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ABSTRACT
We consider a setting in which a principal seeks to induce
an adaptive agent to select a target action by providing in-
centives on one or more actions. The agent maintains a
belief about the value for each action—which may update
based on experience—and selects at each time step the ac-
tion with the maximal sum of value and associated incentive.
The principal observes the agent’s selection, but has no in-
formation about the agent’s current beliefs or belief update
process. For inducing the target action as soon as possible,
or as often as possible over a fixed time period, it is opti-
mal for a principal with a per-period budget to assign the
budget to the target action and wait for the agent to want
to make that choice. But with an across-period budget, no
algorithm can provide good performance on all instances
without knowledge of the agent’s update process, except in
the particular case in which the goal is to induce the agent
to select the target action once. We demonstrate ways to
overcome this strong negative result with knowledge about
the agent’s beliefs, by providing a tractable algorithm for
solving the offline problem when the principal has perfect
knowledge, and an analytical solution for an instance of the
problem in which partial knowledge is available.
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1. INTRODUCTION
Many situations arise in which a principal wishes to affect

the decisions of an agent as he learns to make decisions. For
example, a teacher wishes for a student to check answers. A
coach wishes for an athlete to adopt particular techniques.
A marketer wants a consumer to purchase a particular brand
of a product. In these examples, an agent’s belief about his
valuation for available actions may change with experience
through learning or other forms of belief updates. The stu-
dent may initially check answers but notice that this is time
consuming and stop before he becomes good at it. The ath-
lete may adopt and improve a nevertheless imperfect tech-
nique and keep with it. The consumer may purchase another
brand and develop a loyalty to that brand.

We consider problems in which the principal can provide
incentives to lead the agent to select a desired action. The
teacher can provide gold stars for students who check their
answers. The coach can spend effort on teaching a preferred
technique. The marketer can advertise or offer discounts
on a product. In some cases the provided incentives may
not only change the agent’s current selection, but also the
agent’s future selections because he learns that a particular
action has high intrinsic value.

We conceptualize this problem as incentive design for adap-
tive agents. An agent’s decision problem is assumed to be a
multi-armed bandit problem [9, 6]. The agent selects a sin-
gle action at each time step, and only its belief on the value
of that action may change. In addition to modeling learning
agents, this models sequential decision problems in which
an agent’s value for an action adapts over time; e.g., a new
toy loses appeal over time or becomes damaged, or a task is
completed and an action no longer has value.1 The princi-
pal can provide incentives to influence the agent’s behavior,
with the goal of inducing a desired action once or multiple
times. We insist that the incentives do not affect an agent’s
(intrinsic) belief on the value of each action, conditional on
actions taken.

In our main formulation, the principal has no information
about the agent’s beliefs on value. But we also consider

1We will sometimes use ‘learning’ to describe the behavior
of the agent in the sequel, but intend for such descriptions to
also apply to agents with more general adaptive processes.



a variant where the principal is informed. Without knowl-
edge, the problem is to use a limited budget to induce a
desired behavior even though incentives can have different
consequences when provided at different times. The use of
incentives is also somewhat limiting, in that we cannot force
the agent to select a particular action.

Our results. We consider two settings, one in which the
principal has a fixed budget at each time step and another
where the principal has a fixed budget across time steps. In
the case of a fixed budget at each time step, we show that the
quickest way for a principal to induce a target action once
is to assign the budget to this action and wait for the agent
to want to select the action. This is optimal for any update
process and even with complete knowledge of the update
process. Thus, it is optimal for Bayesian learners, as well
as heuristic learners, that fit within our general framework.
We think this is an interesting finding: the agent’s belief
update process is left unchanged until the point at which
the agent can be incentivized to select the target action.
This incentive scheme is also optimal for inducing the goal
action to be selected as many times as possible within a fixed
number of time periods.

In the case where the principal has a fixed budget across
time, the problem is further complicated because the princi-
pal needs to decide when to spend the budget. For inducing
the target once, assigning the entire budget to the target
action remains optimal even with knowledge of the update
process. Since no money is spent when the target is not
selected, this policy remains feasible for a fixed budget and
is therefore optimal for this more constrained problem. But
for inducing the goal multiple times, we show that without
knowledge of future values, no deterministic or even ran-
domized algorithm provides a bounded competitive ratio for
approximating the optimal offline solution, that is, the one
obtained when given knowledge of the entire belief sequence.
We show that a tractable algorithm exists for finding opti-
mal incentives in the offline problem, and demonstrate on
a particular instance of the problem how partial knowledge
about the update process and beliefs over values can be used
for finding effective incentives.

Related work. In terms of designing incentives to influ-
ence an agent’s behavior when the agent’s preferences are
unknown, this work is related to work by Zhang et al. [12,
13, 11] on environment design and policy teaching. Envi-
ronment design considers the problem of perturbing agent
decision problems in order to influence their behavior. Pol-
icy teaching considers the particular problem of trying to
influence the policy of an agent following a Markov Decision
Process by assigning rewards to states. In these papers the
agent is assumed to have a particular way of making deci-
sions and persistent preferences. This paper can be seen as
part of a larger agenda of online environment design, where
a principal aims to make limited changes to an environment
so as to influence the decision of agents while their valuations
are still changing, possibly due to learning.

