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Abstract

In this paper, information markets are introduced as a
promising mechanism for predicting uncertain outcomes.
A model of information markets is proposed. Some fun-
damental properties on when information markets will
converge to the most desirable equilibrium, direct com-
munication equilibrium, are derived.

1 Introduction

Predicting outcomes of related uncertain events is a cru-
cial part of decision making processes. For example, com-
panies rely on forecasts of consumer demand, raw mate-
rial supply, and possible changes in market regulations, to
inform their production decisions. How to accurately esti-
mate outcomes of various random variables that relate to a
decision problem is essential to rational decision making.

In this paper, we present a promising tool,informa-
tion markets, for predicting uncertain decision variables.
Aiming at gaining deeper understanding of information
markets as tools for making predictions, we examine
when information markets can make the “best” predic-
tions through rigorous modeling and analysis. By say-
ing “best”, we mean that these predictions take advantage
of all information across market participants. Thus, com-
pared with other predictions that are made based on less
information, they are the best informed predictions. The
results of the paper help to understand theoretical prop-
erties of information markets, which are currently lack of
attention but are in great need for eventually establishing
the fundamental underpins of information markets.

2 Background of information mar-
kets

An information market can be roughly defined as a finan-
cial market that ties to a future event and is specifically
designed for forecasting its outcome. The 2004 US pres-
idential vote share market at the Iowa Electronic Markets
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(IEM) [1] is an example of information markets. To pre-
dict who will win the election, the market ties security
payoffs to the outcomes of the election. For instance,
the security for George W. Bush pays $1 per share if and
only if Bush wins the election. Otherwise, it worths noth-
ing. Market participants trade securities based on their
expectations about the candidate’s winning chances. The
security price is hence a group prediction of the proba-
bility that George W. Bush will win the election. Since
many uncertain future events can be tied with an informa-
tion market, information markets can function as powerful
tools for combining individual opinions and generating an
aggregated forecast about the event.

Despite the growing empirical and experimental evi-
dence of the effectiveness of information markets [4], the-
oretical studies of information markets are relatively rare.
Feigenbaum et al. [5] analyzed some computational prop-
erties of information markets. They modeled an informa-
tion market without aggregate uncertainty. Chen et al. [3]
studied an information market with aggregate uncertainty.
In this paper, we extend the model of Chen et al. [3] by al-
lowing different trader behavior, and investigate the con-
vergence properties of information markets.

3 A model of information markets

There are many possible ways to model information mar-
kets, just as many different models for business and fi-
nancial markets exist. A generic model of information
markets should include at least three indispensable com-
ponents: information structure, market mechanism, and
trader behavior. The model introduced below is for a sim-
ple class of information markets that trade Boolean secu-
rities. It removes the restriction on trader rationality from
the model of Chen et al. [3].

3.1 Information structure

Information structure of the market specifies what the
state space of the world is, how much information mar-
ket traders know about the real state of the world, and
how information of traders relates to the real state of the
world.



Let S = {0, 1}m represents the state space of the
world. s = (s1, s2, ..., sm) ∈ S is a state vector ofm di-
mensions, wheresj can take only one of two state values,
0 or 1, for all j = 1, ...,m. Assume there aren traders in
the market, where all traders have a common prior prob-
ability distribution regarding to state of the world,P(s):
{0, 1}m → [0, 1].

The trader’s information space isX = {0, 1}n. Each
traderi = 1, ..., n gets a piece of informationxi,which
is either 0 or 1, about the state of the world, where
x = (x1, x2, ..., xn) ∈ X is the information vector for all
agents. Traders have common knowledge of the probabil-
ity distribution ofx, conditional on the state of the world
s,Q(x|s): X×S → [0, 1]. For example, suppose we have
a one dimensional state space (i.e.,s = s1). Conditional
on s = 1 (s = 0), the probability to getxi = 1 (xi = 0)
is 0.9, and the probability to getxi = 0 (xi = 1) is 0.1.
If the traderi getsxi = 1, although he does not know the
value ofs for certain, he knows that, with probability 0.9,
s equals1.

Our model attempts to capture aggregate uncertainty,
which is common to most real world markets. Aggregate
uncertainty occurs when even if the information from all
traders is pooled together, the state of the world is still
not fully determined. In our model, aggregate uncertainty
stems from the uncertainty of individual information.

3.2 Market mechanism

Market mechanisms specify what securities are being
traded and trading rules of the market. We model our
market as predicting the value of a Boolean function
f(s) : {0, 1}m → {0, 1}. The value of the function is
determined by the true state of the world, which will only
be revealed some time in the future. One security is traded
in the market, whose payoff is contingent on the value of
f(s). Specifically, the security pays off $1 iff(s) = 1 in
the future, and $0 iff(s) = 0. The form off is common
knowledge to all traders.

