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We characterize cost function market makers designed to elicit traders’ beliefs about the expectations of an

infinite set of random variables or the full distribution of a continuous random variable. This characterization

is derived from a duality perspective that associates the market maker’s liabilities with market beliefs,
generalizing the framework of Abernethy et al. [2011, 2013], but relies on a new subdifferential analysis. It

differs from prior approaches in that it allows arbitrary market beliefs, not just those that admit density

functions. This allows us to overcome the impossibility results of Gao and Chen [2010] and design the first
automated market maker for betting on the realization of a continuous random variable taking values in

[0, 1] that has bounded loss without resorting to discretization. Additionally, we show that scoring rules are

derived from the same duality and share a close connection with cost functions for eliciting beliefs.
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1. INTRODUCTION

There is a longstanding and widely held belief that markets aggregate information about
uncertain future events [Ramsey 1926]. Colloquially, it would not be unusual to hear some-
one say “the market predicts that the price of corn will rise.” In the past few decades,
prediction markets have been designed specifically for the purpose of eliciting and aggre-
gating information about events of interest from traders. Theoretical work [Ostrovsky 2012;
Chen et al. 2012] has shown that such markets can produce an accurate consensus estimate,
and empirical work [Berg et al. 2001; Wolfers and Zitzewitz 2004; Polgreen et al. 2007] has
shown that markets can produce practically useful predictions in many settings.

Some prediction markets, like the (currently defunct) popular market Intrade, are imple-
mented as continuous double auctions. This is fine when the number of traders is large and
the space of available contracts small, but can lead to low liquidity when the number of
traders is small or the space of contracts complex. For information elicitation, it is desir-
able to ensure that traders can always find a counter party with whom to trade to reveal
their information. This motivates the recent line of research on the design of automated
market makers, algorithmic agents who are always willing to trade at some price, adding
liquidity to the market by taking on some risk [Hanson 2003]. Abernethy et al. [2011, 2013]
characterized a broad family of cost function market makers that uniquely satisfy a set of
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desirable economic properties and can be used whenever predictions are being made over a
finite outcome space (e.g., a race with n candidates and n! possible orderings).

The framework of Abernethy et al. [2013] can be used to implement bets on the means
of any finite number of continuous random variables, but for full distributions of continuous
random variables, or even approximations of full distributions with restricted securities,
not a single cost function has been demonstrated that has bounded worst-case loss without
relying on some form of discretization. The most simple scenario to consider is a market
taking bets on a continuous random variable taking values in [0, 1]. Traders are allowed to
buy or sell securities over any subinterval [a, b], with each contract worth $1 if the value
of the random variable is realized in the subinterval and $0 otherwise. There have been
several previous attempts to design cost function market makers for this scenario. Gao
et al. [2009] observed that when the logarithmic market scoring rule (LMSR) [Hanson 2003,
2007] (a now-classic cost function market maker belonging to the family characterized by
Abernethy et al. [2013]) is generalized to this setting, it suffers from unbounded loss. Gao
and Chen [2010] later generalized this result to show that any reasonable market maker for
continuous random variables on [0, 1] suffers unbounded worst-case loss under the implicit
restriction that market beliefs can be represented by a probability density function. Othman
and Sandholm [2010] successfully extended an existing constant-utility market maker to deal
with countably infinite outcome spaces, but this market maker still has unbounded loss for
continuous outcome spaces.

It is this stark contrast between success for finite outcome spaces and failure for continu-
ous outcome spaces that motivates our development of a more general cost function market
maker framework. Our framework enables the design of market makers for any measurable
outcome space. With such a framework, we are able to develop cost function market makers
that have bounded worst-case loss for betting on the interval [0, 1] and other continuous
spaces. One key difference between our framework and these prior efforts is that all prior
work implicitly required that the market’s beliefs must always be representable by a proba-
bility density function. In retrospect, there is no strong economic reason to require this; in
fact, this intuitively should not be the case if traders purchase a large volume of securities
that pay off only for a single outcome. Our cost function market makers allow the mar-
ket beliefs to be represented as any probability measure. This relaxation makes it possible
to achieve bounded loss over continuous outcome spaces, getting around the impossibility
results of Gao and Chen [2010].

We characterize all cost function market makers for measurable outcome spaces that
satisfy four desirable economic properties that are spiritually similar to those properties
introduced by Abernethy et al. [2011, 2013]. Our characterization takes a similar duality
perspective in describing a cost function’s association of payoffs and beliefs. It can be shown
that the family of market makers characterized by Abernethy et al. [2013] is a special case
of ours, but our work is not a simple generalization. Our characterization relies on a new
subdifferential analysis; one way to summarize our characterization is to say that the various
relationships between beliefs and payoffs that incentivize traders to be accurate in a market
are those encoded by strictly convex functions in Banach spaces and their subdifferentials.

Additionally, we establish a connection between our new characterization of cost functions
and strictly proper scoring rules. Cost function market makers for complete markets over
finite outcome spaces satisfying the properties of Abernethy et al. [2013] are known to be
closely related to strictly proper scoring rules for eliciting probability distributions over the
outcome space. In fact, each such cost function market maker is, in a strong technical sense,
equivalent to a market scoring rule [Hanson 2003], a market in which each trader directly
updates a market probability distribution and is paid for his improvement over the previous
distribution according to a strictly proper scoring rule [Abernethy et al. 2013]. Similar ideas
have been developed for incomplete markets with finite outcome and security spaces [Aber-
nethy and Frongillo 2012], but to our knowledge, there is no prior work connecting cost
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function market makers for continuous outcome spaces with strictly proper scoring rules,
despite existing work on proper scoring rules for continuous random variables [Matheson
and Winkler 1976; Gneiting and Raftery 2007]. We formally make such a connection.

Other Related Work. Researchers have also designed cost function market makers with
alternative desirable properties. By adapting the LMSR, Othman et al. [2010] introduced
a market maker whose liquidity (quantified in terms of the rate at which prices react to
trades) increases as trading volume increases. Othman and Sandholm [2011] generalized this
intuition to provide a larger class of cost function market makers that have this liquidity
sensitivity property, and Li and Wortman Vaughan [2013] gave a full axiomatic charac-
terization of all cost function market makers with this and other desirable properties in a
conjugate duality framework. Othman and Sandholm [2012] designed an alternative class
of cost function market makers with adaptive liquidity based on the utility framework for
market maker design [Chen and Pennock 2007]. All of these market makers are designed
only for complete markets over finite outcome spaces, while our market makers apply to
either complete or incomplete markets over any measurable outcome space.

This paper focuses on cost function market makers. It is worth noting that there are
other market mechanisms, with different properties, designed for finite outcome spaces. For
complete markets, Dynamic Parimutuel Markets [Pennock 2004; Mangold et al. 2005] also
use a cost function to price securities. However the securities are parimutuel bets whose
future payoff is not fixed a priori, but depends on the market activities. Brahma et al.
[2012] and Das and Magdon-Ismail [2008] designed Bayesian learning market makers that
maintain a belief distribution and update it based on the traders’ behavior. Call markets
have been studied to trade securities over combinatorial spaces [Fortnow et al. 2004; Chen
et al. 2007; Agrawal et al. 2008; Ghodsi et al. 2008]. In a call market, participants submit
limit orders and the market institution determines what orders to accept or reject.

Organization. We begin by formally defining a set of economic properties we would like
a cost function for eliciting beliefs to satisfy in Section 2. We then elaborate on the math-
ematical duality that underlies our results in order to characterize these cost functions in
Section 3. This characterization lets us construct cost functions for continuous random vari-
ables. In Section 4 we discuss the gap between theory and practice and offer a practical cost
function for the interval [0, 1]. Finally, in Section 5 we connect our new characterization of
cost functions to scoring rules.

2. THE ECONOMICS OF COST FUNCTIONS FOR ELICITING BELIEFS

In this section we review cost function market makers and describe four properties arguably
desirable to elicit beliefs. These properties require that (1) the market admits a notion of
prices, or equivalently, expectations, (2) these prices always reflect a feasible belief, (3) any
trader can express his beliefs by trading in the market, and (4) any trader (myopically)
maximizes his expected profit by expressing his beliefs. Together, these properties endow
the marker maker with an implicit “market belief” that reflects information incorporated
from traders, and incentivizes traders to incorporate this information.