We are not aware of any work on bandits problems that
considers a principal who through incentives seeks to induce
an adaptive agent to learn to select an action that is desired
by the principal.2 The most closely related work is by Stone
and Kraus [10] on ad hoc teams. In an ad hoc team, there

2Cavallo et al. [5], Bergemann and Välimäki [2] and Babaioff
et al. [1] study a distinct model of incentives in multi-armed

is a learner with values for actions that update based on
the empirical mean of observed values, and a teacher who
intervenes by taking actions, which lead the agent to make
another observation and update its beliefs. The goal is to
maximize the combined performance of the teacher and the
learner. The main finding is that it is never optimal to teach
the worst arm, notably because teaching this is costly and
the agent learns that this is the worst arm on its own at no
additional loss. On surface level, this seems similar to our
positive result on providing incentives on the target action:
our agent must learn on its own that the other actions are
not as good. However, our setting is quite different in that
we cannot directly demonstrate a particular action to the
agent but must intervene through incentives. Moreover, the
principal’s goal need not be aligned with that of the agent,
and is ignorant of the agent’s values or update process, which
can be arbitrary.

Brafman and Tennenholtz [4] consider a teaching setting
where a teacher can perform actions within a game to in-
fluence the behavior of a learner. However, in this setting
there are no incentives and for the most part there is no cost
to teaching.

Our problem is also somewhat similiar to the problem
of reward shaping within reinforcement learning, where the
goal is to adjust an agent’s reward feedback in order to
improve its performance in a complex environment [8, 7].
However, the assumptions we make are quite different. For
example, the agent is not programmable, its values are not
observed, and the shaping rewards are costly.

2. THE BASIC MODEL
We consider an agent with a set of actions K = {1, . . . , n}.

Let K−i = K \ {i}. We use discrete time t ∈ {1, 2, . . .},
and assume that the agent’s belief about his value for an
action at time t is dependent only on its state xi(t), which
represents the agent’s experience with action i prior to time
t. Let vi(xi(t)) denote the agent’s belief of the value of
action i at time t if selected. At each time step t, the agent
selects a particular action i, whose state transitions from
xi(t) to xi(t + 1), independently of time and the states of
other actions. This transition can be stochastic, and for
example can depend on the sequence of realized rewards
from experiences with a particular action. The states of
all other actions stay fixed, i.e., xj(t + 1) = xj(t), ∀j 6= i.
Throughout the paper, we find it notationally convenient to
refer to the state of action i after it has been selected k times
as xk

i , and the agent’s belief about its value as vi(x
k
i ).

The agent’s current belief can be an arbitrary function of
the state, and thus can represent a range of adaptive agent
behaviors. This includes, for example, an agent that se-
lects an action according to the empirical average of rewards
drawn so far, perhaps coupled with variance weighting to en-
courage exploration. To illustrate, let ri

1, . . . , ri
k denote the

realized rewards received from each of the first k selections
of action i. To encode an agent whose belief is the empiri-
cal average of rewards, let vi(x

k
i ) = (

Pk
j=1 r

i
j)/k for k ≥ 1.

bandit problems, from the mechanism design perspective.
Each arm is associated with a different agent, and agents
have private information about the rewards behind the arms.
The goal is to design truthful mechanisms that elicit this
information, and enable the center to utilize policies for se-
lecting which arm to pull next to (approximately) maximize
social welfare.



To encode the belief of an agent making explore and exploit
tradeoffs, we can for example let

vi(x
k
i ) = d(xk

i ) + (

kX
j=1

ri
j)/k,

where d(xk
i ) is the expected variance in rewards received

from selecting action i and is decreasing in k. Similarly,
Bayesian learning can also be directly modeled.

We consider a principal who wishes for the agent to se-
lect a target action g. The principal can provide incen-
tives ∆(t) = (∆1(t), . . . ,∆n(t)) at each time t, where ∆(t)
can in general depend on any knowledge available to the
principal, such as the incentives provided and actions se-
lected prior to time t. The agent observes ∆(t) prior to
selecting his action at time t, and the selected actions are
observed by the principal. We assume that incentives are
not incorporated into the agent’s state, that is, the evolu-
tion of an agent’s beliefs are independent of the incentives
we offer, conditioned on the action the agent selects. We
let ∆ = (∆(1),∆(2), . . . ,∆(t), . . .) denote a sequence of in-
centive decisions, which are induced by an incentive policy.
Unless otherwise specified, we assume the principal has no
knowledge of the agent’s update process, and does not ob-
serve the realized rewards from the agent’s selections.