Following Feigenbaum et al. [5], we model the market
mechanism as aShapley-Shubik market gamewith restric-
tions. The market game proceeds in rounds. Each trader
has one unit of the security at the beginning of each round.
In each round, each trader puts up the one unit of the secu-
rity for sell and simultaneously puts up a positive amount
of money to buy the security. For simplicity, we assume
that there are no restrictions on credit. Then, traders’ bids
can be represented as a vectorb = (b1, b2, ..., bn), where
bi is the amount of money traderi offers to buy securities.
The market determines the price of the security by taking
the average of all bids in a round, thereby clearing demand
and supply. Thus, the price for a round isp =

∑n
i=1 bi

n .
Only this pricep, not individual traders’ bids, is publicly
announced in each round. All trading occurs at the mar-

ket price. The market then enters a new round, where
each agent has the same initial security holdings as previ-
ous rounds. The process continues until an equilibrium is
reached, after which prices and bids do not change from
round to round.

3.3 Trader behavior

Modeling trader behavior is to model trader’s risk prefer-
ence and rationality, which directly lead to trader’s trading
strategies. We assume that market traders are risk neutral
and myopic. Their utility in each round is the sum of the
expected payoff of their security holdings and their money
holdings. Thus, for traderi who submits bidbi in a round,
his or her utility is:

Ui(b) = Pri(f(s) = 1)× (bi/p + p− bi)
+Pri(f(s) = 0)× (p− bi),

(1)

wherePri(f(s) = 1) andPri(f(s) = 0) are traderi’s
risk-neutral subjective probability assessments about the
value off(s). They usually are assessments conditional
on traderi’s information. A trader’s utility in each round
is a function of bids of all traders, because the market
clearing price is determined by all submitted bids. Traders
are myopic, thus they only care their utility of the current
trading round.

We do not put any restriction on trader rationality in the
model, because we want our model to capture the most
fundamental part of information markets. Different as-
sumptions of trader rationality result in different trading
strategies. We construct our analysis in the next section
according to different assumptions of trader strategy.

4 Convergence properties of infor-
mation markets

In this section, we are interested in investigating that un-
der what conditions our information market model con-
verges to an equilibrium where information of traders is
fully aggregated. At the equilibrium, security price equals
the expectation of the security payoff conditional on all
available information, i.e.E(f(s)|x). Such equilibrium
is calleddirect communication equilibrium[6] as it can
be achieved by market traders through directly commu-
nicating their private information with each other. Since
the market price incorporates all available information, it
is the best prediction that an information market can pos-
sibly converge to. The examination is performed respec-
tively under three different assumptions of trader behav-
ior.



4.1 “truth-telling” traders

One of the simplest ways to model trader bidding behav-
ior is to assume that traders bid truthfully, that is, each
trader in each round bids his or her current expected pay-
off of a unit of the security. Expectations are calculated
based on probability distribution of the state of the world
P(s), conditional probability distribution of information
Q(x|s), and the information obtained from previously an-
nounced market prices. As available information changes
when market proceeds, traders revise their expectations
accordingly.

Assuming that traders are “truth-telling” seems reason-
able when the number of traders in the market is relatively
large and complicated strategic reasoning might not effec-
tively improve a trader’s utility over simply bidding one’s
true valuation.

With “truth-telling” traders, our model is the same as
that in Chen et al. [3]. We briefly restate the main results
on convergence properties of information markets using
our notation as the following theorem.

Theorem 1. (Chen et al.[3]) If the marginal probabil-
ity distributions ofQ(x|s), q(xi|s)’s, are independent and
identical for all i = 1, ..., n, and traders expectations of
security value are different with different private informa-
tion, i.e. Pr(f(s) = 1|xi = 0) 6= Pr(f(s) = 1|xi = 1),
an information market with “truth-telling” traders con-
verges to direct communication equilibrium within two
rounds of trading. At equilibrium, each trader’s expec-
tation of the security payoff equals the security price.

Theorem 1 demonstrates that if the conditional distri-
bution of traders’ private information,Q(x|s), satisfies
certain conditions, an information market is guaranteed
to converge to the equilibrium that aggregates all infor-
mation in the market.

4.2 Bayesian traders

When the information market is relatively small, having
only a few traders, it is no longer reasonable to assume
that traders will truthfully bid their expectations of the se-
curity payoff in each round of trading. Thus, we make the
assumption that traders are fully rational and bid to max-
imize their expected utilities in each round. We use the
term “Bayesian traders” to represent these expected util-
ity maximizers.

Under this assumption, each trading round of the infor-
mation market can be viewed as a Bayesian game. We
can show that if the game has a Bayesian Nash Equilib-
rium, Theorem 1 is also valid for information markets
with Bayesian traders. We state the results in Corollary
1.1, and provide a sketch of the proof in this section.

Corollary 1.1. If the following three conditions are met,
an information market with Bayesian traders converges

to direct communication equilibrium within two rounds of
trading. At equilibrium, each trader’s expectation of the
security payoff equals the security price.

(a) The marginal probability distributions ofQ(x|s),
q(xi|s)’s, are independent and identical for alli =
1, ..., n.

(b) Traders expectations of security value are different
with different private information, i.e.Pr(f(s) =
1|xi = 0) 6= Pr(f(s) = 1|xi = 1).

