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Abstract

We create a formal framework for the design
of informative securities in prediction mar-
kets. These securities allow a market orga-
nizer to infer the likelihood of events of in-
terest as well as if he knew all of the traders’
private signals. We consider the design of
markets that are always informative, markets
that are informative for a particular signal
structure of the participants, and informative
markets constructed from a restricted selec-
tion of securities. We find that to achieve
informativeness, it can be necessary to allow
participants to express information that may
not be directly of interest to the market or-
ganizer, and that understanding the partic-
ipants’ signal structure is important for de-
signing informative prediction markets.

1 INTRODUCTION

Prediction markets are often used to better understand
the likelihood of future events. Consider, for example,
a market that predicts whether a particular candidate
will become the U.S. President. Traders in the market
may have diverse private information, like whether the
candidate will win a particular state or receive millions
of dollars in donations. Pooling this information could
lead to an accurate forecast of the likelihood that the
candidate will be elected, but may or may not be pos-
sible depending on how well the market is designed.

A typical prediction market offers securities with pay-
offs associated with future events. For example, a pre-
diction market might offer a security worth $1 if the
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candidate is elected and $0 otherwise. A risk neutral
trader who believes that the probability of election is
p would be willing to buy this security at any price less
than $p, and (short) sell the security at any price above
$p. For this reason, the market price of a security of
this form is frequently interpreted as the traders’ col-
lective belief about the likelihood of election.

Prediction markets have been shown to produce fore-
casts at least as accurate as other alternatives in a
wide variety of settings, including politics [6], busi-
ness [11, 42], disease surveillance [38], and entertain-
ment [34]. The New York Times has cited prices from
the popular Dublin-based market Intrade in discus-
sions of upcoming elections,1 and the North Ameri-
can Derivatives Exchange has proposed running real-
money prediction markets for political events.2 Ex-
tensive prior work has studied markets’ abilities to ag-
gregate information relevant to the value of a given
security in both lab and field experiments [35–37]
and at theoretical equilibria such as rational expec-
tations equilibria [39], competitive equilibria [32, 43],
and game-theoretic equilibria [10, 24, 31]. However,
there has been little research studying the problem of
designing securities to aggregate information relevant
to externally specified events.

We develop a formal framework in which to study
the design of informative securities for predicting the
likelihood of events of interest. Loosely speaking, we
consider a set of securities informative if, given their
prices, it is possible to calculate the posterior proba-
bilities of the events as if we were given the traders’
private information. This suggests two requirements:

1. The price of each security offered should converge
to the expected value of the security conditioned
on the traders’ pooled information.

1http://thecaucus.blogs.nytimes.com/2012/01/20/
gingrich-gets-a-boost-on-intrade/

2http://www.freakonomics.com/2012/02/02/
the-politics-of-political-prediction-markets/



2. It should be possible to uniquely map the final
security prices to estimates of the likelihood of
each event of interest.

Prior work [31] has described when a given security
meets the first condition in perfect Bayesian equilibria.
We focus on the design of securities that meet both
conditions with respect to a specified set of events.
This theoretical investigation offers insight on how to
design prediction markets in practice to produce more
accurate forecasts.

Poor security design can stop participants from aggre-
gating their information, as the following example de-
rived from Geanakoplos and Polemarchakis [18] shows.
Example 1. Consider a market offering a single secu-
rity worth $1 if a particular candidate wins the presi-
dential election and $0 otherwise. The market has two
participants: a political analyst in Washington and an
Iowa caucus-goer who is well-informed on local poli-
tics. The analyst understands the importance of Iowa
on the campaign and knows whether a win or loss there
will mean the candidate is elected. The caucus-goer, on
the other hand, knows whether the candidate will win
or lose the caucus, but not its broader effect.

This situation can be described by defining four states
of the world, ω1, ω2, ω3, and ω4:

Iowa
Wins Loses

General Election Wins ω1 ω2

Loses ω3 ω4

The analyst knows if the true state of the world is on
the diagonal or not (the effect of the caucus) and the
caucus-goer knows which column the true state is in
(the results of the caucus). If they could reveal their
private information they would learn the true state of
the world, ω∗. But with a uniform prior over the
state space, both think the likelihood of election is 1/2
and value the security at $0.50 no matter what their
private information is, since every signal contains a
state where the candidate wins the election and an-
other where the candidate loses. This prevents either
from inferring the other’s signal, and no aggregation
occurs.

The traders in Example 1 are unable to effectively ex-
press their private information and determine the cor-
rect value for the security, even though they have be-
tween them the knowledge to do so. But even when a
market determines the correct value for its securities
nothing may be learned. A constant-valued security
worth $1 regardless of the outcome is, for example, al-
ways priced correctly, but tells us nothing about the
likelihood of future events.

In practice many prediction markets offer multiple se-
curities, like a security that pays $1 if and only if a can-
didate wins Iowa and another that pays $1 if and only
if the candidate wins the general election. These two
securities together would allow the analyst and caucus-
goer to aggregate their information. The caucus-goer
could first participate in the Iowa market. Then, hav-
ing observed the price change in the Iowa market, the
analyst would have the information he needs to partic-
ipate in the general election market, revealing his own
private information. Furthermore, the market orga-
nizer would be able to infer the probability of election
by observing their trades. In short, these securities
together are what we call informative on the candi-
date’s election. We show that multiple securities are
necessary for informativeness in some cases. Using too
many securities, however, is bad design.

The design questions we examine are also relevant for
combinatorial prediction markets over exponentially
large outcome spaces, like the . quintillion outcomes
for the NCAA tournament [44], the over 250 ways for
states to vote in the U.S. presidential election, and the
n! rankings for a competition with n candidates. Of-
fering a security for each state would be technically
informative but practically unmanageable. Prior work
has frequently considered markets with securities that
correspond to natural events of interest, such as horse
A beating horse B in a race [3, 9], but these securities
may or may not be informative.

This paper considers the design of informative markets
in three settings:

• In Section 5.2, we characterize securities that are
always informative, revealing traders’ information
regardless of their signal structure. Complete
markets, which offer one Arrow-Debreu security
associated with each state of the world, are always
informative for any set of events because they re-
veal traders’ posterior distribution over the state
space, but are typically too large to run in prac-
tice. We show that even if only one event is of
interest, prohibitively large numbers of securities
may be required to guarantee informativeness.