2.1. Cost Function Market Makers

Let Ω be a set of outcomes or an outcome space, and assume that (Ω,F) is a measurable
space. We might, for example, be interested in predicting which of two horses, Affirmed and
Secretariat, will win a race, in which case Ω = {Affirmed wins, Secretariat wins}. When Ω
is finite, a natural σ−algebra F is the power set of Ω. Alternatively, we might be curious
about the realized value of a continuous random variable like tomorrow’s temperature or
precipitation. These latter cases are represented with Ω = R and F the Borel σ−algebra
generated from the usual topology on the reals. We assume that the true outcome ω∗ ∈ Ω
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is privately selected by Nature at the start of time, and implicitly assume that traders have
beliefs about this outcome that can be represented by probability measures.

A market lets traders purchase portfolios represented by bounded measurable functions
b : Ω → R. After the market closes, the outcome ω∗ is revealed and the realized value of
portfolio b is b(ω∗). Note that b(ω∗) can be negative, and traders can “sell” (or short sell)
a portfolio b by purchasing −b.

Letting B be the set of all bounded measurable functions, a market offers a subset B ⊆ B
of portfolios for purchase. We assume B is a subspace of B. A market is said to be complete
if B = B and incomplete otherwise.1 One common method of generating the set B is to
define it using a basis of bounded measurable functions (typically called securities). In this
case a portfolio is a bundle of securities bought or sold together. In some cases, incomplete
markets based on securities may be more tractable to run than complete markets. Our
results apply to both types.

A cost function market maker is a special type of market maker that can be implemented
using a potential function C : B → R called the cost function that takes as input the
market’s current liability and returns a real. The market’s current liability ` is the sum
of purchased portfolios, which tells us the payments the market maker must make when
different outcomes occur. We assume the market opens with an initial liability `0 (usually
the constant zero function), and accepts a finite number of trades. If the market’s current
liability is ` and a trader purchases a portfolio b, the market’s liability becomes `′ = ` + b
and the trader is charged C(`′)−C(`). When the outcome ω∗ is revealed the net payoff to
this trader is then

b(ω∗)−
(
C(`+ b)− C(`)

)
= (`′ − `)(ω∗)−

(
C(`′)− C(`)

)
(net payoff)

where we use the notation (`′ − `)(ω∗) to denote `′(ω∗) − `(ω∗). Notice that the space of
possible market liabilities is always the same as B, the space of available portfolios.

Cost function market makers have been studied for markets with finite outcome spaces.
For example, the now-classic LMSR [Hanson 2003] belongs to this family. As mentioned
in Section 1, Abernethy et al. [2011, 2013] characterized cost function market makers for
finite outcome spaces and, in the case of infinite outcome spaces, when the market offers a
basis of a finite number of securities. In their characterization, the potential function C is
a function of the number of shares of each security that have been purchased by all traders.
It is awkward to define C this way when a market may offer a basis of an infinite number
of securities (e.g., securities that pay off $1 if and only if ω∗ ∈ (a, b) where a ∈ [0, 1] and
b ∈ [0, 1]). This necessitates our use of cost function which takes as an argument the liability
function. For finite outcome spaces, a market offering a finite set of securities has a liability
function `(ω) = ρ(ω) ·q where q is the vector of purchased shares of each security and ρ(ω)
is the vector of payoffs of each security under outcome ω. When the market is complete and
offers a set of Arrow-Debreu securities, one for each outcome and paying off $1 if and only
if the corresponding outcome happens, the liability function and the vector of purchased
shares of each security are equivalent. Our cost functions can be applied for any measurable
outcome space and include those for finite outcome spaces as special cases. Indeed, it can
be shown that any market maker in the setting of Abernethy et al. [2013] can be written
equivalently as a cost function based market maker in which the cost function takes as input
the market’s liability function, and in fact their framework is a special case of ours.

A cost function market maker enforces an arguably desirable property, path independence:
the cost of purchasing a portfolio remains the same even if a trader splits the transaction
into a number of consecutive transactions. Path independence implies that the amount

1Our concept of completeness is analogous to that used for markets with finite outcome spaces in that both
require any contingent payoffs can be purchased in the market.
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of money collected by the market maker is C(`) − C(`0), where ` is the current liability,
regardless of the precise sequence of trades that led to this liability.

2.2. Market Prices/Expectations

The first of our four economic properties requires the market admit a notion of price for
each portfolio. That is, for any current liability the market maker must have a well-defined
instantaneous price for any portfolio, equal to the limit of the unit cost of purchasing the
portfolio in ε portions at the current liability when ε→ 0.

Property 1 (Existence of Market Prices). At any liability ` ∈ B, the market
has a well-defined instantaneous price for any portfolio b ∈ B, equal to

∇C(`; b) := lim
τ→0

C(`+ τb)− C(`)

τ
. (market price)

As described below, the price of a portfolio corresponds to the expected value of the portfolio
according to the current “market belief.” This allows traders to compare their subjective
expectation of the value of a portfolio with the market expectation when making decisions.

2.3. Reasonable Prices

The next two properties let us extract a feasible belief from the market and ensure the
market is capable of expressing the beliefs traders might have.

Defining these properties requires a notion of agreement between market prices and be-
liefs. Let P denote the set of probability measures over (Ω,F); if a trader has beliefs p ∈ P
then his expectation for a portfolio b is Ep[b] =

∫
Ω
b dp. We say the market price agrees

with a belief p if for all b ∈ B

∇C(`; b) = Ep[b] =

∫
Ω

b dp. (market/belief agreement)

We adopt the shorthand ∇C(`; ·) ∼=B p to signify this agreement.

Property 2 (Feasibility). Every market price function ∇C(`; ·) agrees with a prob-
ability measure. That is, for each ` ∈ B there exists a p ∈ P such that ∇C(`; ·) ∼=B p.

Property 3 (P−Expressiveness). Each probability measure in P ⊆ P agrees with
a market price function on B. That is, for each p ∈ P there exists an ` ∈ B such that
∇C(`; ·) ∼=B p.

Feasibility requires that the market’s prices reflect at least one feasible belief. If the
market is incomplete then its prices may reflect a set of feasible beliefs, and we refer to
these sets (singleton or otherwise) as the market’s implicit beliefs. Representing the beliefs
of incomplete markets is discussed Section 3.1.

Feasibility is closely related to the no-arbitrage property of Abernethy et al. [2013], and
is in fact equivalent for markets on finite outcome spaces, as discussed in Section 3.4.

If a market is P−expressive then traders with beliefs in P can change the market’s implicit
beliefs to match their own. Allowing P to be a subset of probability measures will be useful
in Section 4 where we restrict attention to a practical subset, and will let us connect cost
functions and scoring rules in Section 5.

2.4. Incentive Compatibility

Our fourth and final property requires that traders myopically maximize their expected
profit for a trade by moving the market’s prices to reflect their own.

Property 4 ((Myopic, Strict) P−Incentive Compatibility). Assume C : B →
R is P−expressive. Then C is (myopic, strict) P−incentive compatible if for all p ∈ P , for
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all liabilities `p ∈ B such that ∇C(`p; ·) ∼=B p, for all `, `′ ∈ B,∫
Ω

(`p − `) dp−
(
C(`p)− C(`)

)
≥
∫

Ω

(`′ − `) dp−
(
C(`′)− C(`)

)
(incentive compatibility)

with strict inequality when C(`′; ·) 6∼=B p.

In other words, Property 4 guarantees a (myopic, risk neutral) trader has an incentive to
“correct” the market any time the market’s prices differ from his own beliefs.
P−incentive compatibility is analogous to the information incorporation property defined

for markets with finite outcome spaces [Abernethy et al. 2013]. The information incorpora-
tion property requires that the instantaneous price of a bundle of securities weakly increases
(or decreases) as a trader purchases (or sells) the bundle. Hence, if a trader’s expected value
of the bundle disagrees with the bundle’s instantaneous price, the trader has a similar in-
centive to correct the market — he would find it profitable to buy or sell the bundle until
the instantaneous price reflects his expected value. Together with the continuity of the cost
function, which is assumed by Abernethy et al. [2013], the information incorporation prop-
erty enforces the same convexity requirement on the cost function as incentive compatibility.
We will prove this requirement for incentive compatibility in Theorem 1.