In each time period, the agent selects the action with the
maximal combined value using the following agent function:3

f(x(t),∆(t)) = argmax
i∈K

[vi(xi(t)) + ∆i(t)]. (1)

The agent is myopic with regard to the intervention of the
principal, in that the agent selects the action with the high-
est combined value without considering the effect of its ac-
tion on future incentive provisions. Equivalently, the agent
adopts a belief that the external incentive is exogeneous and
invariant to its own policy, and thus something that does not
need to be modeled. While myopic with respect to future
incentives, the agent’s choice can still reflect explore vs. ex-
ploit tradeoffs in its intrinsic value as explained above. How-
ever, by assuming that incentives are not incorporated into
agent’s state, we preclude models of learning in which an
agent ‘internalizes’ the incentives over time.

The online model. Our main analysis is carried out in an
online model of computation (see, e.g., [3]); for our purposes
an informal description suffices. An instance of our problem
specifies a sequence of belief value updates vi(x

0
i ), vi(x

1
i ), . . . ,

for each action i ∈ K and, optionally, a number of periods
R. We assume that the principal has no knowledge of these
values, and for the most part achieve incentive policies that
could not be improved even with full knowledge. Our goal
is to design algorithms with the same performance as the
optimal offline algorithm with full knowledge of the input.
As is usual, we will seek to compete in this sense with the
offline algorithm even if the next value of each action is
determined after each action of the algorithm in a way that is
adversarial and dependent on the history. The performance
is measured with respect to one of several objective criteria
that we define in the sequel.
3For simplicity of exposition, we assume that the agent
breaks ties in favor of the target action when there is a tie
but otherwise in an arbitrary way. We can replace this as-
sumption, which favors the target action, with any other
tie-breaking rule, and all our results would continue to hold.

3. PER-PERIOD BUDGET
We consider first a principal that has a fixed budget at

each time step. For example, consider a teacher with a limit
of giving two gold stars per period, a coach with a fixed
amount of time to demonstrate a preferred technique each
period, or a marketer with a cap on the amount of discount
that can be provided to a consumer across a set of prod-
ucts. For a per-period budget B > 0, we define the budget
constraint on ∆ as ∆i(t) ≤ B for all t and i ∈ K, and
require further that incentives are non-negative, such that
∆i(t) ≥ 0 for all actions i and times t. Note that the budget
constraint formulation assumes that incentives are provided
to the agent if and only if the agent selects the action with
incentives applied to that action. This captures scenarios
where incentives represent contracts (e.g., if you buy this
then I give you this incentive), and not to the case where
incentives are sunk costs (e.g., advertising dollars). Given
this, the principal can in principle assign the entire budget
to multiple arms if desired, in hopes that one of them is
selected.

To see the power of effective incentives, note that incen-
tives can sometimes induce an action to be selected forever
that would otherwise never be selected. Consider a case
with two actions, where initially the target action has value
2 and the non-target action has value 3. If either action is
chosen, its value updates to 10. Assume B = 2. Without
intervening in the first period the non-target action will be
chosen, its value will update to 10, and it will be chosen for-
ever even with incentives. However, by providing incentives
on the target action in the first period it will be induced
in that period and forever. The challenge is to design an
incentive policy that is successful for all update models and
even without knowledge of the update model. We consider
two objective criteria.

3.1 Induce once
Consider a principal who wishes to induce action g once

as soon as possible by providing effective incentives.

Problem 1 (Induce-Once). For a given instance and
a budget B, provide incentives to minimize the time t such
that xg(t) = x1

g.

If a solution does not exist, the minimum is infinity. Note
that for action g to be selected at time t it is necessary that
B ≥ maxi∈K−g [vi(xi(t)) − vg(xg(t))], at which point it is
sufficient to provide ∆g(t) = B. The Induce-Once problem
is thus identical to finding incentives that most quickly lead
the values of all other actions to drop below the inducible
threshold Tonce = B+vg(x0

g). For any threshold value T , we
define the following:

Definition 1. A threshold T for inducing action g is met
at time t if and only if vi(xi(t)) ≤ T for all i ∈ K−g.

At first glance, it may appear that providing incentives
to actions other than the target action g can be beneficial,
by leading an action with value higher than the threshold
to be selected and subsequently significantly drop in value,
and in particular, to below the inducible threshold. This
intuition turns out to be wrong! Any action above the in-
ducible threshold will in any case be selected by the agent
before action g until its value drops below the threshold,
even without intervention. Getting such an action to be se-
lected more quickly is possible through incentives, but this
does not lead to action g being selected any sooner.



We formalize this observation as the ‘threshold lemma,’
which we will apply throughout this paper.

Lemma 1 (Threshold Lemma). Given a threshold T ,
let ki = min{k : vi(x

k
i ) ≤ T}, for all i ∈ K−g. Assume such

ki exist. Any incentive policy ∆ that assigns ∆i(t) = 0 for
all i ∈ K−g and ∆g(t) ≥ 0 at every time t has the following
properties:

(a) At any time t before the threshold is first met, xi(t) =
xmi

i satisfies mi ≤ ki for all i ∈ K−g.

(b) If the threshold is first met at time t, then xi(t) = xki
i

for all i ∈ K−g.