• Offering a large number of securities is undesirable
from a practical point of view. In Section 5.3,
we show that if the market designer knows the
traders’ signal structure, a single informative se-
curity can be constructed to reveal the traders’
posterior distribution.

• Real markets have multiple securities, and a sin-
gle security acting as a summary statistic for a
complex market is unlikely to be considered nat-
ural. In Section 5.4 we consider design as an op-
timization problem where a designer attempts to



find the fewest securities that are informative for
some given events of interest but is constrained
to select its securities from a predefined set. This
predefined set of securities could be interpreted as
the set of securities that are natural. Solving this
optimization problem perfectly is np-hard, even
when the set of securities is restricted to those
paying $0 or $1 in each state of the world (like
the securities in the above examples).

These results suggest, unsurprisingly, that deployed
prediction markets are likely not revealing all their
participants’ information and that better design may
improve upon their observed efficacy. The idea of par-
tial informativeness, which may better describe pre-
diction markets in practice, is discussed further in the
conclusion. However, only by understanding the lim-
its and opportunities of total informativeness, as dis-
cussed in this paper, can we understand the value and
interest of partial informativeness.

2 RELATED WORK

There is a rich literature on the informational effi-
ciency of markets, including theoretical work on the
existence and characteristics of rational expectations
equilibria [4, 21, 39] and empirical studies of experi-
mental markets [35, 36]. Here we review only the most
relevant theoretical work that either focuses on the dy-
namic process of information aggregation or takes a
security design perspective.

The early theoretical foundations of information aggre-
gation were laid by Aumann [5], who initiated a line
of research on common knowledge, establishing a solid
foundation to the understanding of the phenomenon of
consensus. An event E is said to be common knowl-
edge among a set of agents if every agent knows E,
and every agent knows that every other agent knows
E, ad infinitum. Aumann proved that if two rational
agents have the same prior and their posterior prob-
abilities for some event are common knowledge, then
their posterior probabilities must be equal. This result
was repeatedly refined and extended [18, 28, 29], and
Nielsen et al. [30] showed that if n agents with the same
prior but possibly different information announce their
beliefs about the expectation of some random variable,
their conditional expectations eventually are equal.

This line of work suggests that agents will reach con-
sensus, but says nothing about whether such a consen-
sus fully reveals agents’ information. Feigenbaum et al.
[14] studied a particular model of prediction markets
(a Shapley-Shubik market game [41]) in which traders’
information determines the value of a security. They
characterized the conditions under which the market

price of the security converges to its true value un-
der the assumption that traders are non-strategic and
honestly report their expectations.

The assumption that traders are non-strategic is ar-
guably unrealistic. Ostrovsky [31] examined informa-
tion aggregation in markets with strategic, risk-neutral
traders. He considered two market models, market
scoring rules [22, 23] and Kyle’s model [25]. For both,
he showed that a separability condition is necessary for
the market price of a security to always converge to the
expected value of the security conditioned on all infor-
mation in every perfect Bayesian equilibrium. This
condition is discussed extensively in Section 4. Iyer
et al. [24] extended this model to risk-averse agents
and identified a smoothness condition on the price in
the market that ensures full information aggregation.

The work of Feigenbaum et al. [14], Ostrovsky [31], and
Iyer et al. [24] focuses on understanding the aggrega-
tion of information relevant to the value of a given,
fixed security. In contrast, this paper studies how to
design securities to infer the likelihood of some events
of interest. There have been other papers on security
design. Pennock and Wellman [33], for example, exam-
ine the conditions under which an incomplete market
with a compact set of securities allows traders to hedge
any risk they have (and hence is “operationally com-
plete”). Their work considers competitive equilibria,
while our work focuses on information aggregation at
game-theoretic equilibria of the market.

3 THE MODEL

In this section, we describe our model of traders’ infor-
mation and the market mechanism. Our model closely
follows Ostrovsky [31], but is generalized to handle a
vector of securities (often simply referred to as a set
of securities) instead of a single security.

3.1 Modeling Traders’ Information

We consider n traders, 1, · · · , n, and a finite set Ω of
mutually exclusive and exhaustive states of the world.
Traders share a common knowledge prior distribution
P0 over Ω. Before the market opens Nature draws
a state ω∗ from Ω according to P0 and traders learn
some information about ω∗ that, following Aumann
[5], is based on partitions of Ω. A partition of a set
Ω is a set of nonempty subsets of Ω such that every
element of Ω is contained in exactly one subset. For ex-
ample, {{A,B}, {C}, {D}} and {{A,D}, {B,C}} are
both partitions of {A,B,C,D}. We assume that every
trader i receives Πi(ω∗) as their private signal, where
Πi(ω) denotes the element of the partition Πi that con-
tains ω. In other words, trader i learns that the true



state of the world lies in the set Πi(ω∗).

We refer to the vector Π = (Π1, · · · ,Πn) as the
traders’ signal structure, which is assumed to be com-
mon knowledge for all traders. The join of the signal
structure, denoted join(Π), is the coarsest common re-
finement of Π, that is, the partition with the smallest
number of elements satisfying the property that for
any ω1 and ω2 in the same element of the partition,
Πi(ω1) = Πi(ω2) for all i. For example, the join of the
partitions {{A,D}, {B,C}} and {{A,C,D}, {B}} is
{{A,D}, {B}, {C}}. The join is unique. We use Π(ω)
to denote the element of the join containing ω. Note
that if two states appear in the same element of the
join, no trader can distinguish between these states.

3.2 Market Scoring Rules

The market mechanism that we consider is a market
scoring rule [22, 23]. We will describe a market scor-
ing rule as a mechanism that allows traders to sequen-
tially report their probability distributions or expec-
tations. While focusing on market scoring rules may
seem restrictive, market scoring rules are surprisingly
general. In particular, any market scoring rule that al-
lows traders to report probability distributions over Ω
has an equivalent implementation as a cost-function-
based market where the mechanism acts as an auto-
mated market maker who sets prices for |Ω| Arrow-
Debreu securities, one for each state and taking value
1 in that state and 0 otherwise, and is willing to buy
and sell securities at the set prices [8, 22]. This result
can easily be extended to general scoring rules by ap-
plying the results of Abernethy and Frongillo [1, 2]. In
particular, their results imply that any market scoring
rule that allows traders to report their expectations
has an equivalent implementation as a cost-function-
based market that allows traders to trade securities
with the market maker. Thus, without loss of gener-
ality, our model and analysis are presented for market
scoring rules.