3. CHARACTERIZING COST FUNCTIONS FOR ELICITING BELIEFS

In this section we characterize cost functions for eliciting beliefs as the conjugates of a class
of convex functions. This result and the connection between cost functions and scoring
rules described in Section 5 rely on the duality between bounded measurable functions
and probability measures introduced in Section 3.1. This introduction is technical out of
necessity, but crucial to understanding our paper’s contribution.

3.1. The Duality of Market Liabilities and Beliefs: Mathematical Background

The duality between the bounded measurable functions (representing both portfolios and
market liabilities) and probability measures (representing beliefs) is critical to our perspec-
tive. This subsection offers a brief introduction to the aspects of this duality necessary for
understanding our theorem statements and supporting analysis. It details our refinement of
the notions of subdifferentials and strict convexity, as well as two useful facts that are used in
proofs throughout the paper. The first is the well-known “conjugate-subgradient” theorem
and the latter is a collection of equivalences relating strict convexity and the subdifferential
of a convex function.

A Banach space is a normed vector space that is complete2 with respect to its norm.
Every Banach space X admits a topological or continuous dual space Y of all continuous3

linear functions y : X→ R. This dual space is also a Banach space with pointwise addition
and scalar multiplication for functions and the dual norm

||y|| := sup
x∈X,||x||≤1

y(x). (dual norm)

A space and its dual also admit a natural bilinear form 〈·, ·〉 : X×Y → R that is linear in
both arguments and defined as 〈x, y〉 := y(x).

Let (Ω,F) be a measurable space and B the set of all bounded measurable functions4 b :
Ω→ R. B is a Banach space when equipped with the supremum norm, ||b|| = supω∈Ω b(ω),

2A space is complete if every Cauchy sequence has its limit inside the space.
3When we say continuous or lower semicontinuous, it will always be with respect to the norm topology.
4Here R is endowed with the usual Borel topology. Note that while we require each function be bounded
(so the supremum norm is defined) this does not mean the set of functions is bounded.
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and the convention of pointwise addition and scalar multiplication. Its dual space contains
all countably additive (and finite) measures, and the bilinear form between the countably
additive measures and bounded measurable functions is the Lebesgue integral

〈b, µ〉 = µ(b) =

∫
Ω

b dµ. (bilinear form)

The set of probability measures P is a convex subset of the Banach space of countably
additive measures, and thus a subset of the dual space of B.

A cost function C : B → R satisfying our four economic properties relates its liabilities
to beliefs through market prices, and the structure of these beliefs depends on the dual
space of offered portfolios. By definition, each element of the dual space of B is simply a
linear map. We will see (in Corollary 1) that a cost function associates each liability with
an element of this dual space, and this element represents the market’s implicit belief. If the
market is complete (B = B) then this dual space simply contains P and so the market’s
price agrees with only one probability measure (i.e., for any liability `, ∇C(`, ·) ∼=B p for a
single measure p). If the market is incomplete (B ⊂ B), however, then the dual space of B
may be coarser than that of B and its elements can represent sets of measures. That is, an
incomplete market may have prices consistent with more than one probability measure.

We’ll use pB to denote the element of the dual space satisfying 〈b, pB〉 = 〈b, p〉 for all
b ∈ B, so pB ∼=B p. Note that if pB = p′B , then Ep[b] = Ep′ [b] for all b ∈ B. We’ll use PB
to denote the set {pB |p ∈ P} and PB to denote the set {pB |p ∈ P}. To reiterate, there
may be a many-to-one mapping from probability measures to the market maker’s implicit
beliefs since these implicit beliefs may fail to distinguish between two or more probability
measures; pB is how we denote the image of a probability measure p under this mapping.

Convex functions describe a class of relationships between spaces in duality via the notion
of subdifferentials. We’ll see that it is precisely these relationships that encode our desired
pairing between market liabilities and beliefs. Formally, letting X be a Banach space, Y its
dual space, and R̄ = [−∞,∞] the extended reals, the subdifferential of a convex function
f : X→ R̄ is the function

∂f(x0) = {y ∈ Y|f(x0)− f(x1) ≤ 〈x0 − x1, y〉,∀x1 ∈ X} (subdifferential)

mapping points in X to sets of elements in Y satisfying the subdifferential inequality. We’ll
say a convex function is proper if it is nowhere negative infinity and somewhere real-valued.

The dual space of the countably additive measures contains the bounded measurable
functions B and other functions we will not be interested in, so we introduce a refinement
of the subdifferential that excludes the latter. Letting Y ⊆ Y, the Y−subdifferential of
f : X→ R is the function

∂Y f(x0) = ∂f(x0) ∩ Y. (Y−subdifferential)

We say that a function f is Y−subdifferentiable at a point x if ∂Y f(x) is non-empty. If the
function’s Y−subdifferential is nowhere empty we simply say it is Y−subdifferentiable. Let
dom(∂Y f) denote the subset of X at which f is Y−subdifferentiable. We say a function’s
subdifferential contains Y if each element of Y is part of the subdifferential at some point.
A function f has disjoint Y−subdifferentials when

∂Y f(x0) ∩ ∂Y f(x1) = ∅, ∀x0 6= x1 ∈ X (disjoint subdifferentials)

and is strictly convex where Y−subdifferentiable when

αf(x0) + (1− α)f(x1) > f(αx0 + (1− α)x1), (strictly convex where subdifferentiable)

for all α ∈ (0, 1) and x0, x1 ∈ X such that x0, x1, αx0 + (1 − α)x1 ∈ dom(∂Y f). In other
words, a function is strictly convex where Y− subdifferentiable if the convex inequality
holds strictly whenever f is Y−subdifferentiable at the three points in question.
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To describe the subdifferential we also need the idea of a convex conjugate. The convex
conjugate of a function f : X→ R̄ is the function f∗ : Y → R̄ defined as

f∗(y) = sup
x∈X

〈x, y〉 − f(x) (conjugate)

and its relationship with the subdifferential is described by the conjugate-subgradient the-
orem, our statement of which is adopted from Barbu and Precupanu [2012].

Fact 1 (Conjugate-Subgradient Theorem). Let X be a Banach space, Y its topo-
logical dual space and f : X→ R̄ a proper convex and lower semicontinuous function. Then
the following four properties are equivalent:

(1 ) y ∈ ∂f(x)
(2 ) f(x) + f∗(y) ≤ 〈x, y〉
(3 ) f(x) + f∗(y) = 〈x, y〉
(4 ) x ∈ ∂f∗(y).

The conjugate of a proper convex function is also proper and lower semicontinuous. We’ll
use the fact that the biconjugate of a proper and lower semicontinuous function agrees with
the original function where the original is defined. That is, for all our purposes f = f∗∗

when f is a proper and lower semicontinuous convex function. (The biconjugate is the lower
semicontinuous closure of f .)

Finally, a function f : X → R̄ is Gâteaux differentiable at an algebraic interior point5

x ∈ X if the function

∇f(x;h) = lim
τ→0

f(x+ τh)− f(x)

τ
(Gâteaux differential)

is well-defined (i.e., the limit exists for all h ∈ X) and if this function is a continuous
linear function of h (i.e., the function is an element of Y). If a convex function is Gâteaux
differentiable at a point, then its subdifferential is a singleton consisting of its Gâteaux
differential there. Conversely if a convex function is finite and continuous at a point and its
subdifferential is a singleton there then the function is Gâteaux differentiable at that point
and that subdifferential is its Gâteaux differential ([Barbu and Precupanu 2012], p.87).

We conclude with a collection of equivalences relating the subdifferential to strict con-
vexity. These equivalences appear to be folk knowledge and we offer a discussion of their
provenance and an explicit proof in the appendix.6

Fact 2 (Disjoint Subdifferential Equivalences). Let X be a Banach space, Y
its dual space, Y ⊆ Y, and f : X→ R̄ a proper convex and lower semicontinuous function.
Then the following are equivalent:

(1 ) f has disjoint Y−subdifferentials
(2 ) f is strictly convex where Y−subdifferentiable
(3 ) the subgradient inequality, f(x)− f(x′) ≤ 〈x− x′, y〉, ∀x′ ∈ X, holds strictly whenever

x 6= x′ for all x and y ∈ ∂Y f(x)
(4 ) the subdifferentials of f∗ on the set Y consist of singleton sets.

