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Abstract 
The necessity of mapping concepts of one ontology to 
concepts in a second ontology is an important research topic 
due to the requirements brought by the Semantic Web. Most 
ontology mapping techniques available today do not allow 
the existence of many-to-many correspondences among 
concepts. To overcome this problem we propose to model 
two ontologies as a weighted bipartite graph. We assign 
weights to graph edges using current similarity measure 
techniques and apply graph partitioning techniques in order 
to co-cluster the vertex sets of the bipartite graph. Then we 
use the resulting concept clusters to establish mappings 
between concepts of the two ontologies. The approach 
combines mapping methods that rely solely on similarity 
measures with an unsupervised learning technique called 
bipartite graph co-clustering. The advantage of the 
combination is that it allows mappings to have many-to-
many concept correspondences. 

Introduction 
The rapid development of the web technology has brought 
along an increasing interest in research on knowledge 
sharing in a distributed environment. The Semantic Web 
(Berners-Lee, Hendler, and Lassila 2001) envisions a world 
of software agents that understand documents semantically 
in a decentralized architecture. Ontologies have been 
recognized as a crucial component for knowledge sharing 
and the realization of this vision. However, it is unlikely 
that a global ontology can be developed for distributed 
systems. In practice, ontologies for different systems are 
developed independently by different communities. Thus, if 
knowledge and data are to be shared, it is essential to 
establish semantic mappings between ontologies. 

Manually creating mappings between different sources is 
a labor-intensive and error-prone process, which is a major 
bottleneck when scaling up systems to a large number of 
sources. Many methods for creating mappings between 
ontologies have been proposed. These methods usually 
either rely on similarity measures, which are based on 
linguistic and/or structural characteristics of ontologies, to 
establish mappings (Noy and Musen 2000; Noy and Musen 
2001; Rahm and Bernstein 2001; and Rodríguez and 
Egenhofer 2003), or use machine learning techniques to 
implicitly “learn” semantic relationships between 
ontologies (Lacher and Groh 2001; Doan, Domingos, and 

Halevy 2001; Doan, Domingos, and Halevy 2002; and 
Berlin and Motro 2002). Most of these methods attempt to 
establish one-to-one relationships between concepts of 
different ontologies. 
 However, establishing one-to-one semantic mappings is 
not an easy task. An ontology reflects the worldview of the 
community who built it. There is nothing to constrain 
worldviews of independent communities that later would 
lead to establishing one-to-one correspondences among 
concepts. It is very likely that several concepts in one 
ontology are semantically equivalent to several concepts in 
another ontology. Therefore, in many applications it is 
desirable to have ontology mapping that allows many-to-
many concept correspondences (Wache et al. 2001).  
 In this paper, we propose an ontology mapping method 
by which concepts in both ontologies are grouped into 
concept clusters. A cluster only consists of concepts from 
the same ontology. Similarity of a pair of concepts, each 
coming from a different ontology, is measured by some 
existing similarity assessment technique. Similarity of a 
pair of concept clusters, each coming from a different 
ontology, can be measured by the sum of similarities of all 
concept pairs (with each concept of a pair from a different 
ontology) within the cluster pair. Roughly speaking, our 
method seeks to map a cluster of concepts in one ontology 
to a similar cluster of concepts in the second ontology. This 
establishes many-to-many concept correspondences 
between the two ontologies. The method proposed here 
models an ontology mapping problem as a weighted 
bipartite graph partitioning problem (Dhillon 2001).   

Bipartite Graph Co-Clustering for Ontology  
  Mapping 
A bipartite graph has two disjoint vertex sets. Co-clustering 
a bipartite graph is to simultaneously group several vertices 
into similar clusters for each vertex set. We use this 
technique here in order to be able to establish many-to-
many mappings between concepts of two ontologies. 

Rationale of the Method 
An ontology represents a worldview of a community. Even 
if two ontologies are about the same subject, they may be 



different because communities who built the ontologies 
may have different worldviews. Assume an ideal situation, 
in which we can rearrange concepts in one ontology 
according to the other ontology’s worldview. This 
reorganization is similar to a clustering process, which is to 
group concepts of one ontology into clusters. Concepts in a 
cluster are similar because they all semantically associate 
with some concept in the other ontology. In an ideal 
situation, ontology mapping can be achieved by mapping 
each concept cluster in one ontology with a corresponding 
single concept in the second ontology.  
 However, such ideal situation usually does not exist. It is 
more likely that a concept in one ontology associates with 
several concepts in another ontology and vice versa (Rishe 
1992). Thus, to some degree concepts of both ontologies 
need to be rearranged according to the other’s perspective. 
The need of co-clustering concepts in both ontologies 
hence arises. 

Bipartite Graph Modeling of Ontologies 
A bipartite graph is an undirected graph whose vertices are 
divided into two disjoint sets such that no two vertices 
within the same set are adjacent. Edges only connect 
vertices from different sets. Many real world data types can 
be modeled as bipartite graphs, including terms and 
documents in a text corpus, customers and purchasing 
items in market basket analysis, and reviewers and movies 
in a movie recommender system (Zha et al. 2001). 
 We choose to model two ontologies on the same subject 
as a weighted bipartite graph. The graph has two vertex 
sets. The first includes concept nodes of the first ontology 
while the second consists of concept nodes of the second 
ontology. Edges in the graph connect concepts of one 
ontology with concepts of another ontology. Concepts of 
the same ontology are not connected. The weight of an 
edge represents the similarity between the two concepts 
that are connected by the edge and it is calculated through 
the use of current techniques for similarity assessment such 
as that in (Rodríguez and Egenhofer 2003). In order to 
reduce the computational complexity, only edges with 
weight greater than a predefined threshold are included in 
the graph. 