Before describing the market scoring rule mechanism,
we first review the idea of a strictly proper scoring
rule. Scoring rules are most frequently used to evalu-
ate and incentivize probabilistic forecasts [16, 19], but
can also be used to elicit the mean or other statis-
tics of a random variable [26]. The scoring rules that
we consider will be used to elicit the mean of a vec-
tor of random variables [40]. Let X = (x1, · · · , xm)
be a vector of bounded real-valued random variables.
A scoring rule s maps a forecast ~y in some convex
region K ⊆ Rm (e.g., the probability simplex in the
case of probabilistic forecasts) and a realization of X
to a score s(~y,X(ω)) in R.3 A scoring rule for elic-

3Technically, the region K should include the convex

iting an expectation is said to be proper if a risk
neutral forecaster who believes that the true distri-
bution over states Ω is P maximizes his expected
score by reporting ~y = EP [X], that is, if EP [X] ∈
arg max~y∈K

∑
ω∈Ω P (ω)s(~y,X(ω)). (For random vec-

tors X, we use EP [X] to denote the expected value
Σω∈ΩP (ω)X(ω).) A scoring rule is strictly proper if
EP [X] is the unique maximizer.

One common example of a strictly proper scoring rule
is the Brier scoring rule [7], which is based on Eu-
clidean distance and can be written, for any b > 0, as
s(~y,X(ω)) = −b

∑m
j=1(yj−xj(ω))2 = −b||~y−X(ω)||2.

Strictly proper scoring rules incentivize myopic traders
to report truthfully, but do not provide a mecha-
nism for aggregating predictions from multiple traders.
Hanson [22, 23] introduced market scoring rules to ad-
dress this problem. A market scoring rule is a sequen-
tially shared strictly proper scoring rule.

Formally, let X be a vector of random variables.4 The
market operator specifies a strictly proper scoring rule
s and chooses an initial prediction ~y0 for the expected
value of X; when there is a known common prior P0,
it is most natural to set ~y0 = EP0 [X]. The market
opens with initial prediction ~y0, and traders take turns
submitting predictions. The order in which traders
make predictions is common knowledge. Without loss
of generality, we assume that traders 1, 2, · · · , n take
turns, in order, submitting predictions ~y1, ~y2, · · · , ~yn,
then the process repeats and the traders, in the same
order, submit predictions ~yn+1, ~yn+2, · · · , ~y2n. Traders
repeat this process an infinite number of times before
the market closes and Nature reveals ω∗. Each trader
then receives a score s(~yt,X(ω∗)) for each prediction
made at some time t, but must pay s(~yt−1,X(ω∗)),
the score of the previous trader. The total pay-
ment to trader i (which may be negative) is then∑∞
t=0 s(~ytn+i,X(ω∗))− s(~ytn+i−1,X(ω∗)).

3.3 Modeling Traders’ Behavior

Together, the traders, state space, signal structure,
security vector, and market scoring rule mechanism
define an extensive form game with incomplete infor-
mation. We consider Bayesian traders either acting
in perfect Bayesian equilibrium or behaving myopi-
cally in this game. A perfect Bayesian equilibrium is a
subgame perfect Bayesian Nash equilibrium. Loosely
speaking, at a perfect Bayesian equilibrium, it must

hull of the possible realizations of X, a set equivalent to
the possible expected values of X. A full discussion of this
and other properties of scoring rules is beyond the scope
of this paper, but interested readers can see Savage [40].

4Typically market scoring rules are used for probabilis-
tic forecasts in which case X would be a vector of indicator
random variables, but this need not be the case.



be the case that each player’s strategy is optimal (i.e.,
maximizes expected utility) given the player’s beliefs
and the strategies of other players at any stage of
the game, and that players’ beliefs are derived from
strategies using Bayes’ rule whenever possible. See
Gonzálex-Dı́az and Meléndez-Jiménez [20] for a more
formal description.

Perfect Bayesian equilibria can be difficult to compute
and it is an open question whether they always exist
in prediction markets, although in some special cases
they do [10]. An alternative is to consider myopic
Bayesian traders who simply maximize their expected
payoff for the current round. Since strictly proper scor-
ing rules myopically incentivize honest reports, these
traders report their current posteriors each time they
make a prediction.

4 AGGREGATION

Separability is used to characterize the conditions un-
der which securities aggregate information about their
own values. Building on ideas from DeMarzo and Ski-
adas [12, 13], Ostrovsky [31] characterized separability
for a single security. He showed that in every perfect
Bayesian equilibrium market prices will, in the limit,
reflect the value of the security as if traders had re-
vealed their private signals if and only if the security
is separable. If a security is not separable, then there
always exist priors and equilibrium strategies where no
information aggregation occurs.

In this section, we generalize these prior definitions
to multiple securities and arbitrary signal structures.
Ostrovsky assumed a restricted class of signal struc-
tures without loss of generality, and these generaliza-
tions are uninteresting when only considering aggre-
gation. They will be necessary to discuss informative-
ness, however, as the results of the next section demon-
strate. We then restate Ostrovsky’s equilibrium aggre-
gation result in this setting. As previously discussed,
perfect Bayesian equilibrium may or may not exist in
prediction markets, and we also adapt and formalize
prior work on information aggregation to show separa-
bility is also the necessary and sufficient condition for
myopic traders to always aggregate their information.

Informative markets require separable securities. If a
market uses separable securities then both traders in
perfect Bayesian equilibrium and Bayesian traders act-
ing myopically will, in the limit, value the security as
if their private signals were revealed, and this allows a
market designer to directly infer the likelihood of his
events of interest from the securities’ value. If a set of
non-separable securities were used then the market de-
signer could be required instead to perform additional
inference and know the prior and traders’ strategies.

As mentioned, we say a market aggregates information
if, in the limit as time goes to infinity, the value of the
securities approaches their value conditional on all the
traders’ private signals. Since each trader i receives
the signal Πi(ω∗), their pooled signal is

⋂
i Πi(ω∗) =

Π(ω∗).

Definition 1 (Aggregation). Information is aggre-
gated with respect to a set of securities X, signal struc-
ture Π, and common prior P0, if the sequence of pre-
dictions ~y0, ~y1, ~y2, · · · converges in probability to the
random vector EP0 [X|Π(ω∗)].