3.2. A Dual Characterization

We can now use this duality to characterize cost functions for eliciting beliefs as the conju-
gates of a class of convex functions, yielding our main characterization result.

5An algebraic interior point of a set X is a point of X such that every line through that point lies in the
affine hull of X. The functions we are interested in applying this differential to will always be defined over
entire Banach spaces, and so every point in their domain will (trivially) be an algebraic interior point.
6An appendix with omitted proofs appears in the version of this paper available on the authors’ websites.
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Theorem 1 (Cost Functions for Eliciting Beliefs Characterization). Let
B ⊆ B be a Banach space and P ⊆ P a set of probability measures. A cost function
C : B → R satisfies the existence of market prices, feasibility, P−expressiveness, and
P−incentive compatibility if and only if it can be written as

C(`) = sup
pB∈PB

〈`, pB〉 −R(pB)

where R : PB → R̄, is a proper lower semicontinuous and convex function whose sub-
differential contains B with PB ⊆ dom(∂BR) ⊆ PB and that is strictly convex where
B−subdifferentiable.

Proof. We begin by showing the conjugate of such a function R satisfies Properties
1–4, then conclude by arguing the necessity of such a function existing.

Part 1: Sufficiency. Let R be a function meeting the statement’s criteria, and C the
conjugate of R. Since C is the conjugate of a convex function it is also proper, lower
semicontinuous, and convex.

We first show C satisfies Property 1 by being Gâteaux differentiable. This first requires
showing C is real-valued and continuous. C is proper and so it never attains −∞, so we only
need to show it never attains +∞. We can bound | 〈`, p〉 | ≤ ||`|| = supω∈Ω |`(ω)| since p
is a probability measure and ` is a bounded measurable function. Thus if C is somewhere
+∞ then R is unbounded below, contradicting its being proper. We conclude that C is
real-valued and since it is real-valued and lower semicontinuous on B, a Banach space, it is
continuous ([Barbu and Precupanu 2012], p. 74).

Since C is real-valued and continuous it is subdifferentiable everywhere ([Barbu and
Precupanu 2012], p.85, [Minty 1964]). Since we assumed R was strictly convex where
B−subdifferentiable, Fact 2 says C has singleton sets for its subdifferentials (since its do-
main is B). This implies C is Gâteaux differentiable, and this says the limit

∇C(`, b) = lim
τ→0

C(`+ τb)− C(b)

τ

is well-defined for all b ∈ B, the same limit required by Property 1.
Properties 2 and 3 follow directly from our description of the subdifferential. Since we

assumed R was B−subdifferentiable on a subset of PB and that its subdifferential contains
B, each Gâteaux differential of C agrees with a probability measure. We also assumed R
was B−subdifferentiable on a superset of PB , so for any p ∈ P there exists a Gâteaux
differential of C that agrees with p.

Finally, we conclude by demonstrating Property 4; letting `p ∈ B be any liability such that
∇C(`p; ·) ∼=B p for some p with pB ∈ PB , this property requires 〈`p − `, p〉−

(
C(`p)−C(`)

)
≥

〈`′ − `, p〉 −
(
C(`′) − C(`)

)
, for all `, `′ ∈ B, with strict inequality when ∇C(`′; ·) 6∼=B p.

We can rearrange this into a subgradient inequality C(`p) − C(`′) ≤ 〈`p − `′, p〉 that is
strict when ∇C(`′; ·) 6∼=B p. If this holds with equality, i.e., 〈`′, p〉−C(`′) = 〈`p, p〉−C(`p),
Fact 1 tell us this implies pB is a subgradient of C at `′, too, and so ∇C(`′; ·) ∼=B p and
Property 4 is satisfied.

Part 2: Necessity. Let C be a cost function satisfying Properties 1–4. We first show
that C is proper, lower semicontinuous, and convex by demonstrating it can be expressed
as the pointwise supremum of a family of continuous affine functions. We then use these
properties to argue about the conjugate of C, called R.

Let P be the maximal set of probability measures for which C is P−expressive, and let
Lp be the set of liability functions ` such that C(`; ·) ∼=B p. We define a family of continuous
affine functions fp(`) = 〈`− `p, p〉+C(`p) were `p is any member of Lp, with p ranging over
P . Note that the choice of `p ∈ Lp is immaterial to the definition of these functions since
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Property 4 implies 〈`− `p, p〉+C(`p) = 〈`− `′p, p〉+C(`′p) for all `p, `
′
p ∈ Lp. The pointwise

supremum of this family of functions is defined as

S(`) = sup
p∈P

fp(`) = sup
p∈P

〈`− `p, p〉+ C(`p).

Note that Properties 1 and 2 together imply each ` ∈ B is associated with at least one
probability measure. That is, for each ` ∈ B there exists p ∈ P such that ` ∈ Lp. This implies
that S(`) ≥ C(`) for all `. In fact, S must agree with C on its domain, since if this were
not the case, then there would exist an ` ∈ B such that supp∈P 〈`− `p, p〉+C(`p) > C(`),
which would violate Property 4. So we conclude C is a pointwise supremum of a family
of continuous affine functions. Since C is real-valued (by definition) it is proper, and if a
proper function is also the pointwise supremum of a family of continuous affine functions it
is lower semicontinuous and convex ([Barbu and Precupanu 2012], p.80).

Since C is proper, lower semicontinuous, and convex, it has a conjugate function R and
is equal to its biconjugate, i.e., C = R∗. Immediately, we know R is also proper, lower
semicontinuous, and convex. Thus C is the conjugate function of R, and to complete this
portion of the proof we must show that:

(1) R has a subdifferential containing B,
(2) R is subdifferential on a superset of PB and subset of PB , and
(3) R is strictly convex where B−subdifferentiable.

(Note that we wrote R : PB → R, although R may be well-defined beyond the set PB ,
we restrict attention to this set since the supremum expression defining the cost function is
restricted to it as a result of the feasibility property it satisfies.)

Properties 1 and 2 imply C is Gâteaux differentiable, and thus it is subdifferentiable and
has singleton sets for its subdifferential. The conjugate-subgradient theorem tells us this
implies B is part of the subdifferential of R, and these subgradients of R appear on the set
PB ⊆ PB , since PB describes the subdifferential of C. Applying Fact 2 also tell us that R
is strictly convex where B−subdifferentiable, and this concludes the proof.

As a corollary we can describe the cost function directly.

Corollary 1 (Describing Cost Functions for Eliciting Beliefs). Let B ⊆ B
be a Banach space and P ⊆ P a set of probability measures. A cost function C : B →
R satisfies the existence of market prices, feasibility, P−expressiveness, and P−incentive
compatibility if and only if it is (real-valued) continuous, convex, and Gâteaux differentiable,
and its subdifferential contains PB and is a subset of PB.

Theorem 1 says a cost function for eliciting beliefs c can be expressed as the conjugate
of a function R : PB → R̄ from a particular class of convex functions. Intuitively, this
expression says the cost function determines its value by assuming a belief that maximizes
the expected value of its liabilities subject to a “regularization” term R that adds stability,
analogous to techniques applied in machine learning. It is the choice of this regularization
function that identifies a cost function for eliciting beliefs.

This is the same intuition expressed in Chen and Wortman Vaughan [2010] and Abernethy
et al. [2013] for the special case of a finite set of outcomes. Abernethy et al. [2013] also showed
this dual space can be represented as a subset of finite dimensional Euclidean space, the
convex hull of security payoffs. In Section 4 we will apply our more general characterization
to infinite outcome spaces that do not allow this nicety.

3.3. Markets with Bounded Loss

A practical and desirable property of a market not directly related to or necessary for
eliciting beliefs is that it has bounded worst-case loss.
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Property 5 (Bounded Worst-Case Loss). Assume C opens with liability `0, the
constant zero function. Then there exists some k ∈ R such that

sup
`∈B,ω∈Ω

`(ω)− (C(`)− C(`0)) ≤ k. (bounded worst-case loss)

It turns out that this is equivalent to the conjugate function R being bounded and expressive
enough to allow any belief to be arbitrarily approximated. This generalizes the result of
Abernethy et al. [2013] that states that markets for finite outcome spaces have bounded
loss when R is bounded.

