the effect of trader’s preferences
on information aggregation. They found successful information aggregation only
when traders have heterogeneous preferences. O’Brien and Srivastava [16] fo-
cused on the relationship between asset structure and information aggregation
ability of the market. Their results showed that information aggregation ability
decreased when asset structure of the market is sufficiently complex. Sunder [21]
extensively summarized experimental work on information aggregation. He indi-
cated that the difficulties of the state of research are to understanding what factors
facilitate or prevent information aggregation.

Research taking the experimental approach usually emphasizes the market’s



ability to aggregate information rather than directly consider market’s ability to
make predictions. As we mentioned in Section 1, what underlies market’s ability
to predict is its ability to aggregate information.

2.3 Evidence from online game markets

Outside the laboratory, there are many real world online game markets, providing
test grounds for experimental and theoretical claims of prediction markets.

The Iowa Electronic Markets (IEM)1 are real-money online futures markets, in
which security payoffs depend on economic and political events such as elections.
Presidential election markets of IEM are most extensively examined. Participants
trade securities whose payoffs depend on outcomes of the presidential election.
Analysis of trading data found that prices in these markets predicted the election
outcomes better than polls [2, 3, 8, 9]. Some other online game markets include
Hollywood Stock Exchange (HSX)2, Foresight Exchange (FX)3, Formula One
Pick Six (F1P6)4. HSX trades securities based on future box office proceeds
of new movies. FX allows traders to bet on unresolved scientific questions or
other claims of public interest. In F1P6, participants can predict Formula One
International race car competition results. Prices of securities in these markets
were found to give as accurate or more accurate predictions than expert opin-
ions [17, 18].

3 A model of prediction markets with aggregate uncertainty

The model of the prediction market in Feigenbaum et al. [5] does not consider ag-
gregate uncertainty. In their model, each trader possesses one bit of information.
While the value of the function is not known to any one trader, it is completely
determined by the combination of all the traders’ information. Upon pooling in-
formation of all traders together, there is no uncertainty associated with the value
of the function. In the real world, however, market traders are less likely to pos-
sess complete and accurate information. Even with pooled information, the value
of the aggregate function is not fully determined. This kind of uncertainty is
called aggregate uncertainty. In this section, we will adapt the prediction market
model of Feigenbaum et al. [5] to allow for the existence of aggregate uncertainty.

1http://www.biz.uiowa.edu/iem/
2http://www.hsx.com/
3http://www.ideosphere.com/fx/
4http://pyrrha.csis.ul.ie/00F1/

3.1 Market structure

Let S = {0, 1}m represents the state space of the world.s = (s1, s2, ..., sm) ∈ S
is a possible state of the world, wheresj can take one of two state values,0 or
1, for all j = 1, ...,m. There aren traders in the market. All traders have a
common prior probability distribution regarding to the state of the world,P(s):
{0, 1}m → [0, 1].

The market aims at predicting the value of a functionf(s). For simplicity, we
restrictf(s) to be a Boolean function,f(s): {0, 1}m → {0, 1}. The value of
f(s) is determined by the true state of the world, which will only be revealed
some time in the future. One security is traded in the market, whose payoff is
contingent on the value off(s). Specifically, iff(s) = 1, the security pays off
$1; if f(s) = 0, the security pays off $0. The form off is common knowledge to
all agents.

The aggregate uncertainty in the market is modeled as caused by the inaccuracy
of information. The information space isX = {0, 1}n. Each traderi = 1...n
gets a piece of informationxi about the state of the world. The value ofxi is
either0 or 1. x = (x1, x2, ..., xn) ∈ X is the information vector for all agents.
However, the information vectorx does not accurately reveal the true state of
the world,s. It is only related to the true state of the world according to some
probability distribution. It is common knowledge that the probability distribution
of x conditional on the state of the worlds isQ(x|s): {0, 1}n×{0, 1}m → [0, 1].
For example, suppose conditional ons1 = 1 (s1 = 0), the probability to get
xi = 1 (xi = 0) is 0.9 and the probability to getxi = 0 (xi = 1) is 0.1. If the
traderi getsxi = 1, although he does not know the value ofs1 for certain, he
knows that, with probability0.9, s1 equals1. This is still very informative for
him to make his trading decisions.