A set of securities is separable if and only if the traders
only agree on their value when it reflects their pooled
information. That is, for any prior distribution there
must be at least one trader whose private information
causes them to dissent from a consensus, unless that
consensus is the traders’ collective best estimate.

Definition 2 (Separability). A set of securities X is
non-separable under partition structure Π if there ex-
ists a distribution P over Ω and vector ~v such that
P (ω) > 0 on at least one state ω ∈ Ω in which
EP [X|Π(ω)] 6= ~v, and for every trader i and state
ω, P (ω) > 0,

EP [X|Πi(ω)] =

∑
ω′∈Πi(ω) P (ω′)X(ω′)∑

ω′∈Πi(ω) P (ω′)
= ~v. (1)

If a security is not non-separable then it is separable.

Here the vector ~v represents a possible consensus, only
agreed upon if there is no alternative when the secu-
rities are separable. Separability is a property of the
entire set of securities, as Example 2 demonstrates.

Example 2. Let Ω = {ω′1, ω∗2 , ω3, ω
′
4, ω

∗
5 , ω6}. Two

traders have partitions as follows:

Π1 = {{ω′1, ω∗2 , ω3}, {ω′4, ω∗5 , ω6}}
Π2 = {{ω′1, ω∗5}, {ω3, ω

′
4}, {ω∗2 , ω6}}

and there are two securities: x∗ with value one when
ω∗2 or ω∗5 occurs and zero otherwise, and x′ with value
one when ω′1 or ω′4 occurs and zero otherwise.

Both securities are individually non-separable with re-
spect to Π. If the prior P is uniform over ω′1, ω∗2 , ω∗5 ,
and ω6, then EP [x∗|Πi(ω)] = 1/2 for i ∈ {1, 2} and
all ω such that P (ω) > 0. Similarly, if P is uniform
over ω′1, ω3, ω′4, and ω∗5 , then EP [x′|Πi(ω)] = 1/2 for
i ∈ {1, 2} and all ω such that P (ω) > 0. The join
of traders’ partitions, however, consists of singletons.
Hence, both EP [x∗|Π(ω)] and EP [x′|Π(ω)] have value
0 or 1, not 1/2, for all ω.

But taken together the set of securities is separable
with respect to Π. Given any prior distribution P



and a state ω, trader 2 either identifies ω with cer-
tain, which happens when P assigns 0 probability to
the other state in its signal Π2(ω), or assigns posi-
tive probability to both states in Π2(ω). In the for-
mer case, EP [X|Π2(ω)] = EP [X|Π(ω)]. In the lat-
ter case, trader 2’s expected value for the securities is
positive for both when ω ∈ (ω′1, ω

∗
5), positive for only

x′ when ω ∈ (ω3, ω
′
4), and positive for only x∗ when

ω ∈ (ω′2, ω6). If the set of securities is non-separable
there must exist a distribution P̃ and a vector ~v such
that ~v 6= EP̃ [X|Π(ω̃)] for some state ω̃ ∈ {ω|P (ω) > 0}
and EP̃ [X|Π2(ω)] = ~v for any state ω ∈ {ω|P (ω) > 0}.
This is possible only when P̃ assigns positive probabil-
ity to the two states in Π2(ω̃) and 0 probability for all
other states because each signal of player 2 has a dis-
tinct expectation of the securities. Given such a P̃ ,
however, trader 1 always uniquely identifies the true
state and has the correct expectation of the securities.
Hence, the set of securities is separable with respect to
Π.

4.1 Aggregation

Separability is a necessary and sufficient property for
aggregation in two natural cases.

Theorem 1 (Equilibrium Aggregation, Ostrovsky
[31]). Consider a market with securities X and traders
with signal structure Π. Information is aggregated in
every perfect Bayesian equilibrium of this market if
and only if the securities X are separable under Π.

Theorem 2 (Myopic Aggregation). Consider a mar-
ket with securities X and myopic traders with signal
structure Π. Information is aggregated in finite rounds
if and only if the securities X are separable under Π.

Ostrovsky [31] proved a special case of Theorem 1 for
markets with one security. Theorem 1 stated above ac-
commodates any finite set of securities and is proved
using a simple extension of Ostrovsky’s proof. Specifi-
cally, the proof shows that traders’ sequences of predic-
tions at any perfect Bayesian equilibrium are bounded
martingales and must converge. Separability implies
that if information is not aggregated in the limit, there
exists an agent who can make an arbitrarily large profit
by deviating from his equilibrium strategy, a contra-
diction to traders being in equilibrium.

The proof of Theorem 2 makes use of prior work
on convergence to common knowledge (particularly
Geanakoplos [17]) and shows not only that myopic
traders’ sequences of predictions are bounded martin-
gales but also that they must converge to the same
random vector in a finite number of periods. Then, by
separability, it is shown that this consensus prediction
must equal E[X|Π(ω∗)], implying aggregation. A full
proof appears in the appendix of the long version of

this paper, available on the authors’ websites.

If the securities are not separable then there exists a
distribution P satisfying (1) in the definition of separa-
bility. Letting this distribution be the prior, a perfect
Bayesian equilibrium is simply for traders to report
the common consensus value, not allowing any mean-
ingful Bayesian updating and preventing aggregation
from occurring. Myopic traders are constrained to re-
port this same value.

5 SECURITY DESIGN

In this section we discuss the design of informative
markets. While separability is a sufficient and neces-
sary condition for aggregation in two natural settings,
it only implies the value of the securities reflects all
the traders’ private information, not that the market
designer can use this value to infer that private infor-
mation or the likelihood of the events of interests. We
define informative securities as securities that are both
separable and allow for the likelihood of the events of
interest to be inferred directly from their value.

As we will show, complete markets are always informa-
tive, but deployed prediction markets are rarely com-
plete. These markets require too many securities to
be practical, and their securities present challenges for
traders. A prediction market for the U.S. presidential
election, for example, may need one state per outcome
in the electoral college. This is over 250 states and
requires traders to bid on securities like “The Presi-
dent wins Ohio, not Florida, Illinois, not Indiana . . . ”
Even if alternative bidding methods were developed,
traders would still be required to review the value of
each security for aggregation to be formally implied.
This is impractical, and so we consider good designs as
those using a few natural securities. We first discuss
the design requirements of markets that are always
informative, and markets that are informative for a
particular signal structure. The latter market allows a
single security to be informative on any set of events,
but arguably appears “unnatural.” To describe the
challenges of designing using only natural securities
we then consider a constrained design process instead,
where the market designer is restricted to an arbitrary
subset of (possibly natural) securities.