Theorem 2 (Markets with Bounded Loss). Let C be a cost function satisfying
the conditions in the statement of Theorem 1, with P ⊆ P the maximal set for which
C is P−expressive. Then C has bounded worst-case loss if and only if its conjugate R is
bounded on PB and PB is dense in PB. If this is the case, then the loss is bounded by
suppB∈PB

R(pB)− infpB∈PB
R(pB).

Proof. First assume that the conjugate R of C is bounded on PB and that PB is dense
in PB . Let δ(ω) be the Dirac measure assigning probability to the single state ω ∈ Ω.
Expanding out C using the characterization in Theorem 1, the worst-case loss is

sup
`∈B,ω∈Ω

〈`, δ(ω)〉 − sup
pB∈PB

{〈`, pB〉 −R(pB)}+ sup
pB∈PB

{〈`0, pB〉 −R(pB)}. (1)

Note that we have replaced PB with PB in the expansion of C; this is because P is the
maximal set for which C is P−expressive and so by the conjugate-subgradient theorem,
PB = dom(∂BR) and the supremum must be achieved at a point in this set. Since `0 = 0,
the last supremum can be replaced with − infpB∈PB

R(pB). Now, let ε > 0 be an arbitrarily

small real number. Since we assumed PB is dense in PB , for any ` there exists p`,εB ∈ PB
such that supω∈Ω〈`, δ(ω)− p`,εB 〉 ≤ ε. Thus we can upper bound Equation 1 by

sup
`∈B,ω∈Ω

〈`, δ(ω)〉 − {〈`, p`,εB 〉 −R(p`,εB )} − inf
pB∈PB

R(pB)

≤ ε+ sup
`∈B

R(p`,εB )− inf
pB∈PB

R(pB) ≤ ε+ sup
pB∈PB

R(pB)− inf
pB∈PB

R(pB).

Since ε can be set arbitrarily close to 0, this shows that the worst-case loss is bounded
by suppB∈PB

R(pB)− infpB∈PB
R(pB) as desired.

Next consider the case in which R is unbounded on PB . We already know R is bounded
below following the argument made in the proof of Theorem 1, so we assume R is unbounded
above. Since the integral of ` with respect to a probability measure is always weakly less than
its supremum norm, we have that for any ` ∈ B and pB ∈ PB , sup`∈B ||`|| − 〈`, pB〉 ≥ 0.
Since R is unbounded on PB , this implies that for any M ∈ R, there exists a pB ∈ B such
that R(pB) ≥ M and subsequently, for all `, sup`∈B ||`|| − 〈`, pB〉 + R(pB) ≥ M . Since
PB = dom(∂BR), there exists some ` such that pB is in the subdifferential of R at `, and
for this `, C(`) = 〈`, pB〉 −R(pB). Therefore, for this particular `, ||`|| −C(`) ≥M , and so

sup
`∈B,ω∈Ω

`(ω)− (C(`)− C(`0)) ≥M + C(`0).

Since this argument holds for arbitrarily large M and C(`0) is a constant, this implies the
market maker has unbounded worst-case loss.

Finally, assume R is bounded on PB , but PB is not dense in PB . This implies there exists
` ∈ B and p′B ∈ PB such that infpB∈PB

〈`, p′B − pB〉 ≥ ε. for some ε > 0, which implies that

||`|| − sup
pB∈PB

〈`, pB〉 ≥ 〈`, p′B〉 − sup
pB∈PB

〈`, pB〉 = inf
pB∈PB

〈`, p′B − pB〉 ≥ ε.
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Letting R be bounded below by r, we have that for any k > 0,

sup
ω∈Ω

k`(ω)− (C(k`)− C(`0)) = ||k`|| − sup
pB∈PB

{〈k`, pB〉 −R(pB)}+ C(`0) ≥ kε+ r + C(`0).

Since k can be made arbitrarily large while r and C(`0) are constants, this implies the
worst-case loss is unbounded if PB is not dense in PB .

3.4. A Lack of Arbitrage

Instead of feasibility, Abernethy et al. [2013] required that markets do not allow arbitrage,
i.e., a trader can never purchase a portfolio with a guaranteed positive net payoff regardless
of the outcome. Formally, a cost function C permits no arbitrage if

C(`+ b)− C(`) ≥ inf
ω∈Ω

b(ω) (no arbitrage)

for all `, b ∈ B. With finite outcome spaces, feasibility and no arbitrage are equivalent. With
infinite outcomes spaces, they may differ. However, a cost function satisfying Properties 1–4
automatically satisfies this property.

Theorem 3 (No Arbitrage). Let B ⊆ B be a Banach space and P ⊆ P a set of
probability measures. A cost function C : B → R satisfying existence of market prices,
feasibility, P−expressiveness, and P−incentive compatibility also permits no arbitrage.

Proof. Corollary 1 tells us the cost function is convex and Gâteaux differentiable. We
apply the subgradient inequality, C(`+ b)−C(`) ≥ 〈b, pB〉, where pB is the subgradient of
C at `. Since 〈b, pB〉 ≥ infω∈Ω b(ω), the no-arbitrage inequality holds.

4. COST FUNCTIONS FOR [0, 1]

Predicting the outcome of a continuous random variable, such as tomorrow’s precipitation,
is a natural problem. However, prior efforts have had no success designing even a single
market maker that can support betting on the outcome of a continuous random variable
without requiring that the market maker incur an infinite loss in the worst case [Gao et al.
2009; Gao and Chen 2010]. Our framework enables us create bounded loss cost functions for
continuous outcome spaces like the [0, 1] interval. However, a straightforward construction
of these cost functions reveals an interesting gap between theory and practice, in that cost
functions satisfying Properties 1–5 can exhibit odd and undesirable behavior. We begin this
section by describing this odd behavior, and then suggest a practical solution. This topic
could easily be the subject of its own paper; here we give only one example of a practical
solution as an illustration of how our theory can be applied.

4.1. Biased Cost Functions

Consider a finite outcome space Ω = {ω1, · · · , ωn}. An example of a cost function satisfying
Properties 1–5 for this outcome space is

C(`) = sup
p∈P

n∑
i=1

`(ωi)p(ωi)−
n∑
i=1

p2(ωi),

which uses a quadratic function R. This cost function exhibits a nice anonymity or unbi-
asedness property in that whenever `(ωi) = `(ωj) for any two outcomes, the supremum
(and therefore, market price vector) is attained at a probability distribution that assigns
equal weight to both outcomes.

Now assume Ω is ordered and let Fp be the cumulative distribution function (CDF)
associated with p, so Fp(ω1) = p(ω1), Fp(ω2) = p(ω1) + p(ω2), and so on. Another cost
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function also satisfying Properties 1–5 is

C(`) = sup
p∈P

n∑
i=1

`(ωi)p(ωi)−
n∑
i=1

F 2
p (ωi).

This cost function is not so nice. If ` = 0 then the market’s implicit belief would assign
probability one to to a single outcome. In short, markets like this appear biased.

Intuitively, conjugates defined in terms of probability density functions (PDFs) tend to
be unbiased because they operate on local structure, while those defined on CDFs appear
biased. While beliefs in every finite outcome space can be represented as a PDF, the same
is not true with infinite outcome spaces. The natural Borel probability measures on the [0,
1] interval, for example, correspond with the set of CDFs. This creates a unique practical
challenge for creating a cost function market maker for the interval, since the first cost
function doesn’t generalize, and we are unlikely to be satisfied with the generalization of
the second, (i.e., C(`) = supp∈P

∫
Ω
` dp −

∫
Ω
F 2
p dλ) since it maps uniform liability to

measures with probability 1 on a single outcome.

4.2. Predictions on [0, 1]

Before describing more practical cost functions we will need a detour to set up some results
and notation. When discussing the [0, 1] interval we associate it with the measurable space
([0, 1],B) where B is the Borel σ−algebra generated from the usual (subspace) topology on
the interval. The probability measures P on this interval correspond with CDFs, and this
correspondence is such that a (strictly) convex function of one is also a (strictly) convex
function of the other (mutatis mutandi).