Proof. Consider part (a). It suffices to show that at any
time t before the threshold is first met, any action i ∈ K−g

with xi(t) = xki
i would not be selected at time t. Since

the threshold is not yet met at such a time t, there exists
j ∈ K−g such that j 6= i and vj(xj(t)) > T . Under ∆, action
i would not be selected at time t because vi(xi(t))+∆i(t) =

vi(x
ki
i ) ≤ T < vj(xj(t)) = vj(xj(t)) + ∆j(t), and so action

j is strictly preferred.
Now consider part (b). If the threshold is first met at time

t then exactly one action, say ` ∈ K−g, had been selected
k`− 1 times by period t− 1 and was selected in period t− 1
and every other action j ∈ K−g, j 6= ` had already been
selected at least kj times by period t − 1. By (a), these
other actions had been selected exactly kj times by period

t− 1 and hence xi(t) = xki
i for all i ∈ K−g in period t.

The threshold lemma shows that only providing incentives
to the target action ensures that no other action is selected
more times than needed before the threshold is met. Note
that it does not guarantee the threshold will be met; that
still needs to be shown for a particular incentive policy and
corresponding threshold.

We next introduce a simple incentive policy that is central
in our analysis. Its acronym hints at its guarantees.

Definition 2. The ‘only provide to target’ (OPT) incen-
tive policy assigns ∆g(t) = B and ∆i(t) = 0 for all i ∈ K−g

for every time t.

Note that in defining OPT we did not make any assump-
tions regarding its knowledge of current values or future up-
dates.

Theorem 1. In the online model and under a per-period
budget, OPT always provides the optimal offline solution to
Induce-Once.

Proof. Consider Tonce = vg(x0
g) + B and define ki =

min{k : vi(x
k
i ) ≤ Tonce} for all i ∈ K−g, and consider the

interesting case in which this exists for every action so that
a solution is not trivially precluded. The best possible so-
lution will induce the agent to select the goal action after
the necessary ki activations of each action i ∈ K−g. But
actions i ∈ K−g can be selected no more than ki times be-
fore the threshold is met by part (a) of the threshold lemma,
and thus the threshold must be met under OPT. By apply-
ing part (b) of the threshold lemma, OPT makes the fewest
selections of actions in K−g necessary to meet the thresh-
old, plus an additional necessary step to induce the target
action.

The key observation is that nothing the principal can do
will speed up the agent’s exploration of currently better ac-
tions. The principal can do worse than OPT however, e.g.,
by placing incentives on an action other than the target
whose value is below the threshold and whose value in the
state transitioned to is much higher.

3.2 Induce multiple times
In the motivating examples we consider, the principal may

want the agent to select the target action (e.g. check an-
swers, use a particular technique, or buy a product) more
than once. This leads to the next objective criterion.

Problem 2 (Induce-Multi). For a given instance, a
budget B, and a number of rounds R, provide incentives to
maximize m such that xg(R) = xm

g .

Let us first tackle the related problem of minimizing the
time to get m selections, for a given m. We know from
Theorem 1 that OPT is the optimal incentive policy for m =
1. Furthermore, for m ≥ 2, we know that OPT gets each
subsequent selection of action g most quickly from any state
configuration. However, this is not enough to conclude that
OPT is the optimal incentive policy for getting m selections,
because there may be other incentive policies that are slower
than OPT at getting the first selection but faster in getting
subsequent selections. While such incentive policies exist,
we use the threshold lemma to show that they can do no
better than OPT in minimizing the total amount of time
needed to get m selections:

Lemma 2. In the online model and under a per-period
budget, and for any fixed m > 1, OPT minimizes the time t
such that xg(t) = xm

g .

Proof. Let w = argmin0≤`<m vg(xi
g) and let Tmulti =

vg(xw
g ) + B. Let ki = min{k : vi(x

k
i ) ≤ Tmulti} for all

i ∈ K−g, and consider the case in which this exists for every
action so that a solution is not trivially precluded. The
best possible solution will induce the agent to select the
goal action the m-th time after the necessary ki activations
to each action i ∈ K−g. But actions i ∈ K−g can be selected
no more than ki times before the threshold is met by part (a)
of the threshold lemma, and thus the threshold must be met
under OPT. Consider the period in which the threshold is
first met. By applying part (b) of the threshold lemma, OPT
makes the fewest selections of actions in K−g necessary to
meet the threshold, and since only the target item is selected
thereafter until m selections are made, this completes the
proof.

By defining the threshold as the minimum value attained
by action g before m selections we can apply the same idea
as in the proof of Theorem 1. A fixed number of selections
must necessarily occur on the other actions, and once they
occur under OPT these actions will no longer be selected
again.

Theorem 2. In the online model and under a per-period
budget, OPT always provides the optimal offline solution to
Induce-Multi.

Proof. Let m denote the number of selections of the
target action in time R under OPT. Assume for contradic-
tion that there exist an incentive policy to induce the target
m′ > m times in R steps. But by Lemma 2, OPT must also
be able to induce the target action m′ times in the same
number or fewer time steps. This is a contradiction.