5.1 Informative Securities

Informally, we would like to say that a market’s secu-
rities are informative on a set of events with respect
to a signal structure if the market organizer learns the
likelihood of the events as if it knew all the traders’
private signals. Assuming the values of the securities
reflect traders’ pooled information, if the likelihood of



the events is unambiguously implied from these values
then functionally all the private signals are revealed.
We call this latter property distinguishability.

Definition 3 (Distinguishability). Let Π be a sig-
nal structure over states Ω and Pjoin(Π) be the set of
all probability distributions over Ω that assign posi-
tive probability only to a subset of states in one el-
ement of join(Π) (i.e., a trader’s possible posteriors
after aggregation). A set of securities X on Ω distin-
guishes a set of events E with respect to Π if and only
if for any P, P ′ ∈ Pjoin(Π),EP [X] = EP ′ [X] implies
P (E) = P ′(E),∀E ∈ E.

Equivalently a set of securities distinguishes a set of
events if there exists a function from the securities’
values to the likelihood of the events. When a set
of securities is both separable and distinguishable we
describe it as informative.

Definition 4 (Informativeness). A set of securities X
is informative on a set of events E with respect to a
signal structure Π if and only if X both distinguishes
E and is separable with respect to Π.

Informativeness is a strong condition. Even if secu-
rities are not informative it might be possible for a
market designer to infer some information from the
market, or for the market to be described as partially
informative. Generalizing our framework to account
for partial aggregation would be an interesting line of
future work.

5.2 Always Informative Securities

We first address the problem of designing a set of secu-
rities that is informative on a set of events with respect
to any signal structure. We call such securities always
informative. These securities may be of practical in-
terest if the market designer is unsure of the traders’
signal structure; using a set of always informative se-
curities implies aggregation will occur no matter what
the true signal structure is.

A market is said to be complete if by trading securi-
ties, agents can freely transfer wealth across states [27].
Rigorously, consider the set of securities that contains
a constant payoff security plus all of the securities of-
fered by a market. The market is complete if and only
if this set includes |Ω| linearly independent securities.
The most common is a market with |Ω| Arrow-Debreu
securities, each associated with a different state of the
world, taking value 1 on that state and 0 everywhere
else. For an overview of complete markets, see Flood
[15] or Mas-Colell et al. [27].

Complete markets are theoretically appealing because
they allow traders to express any information about

their beliefs. We formalize this well-known idea in our
framework in the following proposition.
Proposition 1. A market over state space Ω with se-
curities X is complete if and only if for all distinct
probability distributions P and P ′ over Ω, EP [X] 6=
EP ′ [X].

Proof. Let M be a matrix containing the payoffs of X,
with one row for each outcome and one column for each
security. The element at row i and column j of M takes
value xj(ωi). Consider a probability distribution P
represented as a row vector so, PM = EP [X]. The
system of linear equations

P ′M = EP [X]
∑
ω∈Ω

P ′(ω) = 1

has a unique solution P ′ = P if and only if the ma-
trix M ′, which is M augmented by a column of 1s to
represent the summation constraint, has rank |Ω|.

If the market is complete, M ′ has this rank so any dis-
tinct probability distribution has distinct expectation.

Now assume EP [X] 6= EP ′ [X],∀P 6= P ′, and, for a
contradiction, that the market is not complete. Then
the system of equations has at least two solutions, one
of which is the probability distribution P and a distinct
solution Q, such that PM = QM = EP [X]. Let U be
the uniform distribution over Ω. Then there exists c >
0 such that (1− c)U + cQ is a probability distribution
(since Q satisfies

∑
ω∈ΩQ(ω) = 1). Moreover, (1 −

c)U + cP is also a probability distribution and(
(1− c)U + cP

)
M =

(
(1− c)U + cQ

)
M,

contradicting EP [X] 6= EP ′ [X],∀P 6= P ′. Thus, the
market must be complete.

This expressiveness is a necessary and sufficient con-
dition for the likelihood of every event to be inferred,
and suggests an alternative characterization of com-
plete markets as those markets that are always infor-
mative on every event.
Theorem 3. A market is always informative on every
event E with respect to every signal structure Π if and
only if it is complete.

Proof. Distinguishing every event E is equivalent to
distinguishing each state of the world ω ∈ Ω; the lat-
ter are also events and so must be distinguished, and if
each is distinguished then the likelihood of any event
can be inferred. Proposition 1 shows that complete-
ness is a necessary and sufficient condition for distin-
guishing each state of the world.

It remains to show that complete markets are also sep-
arable with respect to any signal structure Π. Assume,



for a contradiction, there exists a signal structure Π
and a complete market with securities X such that X
is non-separable with respect to Π. Since X is non-
separable there must exist distinct probability distri-
butions P and P ′ over Ω such that EP [X] = EP ′ [X];
but by Proposition 1, in a complete market this equal-
ity only holds if P = P ′, a contradiction. So complete
markets are separable with respect to any signal struc-
ture and always distinguish every event, implying they
are always informative on every event.

Complete markets are often impractical, but rarely is
every event of interest. Even if a single event is of
interest, however, as many securities as almost half
the states in the market may be required to create
an always informative market. We let Ē denote the
complement of E.

Theorem 4. Any market that is always informative
on an event E must have at least min(|E|, |Ē|) − 1
linearly independent securities.

Proof. Let X be a set of securities, fewer than
min(|E|, |Ē|)) − 1 of which are linearly independent,
and assume, for a contradiction, that X is always in-
formative on E. Restricting attention to states in E,
the argument from Proposition 1 implies this market
has too few securities to distinguish every probabil-
ity distribution over E and there exist probability dis-
tributions PE and P ′E such that EPE

[X] = EP ′E [X].
Let the difference between these distributions be the
vector ∆E = PE − P ′E , and define vectors ∆+

E and
∆−E such that ∆+

E(ω) = max(0,∆E(ω)) and ∆−E(ω) =
min(0,∆E(ω)). Since ∆E is the difference of two prob-
ability distributions with the same expected value,

∑
ω∈E

∆+
E(ω)
||∆+

E ||1
X(ω) =

∑
ω∈E

−∆−E(ω)
||∆−E ||1

X(ω). (2)

That is, ∆+
E(ω)

||∆+
E ||1

and −∆−E(ω)

||∆−E ||1
are disjoint probability

distributions over states in E with the same expected
value, and the same argument can be made, mutatis
mutandi for two such probability distributions over
states in Ē. Let these distributions over E be QE and
Q′E , and the ones over Ē be QĒ and Q′

Ē
. Although

we have been referring to these as distributions over
E and Ē we consider them to be distributions over
Ω that assign zero probability to all states not pre-
viously included in the distributions, and we will use
these names to stand for both these distributions and
the states they assign positive probability to to reduce
notation.