Let λ denote Lebesgue measure; every measure p ∈ P can be decomposed into three
parts with respect to λ: a pure point part ppp consisting of a countable number of atoms, an
absolutely continuous part pcont that admits a density function, and a singular continuous
part psing that is continuous and does not admit a density function7. We’ll let Pcont be
the set of all probability measures that are absolutely continuous with respect to λ and
Ppractical be probability measures consisting of only pure point and absolutely continuous
parts. We will define our cost functions in terms of strictly convex functions of probability
measures. The following result lets us define a broad class of them.

Lemma 1 (Strictly Convex Functions of Absolutely Continuous Measures).
Let ψ : R→ R be a strictly convex function. Then the function8

Ψ(µ) =

∫ 1

0

ψ

(
dµ

dλ

)
dλ

is a strictly convex function of measures µ absolutely continuous with respect to the Lebesgue
measure λ.

4.3. A Practical Cost Function

Our practical cost function based market will offer a security for every subinterval of [0, 1],
worth $1 if the outcome is in the subinterval and $0 otherwise. The space of portfolios B
generated from this basis is not a Banach space but the space of simple functions Bsimple.

9

This will prevent us from immediately applying our previous results and suggests additional
refinements may be necessary for some applications.

7The canonical example of a singular continuous measure is the devil’s staircase or Cantor distribution that
has uniform support on the Cantor set.
8We use the expression dµ

dλ
to stand for the Radon-Nikodym derivative of µ with respect to λ.

9A simple function is any function that attains only a finite number of values on the interval.
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Following the discussion that opened this section, we might restrict the market maker to
beliefs in Pcont and use the cost function

C(`) = sup
p∈Pcont

∫
Ω

` dp−
∫

Ω

(
dp

dλ

)2

dλ

While this cost function is unbiased, it never prices single points positively. This lets traders
purchase any countable set of points for free. Instead we adopt a “hybrid” cost function
that allows beliefs in Ppractical; restricting traders to beliefs in this set loses little generality.

To formally state that this market maker is unbiased, we need a formal definition of
unbiasedness. We first state our definition, and then describe the intuition behind it.

Property 6 (Lebesgue Unbiased). Let B ⊆ B and P ⊆ P. A cost function C :
B → R is Lebesgue unbiased on B and P if for all p ∈ P such that ∇C(`; ·) ∼=B p, for all
Ω0,Ω1 ∈ B, if `(ω0) = `(ω1) for all ω0 ∈ Ω0 and ω1 ∈ Ω1, then

(1 ) if λ(Ω0) = λ(Ω1) = 0, then p(Ω0) = p(Ω1), and
(2 ) if λ(Ω0), λ(Ω1) > 0, then p(Ω0)/λ(Ω0) = p(Ω1)/λ(Ω1).

In short, Property 6 says that if two measurable sets have the same liability everywhere, then
the market’s beliefs must assign them likelihood in proportion to their Lebesgue measures.
For example, if both [.2, .3] and (.4, .6) had the same associated liabilities then the market’s
implicit belief would assign [.2, .3] half the likelihood of (.4, .6) since it is half the “size” of
the latter with respect to the Lebesgue measure. Defining our notion of bias with respect to
a reference measure is essential to its being well-defined. Even when Ω is finite our intuition
could be formalized as being unbiased with respect to the counting measure. This also
highlights that the choice of reference is dependent on the setting and our tastes.

We will see that one especially important feature of a cost function’s being unbiased is
that it can be solved using a convex program with a finite number of variables whenever the
liability is simple. This suggests the property is computationally desirable too.

We now formally define our proposed practical cost function and show it is unbiased. This
cost function penalizes point masses and “rewards” more continuous beliefs. This mixed
structure is important. Imagine a constant liability function; the market’s corresponding
beliefs minimize its penalty or regularization function alone. If, however, continuous beliefs
were not rewarded, then the market could create arbitrarily small point masses in its beliefs,
essentially taking a penalty of zero, instead of forming continuous beliefs. Rewarding con-
tinuous beliefs encourages the market to hold them as an alternative to these ever smaller
collections of point masses. Note, however, that if the liability function “spikes” at a single
point, the market has no alternative and will (if the spike is high enough) decide to create a
point mass there. The use of the negative arctan function in particular is not crucial; what
is important is that it is a bounded and decreasing strictly convex function.

When stating this cost function we abuse notation and let ppp also stand for the (count-
able) set where it has support.

Theorem 4 (Practical Cost Function Market Maker). The cost function

C(`) = sup
p∈Ppractical

∫
Ω

` dp−

 ∑
ω∈ppp

p(ω)2 −
∫

Ω

arctan

(
dp

dλ

)
dλ

 (2)

is Lebesgue unbiased on Bsimple and Ppractical.

Additionally, this cost function can be calculated in time linear in the number of securities
purchased so far. If we let the simple function ` be described as a collection of tuples
(Ω0, k0), (Ω1, k1), . . . , (Ωn, kn) consisting of measurable sets and the reals to which ` maps
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them, I be an index set over all such tuples, and J an index set over tuples where λ(Ωi) = 0,
we can solve for this cost function using the convex program

max
∑
i∈I

kipi −

∑
j∈J

p2
j −

∑
h∈I−J

arctan

(
ph

λ(Ωh)

) s.t.
∑
i∈I

pi = 1

when it has simple liabilities. Further, this convex program admits a unique solution.
This market falls outside of our framework since Bsimple is not a Banach space. However,

variants of the desirable economic properties described in the previous sections hold, and
the market has bounded worst-case loss, as the following theorem shows.

Theorem 5 (Bounded Loss). The worst-case loss of the market maker specified by the
cost function in Equation 2 with `0 = 0 is bounded by 1 + π/4 ≤ 1.79.

Proof. Worst-case loss is defined as sup`∈Bsimple,ω∈Ω `(ω)−
(
C(`)−C(`0)

)
. Expanding

the definition of C, we have

C(`0) = sup
p∈Ppractical

0−
∑
ω∈ppp

p(ω)2 +

∫
Ω

arctan

(
dp

dλ

)
dλ (`0 = 0)

= sup
p∈Ppractical

∫
Ω

arctan

(
dp

dλ

)
dλ (

∑
ω∈ppp p(ω)2 is always positive)

= arctan(1) = π/4. (the cost function is Lebesgue unbiased)

For any `, let ω ∈ Ω be the outcome at which ` attains its supremum, and let δ(ω)
be the Dirac measure assigning probability one to that point. Since C takes a supremum
over all the Dirac measures (and more, since the Dirac measures are a subset of Ppractical),
inserting δ(ω) as the probability measure in the supremum expression for C yields C(`) ≥∫

Ω
` dδ(ω)− 1 = supω∈Ω `(ω)− 1. Putting these bounds together gives us

sup
`∈Bsimple,ω∈Ω

`(ω)− C(`) + C(`0) ≤ sup
`∈Bsimple

sup
ω∈Ω

`(ω)−
(

sup
ω∈Ω

`(ω)− 1

)
+
π

4
= 1 +

π

4
.

This shows that by restricting liabilities to simple functions, this market maker experi-
ences bounded worst-case loss of 1 + π/4. More generally, the cost function in Equation 2
could be scaled by a constant β, yielding a market with a worst-case loss of β(1 + π/4).
Note that setting

R(p) = β

 ∑
ω∈ppp

p(ω)2 −
∫

Ω

arctan

(
dp

dλ

)
dλ

 ,

we have that supp∈Ppractical
R(p)− infp∈Ppractical

R(p) = β(1− (− arctan(1))) = β(1 +π/4),
and so this lost bound matches the bound given in Theorem 2, despite falling outside the
general framework.

We think the above discussion offers a path to a greater study of practical cost functions
for infinite outcome spaces and reveals some of their unique challenges.

5. COST FUNCTIONS AND SCORING RULES

In this section we relate cost functions for eliciting beliefs to strictly proper scoring rules.
Connections between cost functions and scoring rules have been made in prior work for
the finite outcome complete market setting [Chen and Pennock 2007; Abernethy et al.
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2013] and the incomplete market setting when the outcome and security spaces are both
finite [Abernethy and Frongillo 2012]. Our approach generalizes this work and extends it to
include markets over infinite outcome spaces by refining the usual notion of strict properness.