3.2 Trading rules

We assume that each trader has one unit of the security at the beginning of the
market. Then, the market proceeds in stages. In each stage, all traders put their
shares of the security into the market. Each traderi submits a bidbi, which is
the amount of money that the traderi wants to spend on buying the security. For
simplicity, we assume that there are no restrictions on credit. Traders can spend
as much as they want to buy the security. The market determines the price of
the security by taking average of all bids in a stage. Thus, clearing price for a
stage isp =

∑n
i=1 bi

n . Each trader buys the security at the market clearing price,
and the next stage then starts. In this way, the value of the security is forced to



be re-evaluated through the market in each stage. The process continues until an
equilibrium is reached, after which prices and bids do not change from stage to
stage.

The above trading process is essentially a simplified Shapley-Shubik market
game [20]. Feigenbaum et al. [5] use the same trading mechanism in their model,
but formulated in a different way.

3.3 Trader strategy

We make the assumption that traders will bid their expected payoff of a unit of
the security based on available information in each stage of the market. Expec-
tations are calculated based on probability distribution of the state of the world
P(s), conditional probability distribution of informationQ(x|s), and currently
available information. As available information changes when market proceeds,
traders will revise their expectations accordingly.

Thus, we assume that traders will always “tell the truth” rather than behave
strategically. This assumption seems reasonable when the number of traders in
the market,n, is large. Whenn is large, the effect of a single trader’s bid on
the market clearing price is relatively small or even ignorable. No trader can
strategically affect the market price. Hence, there is no incentive for traders to
deviate from their true expected values. In addition, this assumption makes our
model computationally more tractable.

4 Computational properties of prediction markets

Given the prediction market setup in Section 3, we want to examine three proper-
ties of the prediction market with aggregate uncertainty from the computational
perspective.

First, are prediction markets with aggregate uncertainty guaranteed to converge
to an equilibrium? If a market can not converge at all, it looses its ability to make
predictions to a large extend. In addiction, only when it can reach an equilibrium,
does a computational analysis become meaningful.

Second, what is the best prediction that a prediction market with aggregate un-
certainty can possibly make? A prediction market is not a panacea for forecast-
ing, especially when there exists aggregate uncertainty. Only when we know the
limits of prediction markets, can we further evaluate performances of prediction
markets.

Third, if both answers to the above two questions are yes, it is natural to ask:
do prediction markets always converge to the best prediction? Under what con-
ditions, is the convergence to the best prediction guaranteed and how fast is the
convergence process?

4.1 Price convergence

Informally, McKelvey and Page [14] and Nielsen et al. [15] have shown that if
initial information partition of each trader is finite, and traders refine their infor-
mation partition through an iterative process, in which a market statistic based
on traders’ conditional expectations of an event is made public in each period,
then the market converges to an equilibrium in finite rounds. At equilibrium, the
market statistic becomes common knowledge - it can be inferred by every trader
before it is observed from the market. Further, if the market statistic satisfies some
conditions, each trader’s conditional expectation of the event must be identical at
the equilibrium. We restate their results as the following two theorems and then
apply them to prove that our prediction market is guaranteed to converge to an
equilibrium.

Let the initial information structure of the prediction market be as follows:

(Ω, F, ρ) (a probability space), (1)

P 0 = (P 0
1 , ..., P 0

n) (initial information partitions), (2)

h : Rn → R (an aggregate function) (3)

For anyω ∈ Ω and any individuali, P 0
i (ω) denotes the element ofP 0

i that
containsω. The random variable that the market tries to predict isA. The market
proceeds in rounds. Inductively on roundt, for each individuali and any state
ω ∈ Ω, define

bt
i(ω) = E(A|P t

i (ω)), (4)

to be individuali’s expectation of random variableA based on his current infor-
mation partition.

bt(ω) = (bt
1(ω), ..., bt

n(ω)), (5)

is the expectation vector for all agents.

Theorem 1. (McKelvey and Page [14] and Nielsen et al. [15]) Assume an initial
information structure as in (1), (2), and(3). Assume the market proceeds in an
iterative process such that:



(a) In every roundt a market statisticΦt = h(bt(ω)) is made public;

(b) Traders refine their information partitions according to the information
brought by the market statistic;

(c) Traders revise their next round expectationbt+1
i ’s according to their new

information partitions.

Then, for allω ∈ Ω, there is a round T such thatΦT is common knowledge atω.

When the market statisticΦT becomes common knowledge. It does not bring
any new information to traders. Traders’ information partitions can not be further
refined. Thus, the market statistic will remain the same in later rounds. The
market reaches its equilibrium.