Now suppose there are two traders with signal struc-

ture

Π1 = {{QE , QĒ}, {Q′E , Q′Ē}}
Π2 = {{QE , Q′Ē}, {Q

′
E , QĒ}}

and prior

P0 =
QE +Q′E +QĒ +Q′

Ē

4
.

Each trader’s expectation conditional on any signal
is the same since EQE

[X] = EQ′E [X] and EQĒ
[X] =

EQ′
Ē

[X] and each signal contains one distribution over
states in E and another over states in Ē. But the join
of the signal structure is {{QE}, {Q′E}, {QĒ}, {Q′Ē}},
and if X is separable with respect to Π the expecta-
tion conditional on any such element must also, then,
be the same. This implies EQE

[X] = EQĒ
[X], but

by construction QE(E) 6= QĒ(E), so if X is separable
with respect to Π it does not distinguish E, contra-
dicting our assumption that X is always informative
on E.

This result demonstrates the need for a market de-
signer to allow traders to express information it finds
uninteresting. It also suggests that, in practice, few
markets are acquiring all of their participants’ infor-
mation. This is unsurprising, but we think better
designs will extract more information, and that this
result shows knowledge of or assumptions about the
traders’ signal structure may be necessary to inform
those designs.

5.3 Fixed Signal Structures

If the join of the traders’ signal structure is known and
has singleton sets for its elements, then there exists a
single security that is informative on every event.

Theorem 5. For any signal structure Π such that
join(Π) consists only of singleton sets there exists a
security x that is informative on every event E with
respect to Π.

The proof uses a result from Ostrovsky [31].

Theorem 6 (Ostrovsky [31]). Let Π be a signal struc-
ture such that join(Π) consists of singleton sets of
states, and let x be a security that can be expressed as
x(ω) = Σif(Πi(ω)) for an arbitrary function f map-
ping signals to reals. Then x is separable under Π.

Proof of Theorem 5. To construct the security, first
assign a unique identifier s0, s1, s2, . . . to every signal
of every trader, and define f(sj) = 10j for all j. Let
Sω denote the set of indices of the identifiers corre-
sponding to the signals of each trader for state ω, i.e,
corresponding to Πi(ω) for each trader i. The security



x(ω) = Σj∈Sωf(sj) is separable by Theorem 6. Addi-
tionally, the sum Σj∈Jf(sj) for any J ⊂ {0, 1, 2, . . .} is
unique, and each state ω has a unique associated set of
signals since we assumed the join consists of singletons.
This implies the value of the security for each element
of the join is unique, so the security also distinguishes
every event.

The assumption that the join of traders’ signal struc-
ture consists only of singleton sets is not without loss
of generality. If the signal structure is known, however,
the market designer can treat elements of the join as
states of the world, identify the correct element of the
join by running the market with a single security, then
apply the prior to that element to learn the likelihood
of each state as if he knew all the traders’ private sig-
nals. If the prior is unknown this distribution can also
be solicited from any single trader using a scoring rule.

5.4 Constrained Design

A single security acting as a summary statistic for an
entire market is unlikely to be considered natural by
any criterion. Real markets, like those on Intrade, use
multiple securities. Instead of imposing our own def-
inition of natural, in this section we consider adding
a design constraint that the market’s securities must
be picked from a predefined set. The market designer
is then challenged to find the fewest securities from
this set that are informative on the events of interest
with respect to the given signal structure. We call this
the informative set optimization problem. If the
set of predefined securities is empty or has no infor-
mative subset then the problem is simply infeasible,
so we assume there exists at least one such subset.

Demonstrating informative set is hard would not
be very interesting if exotic and unnatural securities
were required for the proof. One commonly used class
of securities are event securities which pay $1 if an
event occurs and $0 otherwise. The corresponding op-
timization problem is informative event set, a re-
striction of informative set, and even solving this
restricted version of the problem is np-hard.
Theorem 7. informative event set is np-hard.

This immediately implies that the more general in-
formative set problem is also hard.
Corollary 1. informative set is np-hard.

The proof appears in the appendix and demonstrates a
one-to-one correspondence between set cover instances
and a minimal informative set of securities for a single
fully informed trader.

The complexity of these problems suggests that while
knowledge of the traders’ signal structure allows for

better designs, a perfect design will be intractable to
compute or require additional assumptions about the
relationship between traders’ signal structure and the
set of possible securities. Practically we can only ever
hope to offer better (but not perfect) designs that ex-
tract more information from traders than current mar-
kets do. These results confirm we will always have to
settle for some degree of error in our designs even if the
traders’ signal structure could be perfectly observed.

6 CONCLUSION

We developed a formal framework for the design of
informative prediction markets. These markets reveal
the posterior probabilities of a set of events of inter-
est as accurately as if the traders had directly revealed
their information, a commonly cited goal of prediction
markets. These markets require that traders have an
incentive to be accurate, that they can aggregate their
information, and that the market designer can use this
information to infer the likelihood of the events of in-
terest.

Ideally informative markets would use a few natural
securities. Complete markets, usually too large to be
used in practice, are, however, the only markets to al-
ways be informative, regardless of the traders’ signal
structure. When the signal structure is known, a sin-
gle security can be informative, but this security may
appear strange and unintuitive to traders. Finding the
smallest informative set of natural securities is compu-
tationally hard in general.

Real-world prediction markets do typically offer small
numbers of simple and natural securities, and have
been shown to aggregate information effectively in
practice. This is not in contrast to our results, which
only consider whether a market reveals all of the
traders’ private information. Our results demonstrate,
however, the importance of security design and suggest
that better designs that extract more of the traders’
information are possible.