Bipartite Graph Co-Clustering 
After modeling two ontologies as a bipartite graph, we 
apply bipartite graph co-clustering technique to establish 
mappings between two ontologies. Co-clustering in a 
bipartite graph can be naturally formulated as a graph-
partitioning problem, which aims at getting the vertex 
partition with minimum cut (Dhillon 2001; and Zha et al. 
2001). In order to better understand the technique, we 
present an example in Figure 1. 
 Figure 1 has two parts that illustrate a bipartite graph 
before and after the bi-partition respectively. Part A depicts 
the situation before the partition, when each vertex set of 
the bipartite graph can be viewed as a single cluster. In part 
B, a partition (intuitively shown by the dotted line) breaks 

one edge and separates each vertex set into two parts. Each 
part can be viewed as a cluster. 
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Figure 1: A Bipartite Graph Partitioning Example 

 The graph has ten vertices. Vertices a, b, c, d, and e, 
which are concepts of the first ontology, form one vertex 
set. Vertices f, g, h, i, and j, which are concepts of the 
second ontology, make the other vertex set. Numbers on 
the edges are the weights, which are calculated through the 
use of a similarity measure technique. Part A of Figure 1 
shows the graph before any partition. We can view each 
vertex set as a single cluster. A bi-partition of a bipartite 
graph is the result of cutting through the vertex sets of the 
graph. The cut of a partition is defined as the sum of 
weights of those edges that are “broken” in the partition. A 
bi-partition is shown by the dotted line in part B of Figure 1. 
Only one edge whose weight is 0.3 is “broken” in the 
partition. Hence, the cut of the partition is 0.3. The 
partition cuts the original graph into two bipartite graphs. 
Vertex sets of each new sub-graph form a cluster pair. Thus, 
a bi-partition co-clusters vertices into two cluster pairs. 
Clusters of the same pair preserve all features of the 
original graph except by losing the connections with other 
cluster pairs. One way to measure the similarity between 
two concept clusters is the sum of weights for all edges 
connecting the two clusters. Ideally, we want clusters from 
the same pair to be as similar as possible, which means that 
clusters from different pairs are less similar. Since weighs 
of edges that are “broken” in a partition reflect similarity of 
clusters from different pairs, this leads to the idea of 
finding the partition that minimizes the cut. The partition 
showed in part B of Figure 1 is already the partition with 
the minimal cut.  
 Given the partition that minimizes the cut, we can 
establish the mapping relationship for each cluster pair. In 
the bi-partition example shown in Figure 1, we map 
vertices a, b, and c to vertices f and g, and vertices d and e 
to vertices h, i, and j. This way we have established 
mappings that allow for many-to-many concept 
correspondences.  
 Similarly, we can co-cluster a bipartite graph into k 
cluster pairs with a k-partition, where the value of k is of 



our choice. An ontology mapping problem then becomes 
seeking the k-partition that minimizes the cut of the 
partition. It has been studied that simply minimizing the cut 
of the partition usually results in clusters of very 
unbalanced size. A better way is to minimize a normalized 
variant of the cut, which constrains the size of clusters. 
Details of this approach can be found in (Dhillon 2001; and 
Zha et al. 2001). 

Conclusions and Future Work 
We proposed modeling two ontologies as a weighted 
bipartite graph. Concepts of one ontology form one vertex 
set, while concepts of the second ontology form the other 
vertex set. Weights of graph edges are calculated through 
the use of current similarity measure techniques. Graph 
partition techniques are applied to co-cluster the vertex sets 
of the bipartite graph. We established mappings between 
concepts in the two ontologies based on the resulting 
cluster pairs. Our approach combined mapping methods 
that rely solely on similarity measures with an unsupervised 
learning technique called bipartite graph co-clustering. The 
advantage of the combination was that it allowed the 
mappings to have many-to-many concept correspondences.  
 Resuming this work, we will apply this method on 
mediating the sharing of scientific documents between 
different information communities across environmental 
sciences. There are two questions we are especially 
interested in investigating when applying the method. First, 
which is the best similarity measure to be used when 
assigning weights to the edges? A challenge to the 
proposed method is that modeling two ontologies as a 
bipartite graph implicitly ignores the internal structure 
within ontologies. This may negatively affect the mapping 
result because we do not fully take advantage of all 
available information. To face this challenge, we hope the 
chosen similarity measure can implicitly reflect part of the 
structural information as a remedy. The answer to this 
question, we believe, will be problem dependent. Our 
second question is if we can deal with situations when 
semantic contents of concepts within an ontology are 
overlapping. Our proposed method considered so far only 
“hard” clustering (Dhillon 2001), i.e., the situation in which 
a concept vertex belongs to one and only one cluster. In 
many situations, semantic contents of concepts within an 
ontology are overlapping to some degree. It would be 
useful to allow concept vertices to belong to several 
clusters. We intend to explore the potential of bipartite 
graph co-clustering on dealing with this problem. 
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