(c) The Bayesian Nash Equilibrium exists for the
Bayesian game in each round.

Sketch of Proof: A Bayesian trader’s expected utility
before a trading round is a function of the trader’s own in-
formation, trader’s belief about other traders information,
the trader’s own bidding strategy, and other traders’ bid-
ding strategies. Let(bi(0), bi(1)) represents a biding strat-
egy for traderi, wherebi(0) represents traderi’s bidding
strategy when the private informationxi is 0 andbi(1)
represents traderi’s bidding strategy when the private in-
formationxi is 1. Thus, the optimal response functions
for traderi are obtained by setting the partial first order
derivatives of the expected utility with respect tobi(0) to
0 whenxi is 0, and with respect tobi(1) to 0 whenxi is 1.
The best responses of traderi are functions of bids of all
traders. Becauseq(xi|s)’s are independent and identical
for all i = 1, ..., n, traders are symmetric, which means
that the optimal strategy for all traders should be the same
at the Bayesian Nash Equilibrium. This reduces the best
response functions to two equations with two variables
b∗i (0) andb∗i (1). It can then be proved thatb∗i (0) = b∗i (1)
only if Pr(f(s) = 1|xi = 0) = Pr(f(s) = 1|xi = 1). In
other words, condition (b) in Corollary 1.1 guarantees that
b∗i (0) 6= b∗i (1). Thus, traders can infer what information
the others have from the price of the first round. The in-
formation market converges to the direct communication
equilibrium at the second round.

The existence of Bayesian Nash equilibrium depends
on the prior probability distributionsP(s) andQ(x|s).
Even if it exists, finding the equilibrium strategy is com-
putationally complex.

4.3 Bounded rational Bayesian traders

Fully rational Bayesian traders need to consider other
traders’ infinite hierarchies of beliefs and form consis-
tent beliefs over them. It is unlikely that traders would
be smart enough to consider such a space of infinite be-
liefs. Thus, we assumebounded rationality[7] of traders
in this part of analysis.

There are many different ways to model bounded ra-
tionality. Without discussing which one is the most ap-
propriate, which is still an open question, we model our



bounded rational Bayesian traders as: Each trader forms
beliefs about other traders’ information and attempts to
maximize their expected payoff, but he or she at the same
time believes that other traders bid truthfully. This con-
forms to the understanding of bounded rationality in Bern-
heim [2]: “We might not expect agents to check the con-
sistency of their beliefs for more than a finite number of
levels”. In our case, market traders only check the con-
sistency of their beliefs for one level. Information mar-
kets with this kind of traders still converge to the direct
communication equilibrium when certain conditions are
satisfied. We state the result as Corollary 1.2.

Corollary 1.2. If the following three conditions are met,
an information market with bounded rational Bayesian
traders converges to direct communication equilibrium
within two rounds of trading. At equilibrium, each
trader’s expectation of the security payoff equals the se-
curity price.

(a) The marginal probability distributions ofQ(x|s),
q(xi|s)’s, are independent and identical for alli =
1, ..., n.

(b) Traders expectations of security value are different
with different private information, i.e.Pr(f(s) =
1|xi = 0) 6= Pr(f(s) = 1|xi = 1).

(c) It is optimal for a trader to bid some positive value.

The proof for Corollary 1.2 is similar to that for Corol-
lary 1.1, but traders face less complicated optimization
problems in choosing their bids. Condition (c) in Corol-
lary 1.2 is to ensure that traders have a positive optimal
strategy. This depends on the prior probability distribu-
tionsP(s) andQ(x|s) again, but it is less strict than the
condition that requires the Bayesian Nash equilibrium ex-
ist as in Corollary 1.1.

5 Conclusions

We have introduced information markets as a promising
mechanism for predicting uncertain variables that are re-
lated to decision making. By examining our model of
information markets with three different assumptions of
trader strategies, we have proved some fundamental prop-
erties on when information markets converge to the direct
communication equilibrium, which aggregates all infor-
mation across traders and is the best possible prediction
for information markets. Specifically,

(1) with “truth-telling” traders, sufficient conditions for
an information market to converge to the direct
communication equilibrium are that (1)distributions
of individual traders information conditional on the
state of the world are identical and independent, and

(2) traders expectations of security value are differ-
ent with different private information;

(2) with fully rational Bayesian traders, in addition to
the conditions in (1), we need that the Bayesian Nash
equilibrium exist in each round, to guarantee that the
information market converges to the direct commu-
nication equilibrium;

(3) with bounded rational Bayesian traders, the exis-
tence of positive optimal bid for traders is needed,
in addition to the conditions in (1), to guarantee that
the information market converges to the direct com-
munication equilibrium.

The existence of Bayesian Nash equilibrium and the ex-
istence of positive optimal bid for traders all depend on the
prior distributions of the state of the world and the distri-
bution of traders’ information conditional on the state of
of the world. An implication of our results is that, in order
for information markets to aggregate all information and
converge to the direct communication equilibrium, they
need to be properly designed. Special care is needed to
achieve the desired information structure of the market.
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