We hope this paper will allow future research on par-
tial aggregation, like that which occurs in practice.
Future work might also consider the effect of alterna-
tive communication channels outside the market’s se-
curities, like comments on Intrade, that allow traders
to explain the reasoning behind their predictions. The
development of this line of research is crucial to un-
derstanding why prediction markets work and how to
make them work better.
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Appendix

A. Proof of Theorem 2

Theorem 2 (Myopic Aggregation). Consider a mar-
ket with securities X and myopic traders with signal
structure Π. Information is aggregated in finite rounds
if and only if the securities X are separable under Π.

Proof. The necessity of separability holds trivially
given the definition of separability. Here we prove the
sufficiency of separability in three steps. First, in Step
1, we describe the evolution of the partitions of all of
the traders and of an outside observer who knows the
prior and initial partitions of all traders and observes
all predictions in the market. In Step 2, we prove that
the sequences of predictions of every trader converge
to the same random vector. The proof in the first two
steps is analogous to that of the convergence to com-
mon knowledge theorem in Nielsen [29] and Geanako-
plos [17]. Step 3 invokes the definition of separability
to show that the predictions of all traders converge to
the expectation of X conditioned on the join Π for any
realized state, and so information is aggregated.

Step 1 Let P be a prior probability distribution over
Ω. In our model, every trader knows the prior P and
the partition Πi of each trader i. In addition, trader i
observes a private signal of Πi(ω) when the true state
is ω. In this proof, we consider a hypothetical outside
observer, who knows the prior P and the partitions of
all traders but does not have any private signal himself,
and observes all predictions in the market. In this step,
we describe how the partitions of this outside observer
and each trader change over time.

Let Πi,t be the partition of trader i at time t, before
the tth report is made in the market, with Πi,1 =
Πi, and let kt = ((t − 1) mod n) + 1 be the index
of the trader who trades at time t. Let Ft be the
partition of the outside observer after observing the
first t predictions. At the beginning of the market, F0

only has one element, which contains all states that P
assigns positive probability to.

At time step 1, trader k1 makes a prediction. Because
all traders are myopic, trader k1 would predict

EP [X|Πk1,1(ω)] =

∑
ω′∈Πk1,1(ω) P (ω′)X(ω′)∑

ω′∈Πk1,1(ω) P (ω′)

when the true state is ω. However, because the true
state is not known and is drawn according to P , the



prediction of trader k1 can be represented by a random
vector Z1 = EP [X|Πk1,1] where, following Geanakop-
los [17], we use EP [X|Πk1,1] to denote the expectation
of X conditioned on the sigma algebra generated by
partition Πk1,1. In other words, Z1 is a random vector
such that Z1(ω) = EP [X|Πk1,1(ω)] for all ω.

After observing Z1, the outside observer forms a par-
tition F1. Formally, F1 is the coarsest partition that
the random vector Z1 is measurable with respect to.
Let Z−1

1 (v) = {ω′ : Z1(ω′) = v} be the set of states
where Z1 has the same value v. Then,

F1(ω) = Z−1
1 (Z1(ω)).

It is easy to verify that EP [X|F1] = Z1. Intuitively,
the outside observer can exclude those states that
could not possibly have led to the observed prediction
Z1(ω) for all ω. Thus, F1 is a refinement of (no coarser
than) F0. Since every trader observes the same pre-
diction as the outside observer, they can refine their
own partition in the same way and hence

Πi,2 = join(Πi,1, F1) = join(Πi, F1)

for all i.

At time step 2, the process continues in a similar fash-
ion. We now define this process for general t. Let
Zt = EP [X|Πkt,t] be the prediction made by trader kt
at time t in the market, with

Zt(ω) =

∑
ω′∈Πkt,t(ω) P (ω′)X(ω′)∑

ω′∈Πkt,t(ω) P (ω′)
.

After observing the history of predictions Z1, . . . ,Zt,
the outside observer forms a partition Ft, which is the
coarsest partition that the random vectors Z1, . . . ,Zt
are measurable with respect to. That is,

Ft(ω) = Z−1
1 (Z1(ω)) ∩Z−1

2 (Z2(ω)) ∩ · · · ∩Z−1
t (Zt(ω))

for all ω, where Z−1
t′ (v) = {ω′ : Zt′(ω′) = v}. The

definition of Ft ensures that

EP [X|Ft] = Zt, (3)

and Ft is no coarser than Fτ for all τ < t. Each trader
uses Ft to refine its own partition. Hence,

Πi,t+1 = join(Πi, Ft) (4)

for all i and t ≥ 1. It is easy to see that Πi,t is no
coarser than Πi,τ and Fτ for all i and τ < t.

Step 2 Because Ω is finite, the outside observer’s
partition can only be refined by finite times. Hence,
there exists a finite time step T , such that

Ft = FT (5)

for all t > T .

In what follows, we use the subscript t to denote time
steps, and the subscript r to denote rounds, where one
round consists of an action by every trader. For each
trader i, let Yi,r = Z(r−1)n+i be its prediction in round
r and Gi,r = Πi,(r−1)n+i be its corresponding partition
at the time.

Let R be the round after the round in which time
step T occurs, so that partition of the outside ob-
server won’t change in round R and later. According
to Equation 4,

Gi,r = Gi,R

for all r ≥ R. This means that for each trader,

Yi,r = EP [X|Gi,r] = EP [X|Gi,R] = Yi,R

for all r ≥ R. The predictions of each trader converge
at round R.

Next, we will show that Yi,R = Yj,R for all i and j. Let
Fi,r = F(r−1)n+i be the outside observer’s partition
after seeing trader i’s prediction in round r. According
to Equation 3, we know Yi,r = EP [X|Fi,r]. For any
r ≥ R, Fi,r = FT . Hence,

Yi,r = EP [X|FT ]

for all i and r ≥ R. Thus, the predictions of each
trader converge to the same random vector, which
equals the outside observer’s expected value of the se-
curities.