Theorem 2. (McKelvey and Page [14] and Nielsen et al. [15]) If the function
h in (3) is stochastically regular, for any T, at whichΦT = h(bt(ω)) becomes
common knowledge, and for allω ∈ Ω, it must be the case that

bT
1 (ω) = bT

2 (ω) = ... = bT
n (ω) = ΦT .

Feigenbaum et al. [5] explain that a functiong : Rn → R is stochastically
monotone if it can be written in the formg(x) =

∑n
i=1 gi(xi), where eachgi :

R → R is strictly increasing. A functiong : Rn → R is stochastically regular,
if it can be written in the formg = l ◦ g′, whereg′ is stochastically monotone and
l is invertible on the range ofg′.

In our prediction market model, all the preconditions of the two theorems are
met. We map the initial information structure requirements given in equations
(1),(2), and (3) and other requirements of the theorems to our prediction market
as follows. First, the elements of the probability space(Ω, F, ρ) can be inter-
preted as:Ω includes both the state spaceS and the information spaceX, i.e.
Ω = {S, X} = {0, 1}m+n; F is the measurable space ofΩ; andρ is the joint
probability distribution ofs andx, which can be derived from the prior distribu-
tion of s, i.e.P(s), and conditional distribution ofx, i.e.Q(x|s). Equation (1) is
thus satisfied.

Second, equation (2) is met in our model, because the initial information par-
tition for each traderi is simply a bi-partition of the sample space,Ω = {S, X},
according to the trader’s bit of informationxi.

Third, in our model, the event to be predicted is the value off(s). In other
words, it is the event thatf(s) = 1. Since we assume that traders will truthfully

bid their expectation of the functionf(s), for each traderi and for any state
ω ∈ Ω, E(f(s)|P t

i (ω)) would be individuali’s bid at periodt. It is what required
by equation (4).

Forth, our prediction market proceeds by announcing the clearing price in each
round. The aggregation functionh in our prediction market is the function to cal-
culate the market clearing price. It is the mean of bids (conditional expectations)
of n traders. Thus, equation (3) is satisfied. In addition, the mean function is
stochastically regular.

Hence, by applying Theorem 1 and Theorem 2 to our prediction market, we
conclude that the prediction market will converge to an equilibrium in finite steps.
At equilibrium, the market price will not change and can function as a forecast of
the value off(s). All traders have the same expectation about the value off(s),
which equals to the equilibrium market price.

4.2 Best possible forecast

Before we can evaluate the performance of a prediction market, we need a bench-
mark that defines what is the best possible forecast. Knowing this will enable us
to objectively analyze forecasting results of prediction markets and maybe sug-
gest ways to improve the best possible forecast.

The best possible forecast that a prediction market could achieve, is the price
at direct communication equilibrium[11]. Rather than only making a market
statistic public, market traders can directly reveal their private information to
each other. In this situation, an equilibrium can be reached immediately. This
equilibrium is called direct communication equilibrium or pooled information
equilibrium. The equilibrium market price equals the expectation of the security
payoff conditional on all available information, i.e.E(f(s)|x). Since this
prediction takes advantage of all information possessed by market traders, it
is the best informed forecast in general. In other words, the best a prediction
market can do is completely aggregate all private information that distributed in
market traders. A prediction market does not create new information. Example
1 calculates the best possible prediction for a simple two trader prediction market.

Example 1: Consider a simple prediction market, where there is only one state
variables1 and two traders,i = 1 or 2. Value ofs1 can be either0 or 1. Both
traders have the common prior probability distribution ofs1:

Pr(s1 = 0) = Pr(s1 = 1) = 0.5.



The function that the market wants to predict value for is

f(s1) =
{

1, whens1 = 1
0, whens1 = 0

The security traded in the market pays off $1 if f(s1) = 1, and $0 if f(s1) = 0.
The probability distribution ofxi conditional ons1 for i = 1 and2 is:

Pr(xi = 0|s1 = 0) = 0.8, P r(xi = 1|s1 = 0) = 0.2;

Pr(xi = 0|s1 = 1) = 0.2, P r(xi = 1|s1 = 1) = 0.8;

Suppose the true state iss1 = 1 and both traders’ private information is 1, i.e.
x1 = x2 = 1. Using Bayes’s rule, we can calculate the best possible prediction
of the market as:

E(f(s1)|x1 = 1, x2 = 1) = Pr(f(s1) = 1|x1 = 1, x2 = 1)
= Pr(s1 = 1|x1 = 1, x2 = 1)

=
Pr(x1 = 1, x2 = 1|s1 = 1)Pr(s1 = 1)