A scoring rule is a function that maps an expert’s forecast and an outcome to a payoff for
the expert. For example, if the outcome space is Ω = {ω1, . . . , ωn}, and an expert’s forecast
is a probability distribution p over Ω, then when the true outcome ω∗ ∈ Ω is revealed,
the expert would receive the quantity s(p, ω∗). Two classic scoring rules for finite outcome
spaces are the log scoring rule s(p, ωi) = log(pi) and the Brier scoring rule s(p, ωi) =
(1− pi)2 +

∑
j 6=i p

2
j . Both satisfy the property that an expert maximizes his expected score

by reporting his true beliefs, incentivizing information revelation.
Our discussion of scoring rules will carefully parallel our discussion of cost functions and

exploit the same duality. Letting (Ω,F) be a measurable space and B ⊆ B a Banach space,
we described how market prices correspond to beliefs in PB . Similarly, we define PB−scoring
rules that accept these “beliefs” as forecasts. Roughly speaking, one can think of reporting
an element of PB as reporting a set of sufficient statistics or expectations of random variables
over Ω. We define a scoring rule

s : PB × Ω→ R (scoring rule)

sp := s(pB , ·) : Ω→ R a function in B.

That is, a PB-scoring rule is a function mapping a belief from the dual space of B and
an outcome to the a score in R, and we require each partial function sp = s(pB , ·) to be
an element of B.10 Intuitively, we can think of a PB-scoring rule accepting a prediction
pB ∈ PB and returning a portfolio sp ∈ B; when Nature reveals the outcome ω∗ ∈ Ω, the
expert is paid sp(ω

∗). The expected score for reporting qB ∈ PB given beliefs p ∈ P is then

s(qB , p) :=

∫
Ω

sqdp. (expected score)

We describe a scoring rule as proper if

s(pB , p) ≥ s(qB , p), ∀p ∈ P, pB ∈ PB s.t. pB ∼=B p, qB ∈ PB (proper scoring rule)

and strictly proper if the inequality is strict whenever qB 6= pB . If a scoring rule is proper,
then an expert maximizes his expected score by reporting his beliefs. If it is strictly proper,
he uniquely maximizes his score by doing so.

Theorem 6 gives a characterization of (strictly) proper scoring rules from our duality
perspective. This characterization follows that of Gneiting and Raftery [2007], but makes
the connection between scoring rules and cost functions explicit. Note that for each p ∈ P ,
bpB may be any member of the subgradient of R at pB .

Theorem 6 ((Strictly) Proper Scoring Rule Characterization). Let B ⊆ B
be a Banach space and P ⊆ P a set of probability measures. A PB-scoring rule s : PB×Ω→
R is proper if and only if it can be written as

s(pB , ω) = bpB (ω)− C(bpB )

for some function C defined as

C(b) = sup
pB∈PB

〈b, pB〉 −R(pB)

10Gneiting and Raftery [2007] considered P−scoring rules where P was a convex subset of P and required
each partial function s(p, ·) to be p−integrable and P−quasi-integrable. Letting partial functions be this
general requires regularity conditions to be applied to produce a useful characterization and no longer
guarantees a scoring rule can be adapted to work in a market.
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for some proper, lower semicontinuous, convex function R : PB → R̄ whose subdifferential
contains B with PB ⊆ dom(∂BR) ⊆ PB, and where bpB ∈ ∂BR(pB). The scoring rule s is
strictly proper if and only if R is also strictly convex where B−subdifferentiable.

This theorem shows that the same type of “regularization” function R is used to construct
both strictly proper scoring rules and cost functions. There is a slight discrepancy in their
duality, however. While a cost function maps liabilities or portfolios to beliefs, a scoring
rule maps beliefs to portfolios. The former mapping is many to one, but the latter is one to
one. This stems from the fact that a scoring rule is not uniquely identified by the choice of
R like a cost function, since the choice of the subgradient associated with each belief also
plays a role, whereas in a cost function market, individual traders are free to choose which
subgradient (liability function) to associate with their beliefs.

6. CONCLUSION

We have characterized the class of cost function market makers for arbitrary measurable
spaces that satisfy a set of intuitive economic properties. This generalizes prior work that
considered only finite outcome spaces, and moves beyond what can be achieved in continuous
spaces with market makers whose implicit beliefs are restricted to density functions. This
characterization demonstrates that we can construct cost functions for continuous random
variables with desirable properties like bounded worst-case loss, such as the examples in
Section 4. This section also demonstrates a gap between theory and practice, showing that
a naive application of our framework can result in odd behavior, and suggests a practical fix.
There is considerable room for future work designing practical market makers for intervals
and other continuous spaces, and we hope the results here will serve as a starting point.

Fundamental to our analysis is the duality between bounded measurable functions (li-
abilities or portfolios) and probability measures (beliefs), which arose naturally from the
economic properties we required. Our subdifferential analysis explicitly demonstrates the
association of a market’s liability function and its implicit beliefs.
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A. OMITTED PROOFS

A.1. Proof of Fact 2

This fact appears to be a collection of folk knowledge with precise formal statements and
proofs hard to come by in the literature. For example, the relationship between disjoint
subdifferentials and strict subgradient inequalities is mentioned by Gneiting and Raftery
[2007] and used in their characterization of (strictly) proper scoring rules, yet their citation
does not seem to offer a proof of the statement. More recently, an equivalent formal state-
ment of that result appears in Bauschke et al. [2001] although again without an explicit
proof. Also, we note that the idea of essential strict convexity [Rockafellar 1970] is similar
to our notion of strictly convex where subdifferentiable. In addition to offering a proof, we
think our statement usefully collects these equivalences and refines our understanding of
the relationship between the subdifferential and strict convexity.

We first prove (1) implies (2). Assume, for a contradiction, that (1) does not imply (2)
so there exists x0, x1, x ∈ dom(∂Y f) and α ∈ (0, 1) such that αx0 + (1− α)x1 = x and

αf(x0) + (1− α)f(x1) = f(x)

Let y ∈ Y be the subgradient of f at x. Fact 1 tells us that f∗(y) = 〈x, y〉 − f(x) and lets
us rewrite the above equality as

f∗(y) = α
(
〈x0, y〉 − f(x0)

)
+ (1− α)

(
〈x1, y〉 − f(x1)

)
,

implying that

〈x, y〉 − f(x) = α
(
〈x0, y〉 − f(x0)

)
+ (1− α)

(
〈x1, y〉 − f(x1)

)
.

Fact 1 also says that x is a solution to the expression supx∈X 〈x, y〉 − f(x), which then
implies that

〈x0, y〉 − f(x0) = 〈x1, y〉 − f(x1) = 〈x, y〉 − f(x)

and we see that y is a subgradient of f at x0 and x1, contradicting our assumption that f
has disjoint Y−subdifferentials and proving (1) implies (2).

Now we show (2) implies (1) by assuming – again for a contradiction – that (2) does
not imply (1). So f is strictly convex where Y−subdifferentiable and there exist x0, x1 ∈
dom(∂Y f) such that ∂Y f(x0)∩ ∂Y f(x1) 6= ∅. Let y be a common subgradient of x0 and x1.

If there exists x = αx0 + (1−α)x1 for some α ∈ (0, 1) such that the convexity inequality
holds with equality then, as in the preceding argument,

f∗(y) = α
(
〈x0, y〉 − f(x0)

)
+ (1− α)

(
〈x1, y〉 − f(x1)

)
= 〈x, y〉 − f(x)

and so Fact 1 tells us this implies y is a subgradient at x, implying f is not strictly convex
where Y−subdifferentiable—a contradiction.

If there does not exist such an x, then the convexity inequality applies strictly, i.e.,

αf(x0) + (1− α)f(x1) > f(x),

for all α ∈ (0, 1) and all x, x0, x1 such that x = αx0+(1−α)x1. We can write two subgradient
inequalities

f(x0)− f(x) ≤ 〈x0 − x, y〉 (subgradient inequality at x0)

f(x1)− f(x) ≤ 〈x1 − x, y〉 (subgradient inequality at x1)

and substitute and rearrange them to obtain

f(x0)− f(x) ≤ 〈x0 − αx0 − (1− α)x1, y〉
=⇒ f(x0)− (1− α)〈x0, y〉 ≤ f(x)− (1− α)〈x1, y〉
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and similarly

f(x1)− α〈x1, y〉 ≤ f(x)− α〈x0, y〉.
Adding α times the first expression and (1− α) times the second, we get

αf(x0)− α(1− α)〈x0, y〉+ (1− α)f(x1)− α(1− α)〈x1, y〉
≤ f(x)− α(1− α)〈x1, y〉 − α(1− α)〈x0, y〉

and reduce to obtain

αf(x0) + (1− α)f(x1) ≤ f(x).