4. FIXED ACROSS-PERIOD BUDGET
In this section, we consider a setting in which the principal

has a budget that is fixed over time, and must decide on how
to allocate that budget across time in order to induce the
target action g once or multiple times. Formally we define
the budget constraint on ∆ as

P∞
t=1 ∆i(t)(t) ≤ B, where i(t)

denotes the agent’s selection at time t. We still require that
incentives are non-negative, i.e., ∆i(t) ≥ 0 for all actions i
and times t.

This problem seems more difficult than the per-period
budget problem because the principal must now decide how
to split its budget across rounds. Providing too little in a
particular round can miss an opportunity given the current
state, whereas providing too much may make it difficult to
induce future selections of the target action. As we will
show, this turns out to be a nonissue if we wish to induce
the target action once, but prevents any online algorithm
from providing performance guarantees if we wish to induce
the target action multiple times.

4.1 Induce once
We first return to Induce-Once, that is, we have a prin-

cipal who wishes to induce action g once and as soon as
possible. However, now the incentive policies under consid-
eration have a fixed budget B across time.

Consider using OPT for this problem. OPT is optimal for
the per-period budget case when B is available each period.
Moreover, OPT in fact spends no money when the target is
not selected, and so remains feasible even for a fixed bud-
get across rounds and therefore optimal for this more con-
strained problem. The proof of this theorem is omitted as
it is essentially identical to the proof of Theorem 1.

Theorem 3. In the online model and under a fixed across-
period budget, OPT always provides the optimal offline so-
lution to Induce-Once.

4.2 Induce multiple times
Now consider the Induce-Multi problem with a principal

who wishes to induce the target action as many times as
possible in a fixed number of rounds R. OPT is no longer
optimal here because it may be beneficial to split the budget
with the aim of getting more selections of the target action.

Consider a setting with two actions and a total budget
of B = 1. Action 1 is the goal action. It may be that
v2(x0

2) = vg(x0
g) + B and v2 increases in future states. By

providing B on action g in the first period the goal is induced
once, compared to zero successes with any other policy. On
the other hand, suppose instead that v2(x0

2) = vg(x0
g) + ε,

some 0 < ε < B, and the value of both actions remains
constant in all states. By providing B on g in the first period
only one activation is achieved, whereas min(R, 1/ε) could
be achieved by providing ε on action g while budget remains
(and this can be made arbitrarily large by increasing R and
decreasing ε.)

In the online algorithms literature, an online algorithm
for a maximization problem is α-competitive if the ratio be-
tween the optimal offline solution and the algorithm’s solu-
tion is at most α for any given instance. Theorems 1 and 2
can be reformulated to state that under a per-period budget
OPT is 1-competitive for Induce-Once and Induce-Multi,
respectively. On the other hand, the above argument implies
that under an across-period budget there is no deterministic

online algorithm that provides a bounded competitive ratio
for the Induce-Multi problem.

Our next formal result strengthens the above observation;
we show that even a randomized algorithm cannot achieve a
bounded approximation ratio. When the algorithm is ran-
domized, the ‘game’ is as follows: we choose a randomized
algorithm, then the adversary chooses an input; the input
chosen by the adversary does not depend on the realization
of the algorithm’s randomness. The theorem holds even if
the algorithm is allowed to know the current values of the
actions at each time! In other words, this impossibility holds
even for algorithms that are significantly more powerful than
those we considered earlier.

Theorem 4. Under a fixed across-period budget there is
no randomized algorithm that provides a bounded competitive
ratio for Induce-Multi, even if the algorithm can see the
current values of the actions.

The proof appears in the appendix. This result implies
that it will be important to consider empirical performance
or average case analysis, for particular agent models, in order
to make progress.

4.3 Offline problem
As a counterpoint to Theorem 4, we consider the offline

case, in which the principal knows the agent’s value for any
state of the actions the agent may reach and that state tran-
sitions are deterministic. This corresponds to a situation in
which the agent is of known design, and that the principal
has full understanding of the dynamics within the agent’s
decision environment.

The question of interest is whether there exists a tractable
solution to this problem. An effective incentive policy would
need to figure out when to provide incentives and how to
split the budget across time periods, and a brute force com-
putation of the optimal incentive to provide at each time
step is too expensive.

Theorem 5. In the offline model and under a fixed across-
period budget, an optimal solution to Induce-Multi can be
found in polynomial time.

The proof involves the analysis of a nontrivial incentive
policy; we give the outline here and relegate the proof of the
key lemma to the appendix. To break down the problem, we
first consider finding fixed budget incentive policies to solve
the following subproblem.

Problem 3. Given t > 1 and m > 1, and a budget B,
find an incentive policy such that xg(t) = x`

g for ` ≥ m when
a solution exists.

Essentially, if we can find an incentive policy that can get
at least m selections in t rounds whenever possible for any
m > 1, we can fix t = R and do a binary search over m to
solve Induce-Multi.

To get m selections within t time steps it is necessary
that the agent selects the non-target actions no more than
t − m times. An effective incentive policy should provide
incentives on the target action when the other actions are
least desirable, regardless of the value of the target action.
This is the state in which it is cheapest to activate the target
action.