Pr(x1 = 1, x2 = 1)

BecausePr(x1 = 1, x2 = 1) equalsPr(x1 = 1, x2 = 1|s1 = 0)Pr(s1 =
0) + Pr(x1 = 1, x2 = 1|s1 = 1)Pr(s1 = 1), Pr(x1 = 1, x2 = 1|s1 = 0)
equalsPr(x1 = 1|s1 = 0)Pr(x2 = 1|s1 = 0), andPr(x1 = 1, x2 = 1|s1 = 1)
equalsPr(x1 = 1|s1 = 1)Pr(x2 = 1|s1 = 1), so

E(f(s1)|x1 = 1, x2 = 1) =
0.8× 0.8× 0.5

0.2× 0.2× 0.5 + 0.8× 0.8× 0.5
≈ 0.94.

Thus, the best possible prediction off(s1) is 0.94. It says that the true state of
the world is more likely to bes1 = 1, but there is uncertainty associated with the
prediction.

The best possible forecast implies that the ability of information markets to
make predictions is constrained by the amount of aggregate uncertainty. If the
aggregate uncertainty is large, even if the prediction market accurately aggre-
gates all the information, the prediction result can still be poor. If we change the
probability distribution ofxi conditional ons1 for i=1 and 2 in Example 1 to the
followings:

Pr(xi = 0|s1 = 0) = 0.2, P r(xi = 1|s1 = 0) = 0.8;

Pr(xi = 0|s1 = 1) = 0.2, P r(xi = 1|s1 = 1) = 0.8;

The expectation at the direct communication equilibrium would only be
E(f(s1)|x1 = 1, x2 = 1) = 0.5. It provides nothing better than simply know-
ing the prior distribution ofs1. From this perspective, clearly, performance of
prediction markets relies on the information quality of their participants.

4.3 Convergence to the best prediction or not?

We have shown that a prediction market will converge to an equilibrium in
finite steps, and that the best possible prediction is the direct communication
equilibrium. Our next question is: will a prediction market always converge to
the direct communication equilibrium? Unfortunately, the answer is “no”. In
the following, we will provide an example of each cases. Example 2 does not
converge to the direct communication equilibrium, while example 3 does. Then,
we propose a theoretical result showing that under what conditions, a prediction
market converges to a direct communication equilibrium within two rounds of
trading.

Example 2: Consider a prediction market, where state of the world iss =
(s1, s2). There are two traders in the market,i = 1, 2. Value ofsj , j = 1 or
2 can be either0 or 1. Suppose the common prior probability distribution ofs is
uniform, i.e. s = (s1, s2) takes the values(0, 0), (0, 1), (1, 0), and(1, 1) each
with probability0.25. The function that the market wants to predict is

f(s1, s2) =
{

1, whens1 = s2

0, whens1 6= s2

The security traded in the market pays off $1 iff(s1, s2) = 1, and $0 if
f(s1, s2) = 0. The probability distribution of trader’s informationx = (x1, x2)
conditional ons is:

Pr(xi = 1|si = 1) = 0.9, P r(xi = 0|si = 1) = 0.1;

Pr(xi = 1|si = 0) = 0.1, P r(xi = 0|si = 0) = 0.9;

Suppose the true state iss = (1, 1) and both traders’ private information is 1, i.e.
x1 = x2 = 1.



According to Bayes’ rule, trader i with informationxi would like to submit bid

bi = E(f(s)|xi)
= Pr(f(s) = 1|xi)

=
Pr(xi|f(s) = 1)Pr(f(s) = 1)

Pr(xi)
.

We can easily calculate thatPr(xi = 1) = Pr(xi = 0) = 0.5, Pr(f(s) = 1) =
0.5, andPr(xi = 1|f(s) = 1) = Pr(xi = 0|f(s) = 1) = 0.5. Hence, no matter
whatxi is, trader i will always bid0.5 in the first round of trading. When both
traders bidbi = 0.5, market clearing price is also0.5. From the market clearing
price, trader1 can infer that trader2 bid 0.5, but this gives him no information
about trader2’s private informationx2. Trader2 can do the same inference and
also gains no additional information. Neither trader will change their bids. Hence,
the market reaches its equilibrium in the first round with equilibrium price equals
0.5. However, this is different from the direct communication equilibrium. Under
the direct communication equilibrium, market price should equals

E(f(s)|x1 = 1, x2 = 1) = Pr(f(s) = 1|x1 = 1, x2 = 1)

=
Pr(x1 = 1, x2 = 1|f(s) = 1)Pr(f(s) = 1)

Pr(x1 = 1, x2 = 1)

=
0.41× 0.5

0.25
= 0.82.