But we assumed αf(x0) + (1 − α)f(x1) > f(x) for all α ∈ (0, 1), a contradiction. Thus
sharing a subgradient implies the convex inequality holds with the equality at intermediate
points, and per the preceding argument this implies a common subgradient in Y . Thus (2)
implies (1).

Now we show (3) is equivalent to (1). Let y0 be a subgradient of f at x0. If the subgradient
inequality is not strict for some x1 we have

f(x0)− f(x1) = 〈x0 − x1, y0〉
〈x0, y0〉 − f(x0) = 〈x1, y0〉 − f(x1)

And then we apply Fact 1 to see that y0 is also a subgradient at x1. Straightforwardly,
disjoint Y−subdifferentials are equivalent to the subgradient inequality being strict for all
Y−subgradients.

Finally we note (4) being equivalent to (1) follows immediately from Fact 1 since f = f∗∗

with our assumption that f is proper lower semicontinuous and convex.

A.2. Proof of Lemma 1

We first prove the following auxiliary lemma.

Lemma 2 (CDF Distinguishability). Any two CDFs F and G on [0, 1] such that
∃x ∈ [0, 1] such that F (x) 6= G(x) must differ on a non-empty open set.

Proof. We begin by showing distinct right-continuous functions differ on a non-empty
open set, then applying this results to CDFs.

Let f and g be two right-continuous functions defined on [a, b) ∈ R. Assume there exists
x ∈ [a, b) such that f(x) 6= g(x). Let c = f(x)− g(x), then by right-continuity there exists
δf , δg > 0 such that f(x)− f(x′) < c/2 for all x′ ∈ (x, x+ δf ), and symmetrically for g. Let
δ = min(δf , δg), then on the interval [x, x+ δ) f and g are nowhere equal since f is always
within c/2 of f(x) on that interval and g is always within c/2 of g(x), and f(x) and g(x)
differ by c, so no number is within c/2 of both of them.

Since any two right-continuous functions differ on a non-empty open subset and CDFs
are right-continuous if two CDFs F and G differ on [0, 1) the result is immediate. If the
functions do not differ on [0, 1) they do not differ anywhere since the extension of a CDF
to [0, 1] is unique.

This lets us take any strictly convex function of the reals and immediately transform it
into a strictly convex function of absolutely continuous measures.

Let F and G be the CDFs of two probability measures absolutely continuous with respect
to the Lebesgue measure. A Radon-Nikodym derivative (density function) of the measure
αF + (1 − α)G is then αdF

dλ + (1 − α)dF
dλ . Using the strict convexity of ψ, we have the

inequality

ψ

(
α

dF

dλ
+ (1− α)

dF

dλ

)
< αψ(

dF

dλ
) + (1− α)ψ(

dF

dλ
)
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And the same inequality holds for the integrals∫ 1

0

ψ

(
α

dF

dλ
+ (1− α)

dF

dλ

)
dx <

∫ 1

0

αψ

(
dF

dλ

)
+ (1− α)ψ

(
dF

dλ

)
dx

since it holds pointwise and applying Corollary 2 we have that the CDFs differ on an open
set and this implies their densities do, too, so the inequality is strict.

Finally, we note that any other Radon-Nikodym derivative differs from the one we con-
structed only on a Lebesgue-negligible set so the value of any such integral is equivalent
and the choice of density function is immaterial to the inequality.

Proof of Theorem 4

Throughout this proof, let ` be a bounded measurable function and Ω0 and Ω1 ∈ B two
measurable sets such that `(ω0) = `(ω1) for all ω0 ∈ Ω0 and ω1 ∈ Ω1. Let p ∈ P be where
the cost function’s supremum is attained.

First, assume λ(Ω0) = λ(Ω1) = 0 and p(Ω0) 6= p(Ω1). The distribution of p between the
two sets does not affect the integral

∫
Ω
` dp, so we only need focus on minimizing p(Ω0)2 +

p(Ω1)2. Immediately, however, we see this expression admits a minima when the probabilities
are equal, an improvement over the assumed supremum and thus a contradiction.

Alternatively, let both λ(Ω0) and λ(Ω1) be greater than zero, and p be such that
p(Ω0)/λ(Ω0) 6= p(Ω1)/λ(Ω1). Again the integral

∫
Ω
` dp is unaffected by our choice.

We begin this portion of the proof by demonstrating that since the function ` is identical
everywhere on Ω0 and Ω1, the optimal solution p admits a Radon-Nikodym derivative over
both sets. We quickly see that p admits a Radon-Nikodym derivative since having a point
mass is simply a penalty, and we assumed p contained only pure point and absolutely con-
tinuous parts. This implies we are only interested in minimizing

∫
Ω0+Ω1

− arctan(dp/dλ) dλ.

Next we show this derivative is uniform. Consider any two points at which to evaluate
the derivative, dp/dλ(ω0) and dp/dλ(ω1). Since the − arctan function is strictly convex,
these sum of the − arctan function evaluated at these two points is minimized when the
derivatives are equal. Since the − arctan function is continuous, this also implies the integral
is minimized when all points are the same, and so we see the Radon-Nikodym derivative is
uniform across both sets, as desired. Thus we conclude C is Lebesgue unbiased.

Proof of Theorem 6

Throughout the proof, we use q and p for probability measures in P , qB and pB for the
elements of the dual space that agree with them, and bq and bp for (arbitrary, fixed) elements
of the B−subdifferential of R at qB and pB . We start by showing a scoring rule defined as
in the theorem statement is a (strictly) proper PB−scoring rule.

Letting R be as in the statement. The scoring rule’s expected score function is

s(qB , p) =

∫
Ω

bq dp− sup
{µ|µB∈PB}

{
∫

Ω

bq dµ−R(µB)} = 〈bq, p〉 − 〈bq, q〉+R(qB),

for some bq ∈ ∂BR(qB), where the last equality follows from Fact 1. A scoring rule is proper
if

s(pB , p) ≥ s(qB , p), ∀q, p ∈ P
⇐⇒ R(qB)−R(pB) ≤ 〈bq, q − p〉, ∀q, p ∈ P,

which is equivalent to bq being a subgradient of R at qB for all q as we assumed; thus s is
proper.

Now let R be strictly convex where B−subdifferentiable. A scoring rule is strictly proper
if the subgradient equation above holds with strict inequality. Fact 2 says this property
is equivalent to a function’s being strictly convex where B−subdifferentiable. Thus we
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conclude that identifying a scoring rule with such a convex function R is sufficient for
it to be (strictly) proper.

Now we show that for every proper PB−scoring rule there exists a convex function R
satisfying the statement’s criteria. Since we assumed s is proper,

pB ∈ arg max
qB∈PB

s(qB , p) = arg max
qB∈PB

∫
Ω

sq dp, ∀p ∈ P.

The partial functions s(qB , ·) are equivalent to bounded measurable functions and so are con-
tinuous linear functions of probability measures. We can define R(pB) = supqB∈PB

s(qB , p)
as the pointwise supremum of these functions, which implies it is proper lower semicontin-
uous and convex. Further, the function sp is a subgradient of R at pB since it is a bounded
measurable function (by definition) and satisfies the subgradient inequality since

R(pB)−R(qB) ≤ 〈sp, p− q〉 (subgradient inequality)

⇐⇒
∫

Ω

sp dp−
∫

Ω

sq dq ≤
∫

Ω

sp d(p− q) ⇐⇒
∫

Ω

sq dq ≥
∫

Ω

sp dq

and the last inequality holds since s is proper. Further, this subgradient satisfies the theorem
statement, since by Fact 1, C(sp) = 〈sp, p〉−R(pB) = 0. and so sp(ω)−C(sp) = sp(ω), and
by assumption this subgradient belongs to B.

We conclude by noting that if s is strictly proper the subgradient inequality above is strict
and that implies that R is strictly convex where B−subdifferentiable. Thus the existence
of such a function R is both sufficient and necessary.