We define the relevant activation threshold by simulating
the agent function on actions K−g only for t − m periods
with no incentives, and computing

v = min
1≤t≤t+1−m

max
i∈K−g

vi(xi(t)). (2)

It is easy to see that this threshold, v, can be computed in
polynomial time.

Definition 3. The ‘only provide to target when cheap’
(OPTc) incentive policy assigns ∆i(t) = 0 for all i ∈ K un-
til the threshold T = v is met, where v is defined as in Equa-
tion (2). Let t′ denote the period in which the threshold is
first met. OPTc provides ∆g(t) = max{0, v− vg(xg(t))} for
t ≥ t′ while there is enough budget remaining and ∆g(t) = 0
otherwise. No incentives are ever provided to actions in
K−g.

Now, by using binary search, the following lemma is suf-
ficient to prove Theorem 5.

Lemma 3. In the offline model and under a fixed across-
period budget, OPTc solves Problem 3.

The proof of the lemma appears in the appendix. An in-
teresting aspect of OPTc is that it has much of the same
structure as OPT: the optimal incentive policy does not
modify the agent’s learning process until the point where
the agent can best be incentivized to select the target ac-
tion. The offline problem remains a problem about when
to provide incentives on the target action and not how to
intervene in the selection process on other actions.

4.4 Case study: induce a new action
Theorem 4 and Theorem 5 establish strong negative and

positive results at opposing ends of the information spec-
trum. In most realistic scenarios we expect the principal to
have some (but not full) knowledge of the agent’s update
process and reward distribution. Sticking with an across-
period budget and the objective of maximizing the number
of selections of the target arms within a fixed number of
rounds, we demonstrate how to utilize such knowledge to
find effective incentives for a particular problem of interest.

Consider a scenario in which there are two actions, one
whose value to the agent is fixed and another whose realized
rewards are drawn from a stationary distribution known to
the principal. Moreoever, assume the agent’s belief updates
based on the empirical average of rewards, and is initialized
by a draw from the same distribution (e.g., the agent gets an
initial sample). This scenario models an agent’s choice be-
tween an incumbent option (e.g., a known product, service,
or technique) and a new entrant option, where the princi-
pal wishes to entice the agent toward the new option by
providing appropriate incentives.

To be more concrete, let us consider a particular instance
of the problem. There are 2 rounds. The value of the incum-
bent option is fixed at 1, and the reward from selecting the
new option and his initial belief on its value are sampled uni-
formly from 0 to 1. The process reflects uncertainty about
the new option’s quality, and the agent’s updating beliefs
reflect his estimate of the new option’s value. The principal
has a budget of 1 to be spread across the rounds, and can
observe which action the agent selects but not the realized
rewards. The goal is to maximize the expected number of
selections of the new action.

In analyzing this problem, note that the agent’s decision
in the first period provides some information on the agent’s
value at the time, and thus, the distribution of possible val-
ues following the update. Furthermore, if the agent does not
select the new action in the first period, then no money is
spent and we can guarantee a selection in the second period.
Solving for the optimal incentive policy analytically, we get
the following fact:

Fact 1. The optimal incentive policy for this problem pro-
vides 4

9
to the new action in the first period and the remain-

ing budget in the second period. The expected number of
selections is 25

18
.

Proof (sketch). Let Ti represent an indicator variable
over whether the agent selects the new action in period i,
such that P (Ti) represents the probability of the selection
given the principal’s uncertainty over the agent’s current
value for the action and the provided incentive. Let α rep-
resent the incentive provided to the new action in the first
period. We wish to maximize the expected number of selec-
tions:

2P (T1)P (T2|T1) + P (T1)P (¬T2|T1) + P (¬T1)P (T2|¬T1)

= P (T1)[P (T2|T1) + 1] + P (¬T1)

= P (T1, T2) + 1

Here P (T1, T2) = P (1− α ≤ r0 ≤ 1, r0+r1
2
≥ α), where r0

represents the initial value on the new action and r1 repre-
sents the value from the first selection of the new action. By
integrating the probabillity density function of the uniform
distribution over the valid regions based on the value of α,
we have:

P (T1, T2) =

8>>><>>>:
α if α ≤ 1

3
.

− 9
2
α2 + 4α− 1

2
if 1

3
< α ≤ 1

2
.

− 5
2
α2 + 2α if 1

2
< α ≤ 2

3
.

2α2 − 4α+ 2 if 2
3
< α ≤ 1.

It is easy to check from here that the maximum is attained
in the second segment, with α = 4/9.

Intuitively, providing too much incentives in the first pe-
riod misses out on possible selections in the second period,
and providing too little in the first period may likewise miss
out on selections in the first period. Given this, 4/9 seems
like a good choice for α. However, it is surprising that the
optimal solution is not α = 1/2: it turns out that by pro-
viding slightly less incentives in the first period, there is
a higher chance (7/8 vs. 3/4) of getting selections in the
second period conditional on a selection in the first period,
because the value of the first draw must have been higher
and more incentives are left over. Even though the princi-
pal is slightly less likely to get a selection in the first period,
this helps to maximize the probability of getting a selec-
tion in both rounds, which we have shown is equivalent to
maximizing the expected number of selections.