Thus, the direct communication equilibrium price provides much better forecast
than the equilibrium price from the prediction market.

Example 3: With all other conditions remain the same as in example 2, we
change the probability distribution of trader’s informationx = (x1, x2) condi-
tional ons to:

Pr(xi = 0|s1 = 0, s2 = 0) = 0.1, P r(xi = 1|s1 = 0, s2 = 0) = 0.9;

Pr(xi = 0|s1 = 0, s2 = 1) = 0.5, P r(xi = 1|s1 = 0, s2 = 1) = 0.5;

Pr(xi = 0|s1 = 1, s2 = 0) = 0.5, P r(xi = 1|s1 = 1, s2 = 0) = 0.5;

Pr(xi = 0|s1 = 1, s2 = 1) = 0.1, P r(xi = 1|s1 = 1, s2 = 1) = 0.9.

We still suppose that the true state iss = (1, 1) and both traders’ private
information is 1.

Under the condition of example 3, we can calculate that if traderi has infor-
mation xi = 1, he would like to submit bidbi = E(f(s)|xi = 1) ≈ 0.64
in the first round of trading. Otherwise, if traderi has informationxi = 0, he
would like to submit bidbi = E(f(s)|xi = 0) ≈ 0.17 in the first round. Thus,
both trader1 and trader2 will submit 0.64 as their bids in the first round. The
market clearing price for round1 would be0.64. Observing the clearing price,
trader1 can infer that trader2 must have bid0.64, which means thatx2 = 1.
Trader1 thus improves his information. His bid in the second round will be
E(f(s)|x1 = 1, x2 = 1) ≈ 0.76. Similarly, trader2 can infer from the market
price thatx1 = 1, and bidE(f(s)|x1 = 1, x2 = 1) ≈ 0.76 in the second round.
Thus, the prediction market reaches its equilibrium in the second round. This
equilibrium is the same as direct communication equilibrium.

Observing the conditions of the two examples, we can notice that in example
2 the distribution ofxi conditional ons is independent but not identical acrossi,
but in example 3 it is independent and identical acrossi. This might be the reason
that causes the different converging properties of the two examples. Theorem 3
below confirms that independent and identical distributions ofxi’s conditional
on s is a sufficient condition for the prediction market to converge to the direct
communication equilibrium.

Theorem 3. Suppose the state of the world iss = (s1, s2, ...sm) ∈ {0, 1}m.
A boolean functionf(s) : {0, 1}m → {0, 1} is what the prediction market
intends to predict. There aren traders in the market. They have common
prior probability distribution of s. The information vector of traders is
x = (x1, x2, ..., xn) ∈ {0, 1}n. If the distribution ofxi conditional ons, q(xi|s),
is independent and identical for alli = 1, ..., n, then the prediction market is
guaranteed to converge to direct communication equilibrium. The equilibrium is
reached in the second round of trading at the latest.

Proof: Since traders have common prior distribution ofs and have indepen-
dent and identical distribution ofxi conditional ons, then for any traderi,
i ∈ {1, ..., n}, if his private information isxi = 0, then his bid in the first round
of trading would be:

Pr(f(s) = 1|xi = 0) =
Pr(xi = 0|f(s) = 1)Pr(f(s) = 1)

Pr(xi = 0)
; (6)



If his private information isxi = 1, then his bid would be:

Pr(f(s) = 1|xi = 1) =
Pr(xi = 1|f(s) = 1)Pr(f(s) = 1)

Pr(xi = 1)
. (7)

Case 1: Values of equations (6) and (7) are equal.

If Pr(f(s) = 1|xi = 0) = Pr(f(s) = 1|xi = 1), the equilibrium is reached
at the first round because the clearing price can not provide any additional infor-
mation to traders.
Under this case, we must have:

Pr(xi = 0|f(s) = 1)Pr(f(s) = 1)
Pr(xi = 0)

=
Pr(xi = 1|f(s) = 1)Pr(f(s) = 1)

Pr(xi = 1)

⇒ Pr(xi = 0|f(s) = 1)
Pr(xi = 0)

=
Pr(xi = 1|f(s) = 1)

Pr(xi = 1)

⇒ Pr(xi = 0|f(s) = 1) = Pr(xi = 0), (8)

andPr(xi = 1|f(s) = 1) = Pr(xi = 1).