Step 3 Suppose the true state of the world is ω∗.
We let P ∗ be the posterior probability distribution of
the outside observer after convergence when the true
state of the world is ω∗. That is,

P ∗(ω) =
P (ω)∑

ω′∈FT (ω∗) P (ω′)

for any ω ∈ FT (ω∗) and P ∗(ω) = 0 for any ω /∈
FT (ω∗). This allows us to derive for any i

EP∗ [X|Πi(ω∗)] =

∑
ω∈Πi(ω∗)

P ∗(ω)X(ω)∑
ω∈Πi(ω∗)

P ∗(ω)

=

∑
ω∈Πi(ω∗)

T
FT (ω∗) P (ω)X(ω)∑

ω∈Πi(ω∗)
T
FT (ω∗) P (ω)

=

∑
ω∈Πi,T (ω∗) P (ω)X(ω)∑

ω∈Πi,T (ω∗) P (ω)

= Yi,R(ω∗).

Combining the above with the result in Step 2, we
have EP∗ [X|Πi(ω∗)] = EP∗ [X|Πj(ω∗)] for any i and
j. Call this common vector v. If X is separable, the



definition of separability implies that EP∗ [X|Π(ω∗)] =
v too. Because Π is a refinement of any Πi,R, which
is a refinement of FT , Π is also a refinement of FT .
It’s easy to see that EP∗ [X|Π(ω∗)] = EP [X|Π(ω∗)].
We can conclude that if X is separable, Yi,R(ω∗) =
Yj,R(ω∗) = EP [X|Π(ω∗)] for all i and j, and so the
reports of all traders converge to EP [X|Π(ω∗)] and
information is aggregated.

B. Proof of Theorem 7

Theorem 7. informative event set is np-hard.

Proof. We consider a reduction from the optimization
version of the set cover problem. This np-hard prob-
lem takes as input a set U , the universe, and a set of
sets S, and must output the smallest subset S∗ ⊆ S
that covers U . We will show that solving informa-
tive event set also allows arbitrary instances of set
cover to be solved, implying informative event
set is also np-hard.

Let U = {u1, u2, . . . , uk} and S = {S1, S2, . . . , S`} be
a set cover instance. We construct an instance of
informative event set in which Ω contains two
states, denoted ωi and ω′i, for every element ui ∈ U ,
and an “overflow” state ω̄. The events of interest E
are each state ωi for i ∈ {1, · · · , k}, and the overflow
state ω̄.

Let the signal structure Π be one partition of single-
ton sets, representing a single, fully informed trader.
Note that any set of securities is separable with a fully
informed trader.

Conceptually, we define two types of securities. First,
we define state securities xui for each i ∈ {1, · · · , k},
where xui (ωi) = xui (ω′i) = 1, and xui (ω) = 0 for all
other states ω. Intuitively, these securities take value
1 if and only if the outcome is one of the two states
corresponding to the ith element of U .

Second, we define set securities xsj for each j ∈
{1, · · · , `}, where xsj(ωi) = 1 if ui ∈ Sj and xsj(ω) = 0
for all other states ω. These securities are in a one-
to-one correspondence with sets from the set cover
instance. The security corresponding to a particular
set is one if and only if the outcome is an ωi type state
(as opposed to an ω′i type state) corresponding to an
element in the set. An example reduction is graphi-
cally represented in Figure 1.

Given these securities, we can precisely characterize
any minimal set that is informative on E . In particular,
we claim that any such set must include every state
security and a set of set securities corresponding to a
minimal set cover of U , and that any set of securities
satisfying these properties is a minimal informative set.

U = {1 2 3 4 5}
S = {{1 3}, {1 3 4}, {2 4}, {2 3}, {5}}

Ω = {1 2 3 4 5 1′ 2′ 3′ 4′ 5′ ω̄}
E = {{1}, {2}, {3}, {4}, {5}, {ω̄}}

ω̄
xu5 5 5’
xu4 4 4 4’
xu3 3 3 3 3’
xu2 2 2 2’
xu1 1 1 1’

xs1 xs2 xs3 xs4 xs5

Figure 1: A reduction from a set cover instance to
an informative event set instance. The table is
a graphical representation of the events correspond-
ing to each security. State securities appear on rows
and set securities as the columns. If a state appears
in the third row, for example, it means xu3 is one in
that state of the world. If a state appears in the first
column, it means xs1 is one in that state of the world.
The combination of a state security on a row, and a
set security on a column, uniquely defines an event.
Note the “overflow” state ω̄ requires all state securi-
ties, and the set securities must form a cover to specify
the remaining events of interest.

We first argue that any minimal set of securities infor-
mative on E must include every state security. Sup-
pose that there was a minimal set X∗ that did not
include some state security xui . Then neither ω′i nor
ω̄ would have non-zero payoff for any security in X∗.
By construction X∗(ω′i) = X∗(ω̄) = ~0. Let P be a
distribution that puts all its weight on ω′i and P ′ a
distribution that puts all its weight on ω̄. We would
then have that EP [X∗] = EP ′ [X∗], but P (ω̄) 6= P ′(ω̄),
so ω̄ would not be distinguishable, a contradiction.

We next argue that any minimal set of securities infor-
mative on E must include a set of set securities which
correspond to a set cover of U . Suppose this were not
the case. By assumption, there exists a ui not covered,
and by construction its corresponding states ωi and ω′i
are such that X∗(ωi) = X∗(ω′i), since only the state
security xui pays off for these states. Redefining P to
be a distribution that puts all weight on ωi and P ′ a
distribution that puts all weight on ω′i, we would then
have that EP [X∗] = EP ′ [X∗], but P (ωi) 6= P ′(ωi), so
ωi would not be distinguishable, again a contradiction.

Finally, we show that any set of securities including
all state securities and set securities corresponding to
a cover is informative on E . To be informative the se-
curities must be separable and distinguish the events



of interest. Any securities are separable with respect
to a single fully informed trader, as constructed, so it
is sufficient to show the events of interest are distin-
guished. First, the overflow state, ω̄, is constructed so
X(ω̄) = ~0, but for any other state ωi or ω′i there exists
a state security xui with xui (ωi) = 1, so the overflow
state is distinguished.

For any other event of interest ωi, its corresponding
ui is in some set Sj included in the cover of S. Let
xsj be the corresponding security for that event, so
xsj(ωi) = 1. The state security xui also equals one, and
since each set only has one element at any position,
these two securities uniquely specify the event of in-
terest (this may be more easily seen in the graphical
representation). For all other states ω either xui (ω) = ~0
or xsj(ω) = 0, distinguishing ωi.

Since the set securities are in one-to-one correspon-
dence with sets, and informative securities imply a
corresponding cover, and a corresponding cover im-
plies the securities are informative, a minimal set of
securities is also a minimal cover.