We can also consider the same problem but with 3 rounds,
where the optimal incentive policy (obtained via simulation)
provides about 0.37 in the first period, 0.27 in the second
period if the new action is selected and 0.54 otherwise. It is
interesting to note the disparity in the amount of incentives
provided in the second period based on what happened in



Induce-Once Induce-Multi

Per-period OPT optimal (Thm 1) OPT optimal (Thm 2)

Fixed OPT optimal (Thm 3) Unbounded ratio (Thm 4)

Table 1: Summary of our results in the online model
for the two objective criteria and different budget
models for the principal.

the first period. Since success in the first period indicates
a high draw in the first period and failure indicates a low
draw, the observation serves as an informative signal about
the amount of incentives required in the second period.

5. DISCUSSION
Table 1 summarizes our main results; rows correspond to

the assumption made on the budget and columns to the op-
timization problem. The most striking aspect is the relation
between the performance of OPT when one varies the as-
sumption on the budget between per-period and fixed, and
the problem between Induce-Once and Induce-Multi. As
long as one of these dimensions remains fixed OPT is still
optimal, but when we consider the harder variation in both
dimensions then even a randomized policy that knows the
current values cannot provide a bounded ratio!

Our incentive policy for the per-period budget case re-
quires no knowledge of the agent’s values or value update
process, nor the number of repetitions for which we wish
to induce the target, nor the time horizon over which the
target is to be induced; it is optimal even with this knowl-
edge. In this setting, it is not necessary for the principal
to learn about the agent, for example by drawing inferences
about the agent’s values and update process from observed
behavior of selected options. It is interesting, also, that the
principal is unable to usefully perturb the agent’s learning
process until the point at which his desired goal action can
be induced, and even if he knew the agent’s values or value
update process.

Interestingly, this is quite different in the across-period
budget setting, where progress will require knowledge of
an agent’s selection and learning process or learning by the
principal about the agent. The analytical approach demon-
strated for finding incentives to induce an agent to select
a new action uses both knowledge about the value update
process and inference on the distribution of current values
based on past decisions, and can be applied for rewards
drawn from different distributions and for different update
processes. Future work should seek to obtain tractable algo-
rithms for finding effective incentives given a known model
of agent behavior but private agent beliefs, and seek to gain
a better understanding of the structure of effective incentive
policies, on particular classes of problems.

In addition to variations on the budget constraint, one can
consider variations to the agent’s selection policy. For exam-
ple, the agent might select the action with highest value with
probability 1−ε, and select a random action with probability
ε. It is possible to show that in this case OPT is no longer
guaranteed to be optimal for a per-period budget, even with
respect to Induce-Once.4 It is also of interest to relax the
assumption on the independence of actions, and to consider

4Consider a case with three actions. The principal has a per-
period budget of 2. Action 1 is the target and has its value
fixed at 1. Action 2 is associated with the belief sequence

models with long-term learning in which the agent learns to
internalize external incentives and change its own intrinsic
value for future actions. Other objective criteria are also
of interest, for example a principal that wants to induce an
action followed by another action, in immediate succession.
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(v0
2 , v

1
2 , . . .) = (5, 0, 5, 5,. . . ), and action 3 is associated with

the belief sequence (v0
3 , v

1
3 , . . .) = (4, 0, 0, . . .). Here action 1

can be induced by a non-random action if and only if action
2 is induced exactly one, and action 3 is induced at least
once. For small ε, action 2 is most likely to be selected
first under OPT. This is undesirable, however, since any
random selection of action 2 henceforth will result in no
future selections of action 1. It is better to instead provide
incentives to action 3 in the first period (and apply OPT
thereafter), so that we try to ‘hold off’ on selecting action 2
until the belief on the value of action 3 has dropped.



APPENDIX
A. PROOFS

A.1 Proof of Theorem 4
We assume without loss of generality that the budget size

is 1. Let k ∈ N; assume for contradiction that there is a ran-
domized online algorithm with a competitive ratio α (worst-
case ratio of number of activations of g in offline optimal to
expected number of activations of g in online algorithm over
all instances) smaller than k. Set ε = 1/(10k).

We consider a setting where there are just two actions, the
target action g and the non-target h. We design an infinite
family of inputs I0, I1, . . . , Ij , . . . Note that an input simply
specifies a number of rounds, and a sequence of values for
g and h. For all j ∈ N ∪ {0}, the sequence of values that
Ij assigns to g is all zeros, that is, vg(xt

g) = 0 for all t; the
inputs only differ on their values h. The sequence of values
vh(x0

h), vh(x1
h), . . . that Ij assigns to this action is

1, ε, ε2, . . . , εj , 2, 2, . . . , 2, . . .

We do not specify the number of rounds, as we can choose
it to be large enough for it not to be an issue.