Thus,xi is independent of the random variablef(s) = 1. Plug equation (8) back
into equation (6) and (7), we get

Pr(f(s) = 1|xi = 0) = Pr(f(s) = 1|xi = 1) = Pr(f(s) = 1). (9)

This means that the equilibrium price of the prediction market equalsPr(f(s) =
1). We then show that this price is happened to be the same as that of direct
communication equilibrium.

Under direct communication equilibrium,

E(f(s) = 1|x) = Pr(f(s) = 1|x1, x2, ..., xn)

=
Pr(x1, ..., xn|f(s) = 1)Pr(f(s) = 1)

Pr(x1, ..., xn)
. (10)

According to equation (8),xi, i ∈ {1, ..., n} is independent off(s) = 1. Hence,
Pr(x1, ..., xn|f(s) = 1) = Pr(x1, ..., xn). We have:

E(f(s) = 1|x = x1, x2, ..., xn) = Pr(f(s) = 1). (11)

The equilibrium of the prediction market is the same as direct communication
equilibrium, and is reached in the first round of trading.

Case 2: Values of equations (6) and (7) are not equal.

If Pr(f(s) = 1|xi = 0) 6= Pr(f(s) = 1|xi = 1), then traders bid either
Pr(f(s) = 1|xi = 0) or Pr(f(s) = 1|xi = 1) in their first round of trading.
After observing the clearing price of the first round, each trader can do the follow-
ing computation. Assume there area traders actually bidPr(f(s) = 1|xi = 0),
n− a traders bidPr(f(s) = 1|xi = 1), and market clearing price observed isp,
then

aPr(f(s) = 1|xi = 0) + (n− a)Pr(f(s) = 1|xi = 1)
n

= p (12)

Equation (12) has a unique solution,

a =
np− nPr(f(s) = 1|xi = 1)

Pr(f(s) = 1|xi = 0)− Pr(f(s) = 1|xi = 1)
. (13)

Thus, after observing the clearing price of round one, every trader knows that
there area traders that have0 as their private information, andn− a traders that
has1 as their private information. This information is sufficient for the market to
converge to the direct communication equilibrium, because only the total number
of xi = 0 or 1 matters due to the iid assumption ofxi’s conditional distributions.
Hence, the prediction market converges to the direct communication equilibrium
in the second round.

Combining the results of the two cases, Theorem 3 is proved.

5 Conclusions

5.1 Summary

We have established a model of prediction markets with aggregate uncertainty, by
characterizing the uncertainty of market participants’ private information. Based
on the model, we have proved some fundamental properties of prediction markets
that are important for evaluating performances of prediction markets and design-
ing reliable prediction markets in the future. Specifically, we have shown that a
prediction market is guaranteed to converge to an equilibrium, where traders have
consensus about the forecast. However, a prediction market is not a panacea. The
best possible prediction it can make is the direct communication equilibrium, but



it is not guaranteed to converge to the direct communication equilibrium. We have
proved that a sufficient condition for the convergence to the best possible predic-
tion under our model is the identical and independent distribution of individual
trader’s information conditional on the state of the world. Furthermore, if this
condition is satisfied, the prediction market converges to direct communication
equilibrium in at most two rounds.

5.2 Future work

This is an initial attempt to understanding the power of prediction markets. In the
future, we are interested in further investigating:

• Modeling aggregate uncertainty:Aggregate uncertainty can arise because
of incomplete information, inaccurate information, or the mix of the two. In
this paper, we only model aggregate uncertainty as the inaccuracy or uncer-
tainty of individuals’ information. In the future, it is interesting to incorpo-
rate other causes of aggregate uncertainty.

• The effect of aggregate uncertainty on prediction markets:Our results have
shown that aggregate uncertainty can negatively affect the power of predic-
tion markets to various extends. It is important to measure or quantify the
effect so that measures can be suggested to manage or reduce the effect.

• Prediction performance:We have proved that if the individual information,
conditioned on the state of the world, is identically and independently dis-
tributed, prediction markets converge to direct communication equilibrium.
If the iid assumption is not satisfied, under what other conditions, will the
prediction market converge to its best possible prediction? How fast does
the convergence happen?

• Robustness of prediction markets:Before prediction markets can be used
to facilitating decision making, their robustness needs to be examined. Al-
though our current model does not consider strategical behavior of market
participants, we hope in the long run to investigate prediction markets when
there are manipulation incentives.

• Real world applications:When the theoretical work becomes more mature,
we are interested in exploring where the theoretical results can be applied.
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