Given a run of the algorithm on some input Ij , we refer
to the sequence of selections of action g while action h has
a value εp as phase p. Once h is selected we move to phase
p+1. Note that for each select of g in phase p the algorithm
has to invest εp of its budget.

Let Zj
p be a random variable that denotes the budget spent

by the algorithm within phase p given the input Ij , where
the randomness comes from the algorithm’s coin flips. The
crux of the proof is the following lemma.

Lemma 4. For every j ∈ N∪{0} and every p ∈ {0, . . . , j},
if the randomized online algorithm has competitive ratio smaller
than k then E[Zj

p] ≥ ε.
Proof. Assume for contradiction that this is not the

case, i.e., there is some j ∈ N ∪ {0} and p ∈ {0, . . . , j}
such that E[Zj

p] < ε. Up to phase p the algorithm cannot
distinguish between Ij and Ip (due to the online nature of
the model), hence it holds that E[Zp

p ] < ε, that is, the algo-
rithm spends less than ε in expectation in phase p given the
input Ip. It follows that the expected number of times g is
selected in phase p is smaller than ε/εp = 10p−1kp−1. Given
Ip, the algorithm will no longer be able to select g after
phase p (since then the value of h is then 2). We derive an
upper bound on the expected number of times the algorithm
selects g on Ip by generously allowing the algorithm spend
a budget of 1 in every phase p′ < p. The upper bound is
then

1 + 10k + · · ·+ 10p−1kp−1 + 10p−1kp−1 ≤ 3 · 10p−1kp−1.

On the other hand, the optimal offline solution on Ip selects
g 10pkp times, i.e., the ratio α is at least (10/3)k, in contra-
diction to the assumption that the algorithm’s competitive
ratio is smaller than k.

Now, consider input Ij∗ for some j∗ ∈ N, j∗ > 1/ε. By

Lemma 4 we have that E[Zj∗
p ] ≥ ε for all p ∈ {0, . . . , j∗}. It

follows from the linearity of expectation that

E

24 j∗X
p=0

Zj∗
p

35 =

j∗X
p=0

E[Zj∗
p ] >

1

ε
· ε = 1. (3)

However, since the total budget size is 1 the random vari-

able
Pj∗

p=0 Z
j∗
p must take values in [0, 1], and in particu-

lar E[
Pj∗

p=0 Z
j∗
p ] ≤ 1. This is a contradiction to Equa-

tion (3).

A.2 Proof of Lemma 3
We first establish that v, as defined in Equation (2), is the

threshold where it is cheapest to provide incentives to the
target over at most t−m periods of selecting actions other
than g. For this, let

v∗ = min
m−g

max
i∈K−g

vi(x
mi
i ) (4)

s.t.
X

i∈K−g

mi ≤ t−m

represent the lowest value of the highest action with up to
t−m selections of the non-target actions, and where m−g =
(m1, . . . ,mg−1,mg+1, . . . ,mn).

We want to establish that v = v∗. Indeed, clearly v∗ ≤ v
by definition. Suppose for contradiction that v > v∗. Let
m∗−g minimize the expression in Eq. (4). Consider running
the simulation used to define v for

P
i∈K−g

m∗i rounds, and

let `i denote the number of times that each action i ∈ K−g

is selected in this process.
If `i = m∗i for all i ∈ K−g then clearly v = v∗, since it is at-

tained in the final period of the simulation, and this is a con-
tradiction. Otherwise, and using the fact that

P
i∈K−g

`i =P
i∈K−g

m∗i , then there exists some j ∈ K−g such that

m∗j < `j . Note that,

vj(x
m∗

j

j ) ≤ v∗ < v, (5)

where the first inequality holds by definition of v∗ and the
second by assumption. Now there is some time t during the

simulation where xj(t) = x
m∗

j

j , and action j is selected. But
by definition of v the value of the action that is selected by
the agent must be at least v, in contradiction to (5). This
establishes v = v∗.

In order to complete the proof of the lemma, we now
know that OPTc uses v = v∗ as the threshold T . Let
ki = min{k : vi(x

k
i ) ≤ T} for all i ∈ K−g. By definition of

v∗,
P

i∈K−g
ki ≤ t −m. Note that OPTc satisfies the con-

ditions of the threshold lemma. Proceed by case analysis.
If the threshold is not met after t rounds then, by part (a)
of the threshold lemma, action g must have been selected at
least m times and the case is established. Otherwise, if the
threshold is met, it is met after at most t−m selections of
actions in K−g by part (b) of the threshold lemma. For any
incentive policy to get m selections in t rounds, it must have
provided at least max{0, v∗ − vg(x`

g)} to get selection num-
ber `+ 1 of action g, for each of ` ∈ {0, 1, . . . ,m− 1}. Since
OPTc spends no budget before the threshold is met and once
it is met it provides exactly max{0, v∗−vg(x`

g)} for selection
number `+1 of action g, for each of ` ∈ {0, 1, . . . , k−1}, then
OPTc will get at least m selections of action g whenever this
is possible under any incentive policy. This completes the
case, and the proof.


