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Abstract

We introduce a class of utility-based market
makers that always accept orders at their
risk-neutral prices. We derive necessary and
sufficient conditions for such market makers
to have bounded loss. We prove that hy-
perbolic absolute risk aversion utility mar-
ket makers are equivalent to weighted pseu-
dospherical scoring rule market makers. In
particular, Hanson’s logarithmic scoring rule
market maker corresponds to a negative ex-
ponential utility market maker in our frame-
work. We describe a third equivalent formu-
lation based on maintaining a cost function
that seems most natural for implementation
purposes, and we illustrate how to translate
among the three equivalent formulations. We
examine the tradeoff between the market’s
liquidity and the market maker’s worst-case
loss. For a fixed bound on worst-case loss,
some market makers exhibit greater liquidity
near uniform prices and some exhibit greater
liquidity near extreme prices, but no market
maker can exhibit uniformly greater liquidity
in all regimes. For a fixed minimum liquid-
ity level, we give the lower bound of market
maker’s worst-case loss under some regularity
conditions.

1 Introduction

A financial market is a central place where people
converge to trade commodities or securities of uncer-
tain value. In a well-functioning market, the resulting
prices can reflect a wealth of information about the
expected value of the security—in ideal circumstances
the sum total of all information available to all traders.
Most financial markets are designed to satisfy demand
for trade, and price discovery is a beneficial side effect.

We are interested in the design of prediction markets,1

or markets where price discovery is the designer’s end
goal and trading is a means to that end. For example,
suppose a policymaker seeks a forecast of the likeli-
hood of an avian flu outbreak in 2008. He may float
a security paying $1 if and only if an outbreak actu-
ally occurs in 2008, hoping to attract traders willing
to speculate on the outcome. With sufficient liquidity,
traders will converge to a consensus price reflecting
their collective information about the value of the se-
curity, which in this case corresponds to the market’s
estimate of the probability of outbreak. Empirically,
prediction markets often yield better forecasts than
other methods across a diverse array of settings includ-
ing politics [Forsythe et al., 1999, Berg et al., 2001],
sports [Debnath et al., 2003], and business [Chen and
Plott, 2002].

When a market fails to attract sufficient traders it may
break down. In fact, many financial and betting mar-
kets are thinly traded, resulting in little or no price dis-
covery. In prediction markets, the problem can be ex-
pected to be even worse, since meeting trader demand
is not the market’s primary design goal. Combinato-
rial prediction markets [Fortnow et al., 2004, Hanson,
2003, 2007, Chen et al., 2007] further exacerbate the
problem by dividing traders’ attention among an ex-
ponential number of outcomes of a joint random vari-
able, making the likelihood of finding agreeable bilat-
eral trades even more remote. Thin markets lead to
a “chicken and egg” problem where few traders care
to participate because other traders are scarce, poten-
tially spiraling the market into failure. In fact, beyond
mere apathy, traders have an active incentive not to
post an order in a thin market, since posting an order
reveals information with little chance of any benefit;
this relates to the so-called no-trade theorems [Mil-
grom and Stokey, 1982] for speculative markets.

1Prediction markets are also referred to as information
markets, (Arrow-Debreu) securities, contingent claims or
contracts, event markets or futures, and idea futures.



An automated market maker can improve the liquidity
of a prediction market. The market maker continu-
ally announces prices offering both to buy and to sell
some quantity of the security, adjusting his prices in
programmatic response to trader demand. With the
addition of a market maker, a prediction market can
incorporate the information of even a solitary trader,
and can aggregate demand from traders who arrive
and depart at non-overlapping times. If the market
maker can be expected to lose money on average, then
the trading game becomes positive sum, circumventing
the no-trade theorems.

Traditionally, market makers are human decision mak-
ers seeking to earn a profit. In contrast, a prediction
market designer may well subsidize a market maker
that expects to lose some money, in return for im-
proving trader incentives, liquidity, and price discov-
ery. The market maker’s loss can be seen as the cost
of gathering information for more accurate forecasts.
Of course, the market operator cannot afford to lose
arbitrary amounts of money; typically he or she will
want to set a maximum bound on the market maker’s
loss, ensuring that no matter what happens, the loss
cannot exceed the bound.

In Section 3, we develop a class of bounded-loss auto-
mated market makers that we call utility-based market
makers. Each market maker has some utility function
for money. However, instead of attempting to maxi-
mize his expected utility, the market maker seeks to
keep his expected utility constant at all times, ensur-
ing that his utility will never decrease. Equivalently,
the market maker always accepts (infinitesimal quan-
tity) buy and sell orders at his risk-neutral probabili-
ties; that is, the market maker’s risk-neutral probabili-
ties become the (instantaneous) market prices. As the
market maker accepts orders, his risk-neutral probabil-
ities (and thus the prices) change. We prove necessary
and sufficient conditions on the utility function for the
market maker’s loss to be bounded.

We describe how our utility-based framework fits
within other market maker frameworks. In Section 4,
we show that a utility-based market maker with (non-
zero) hyperbolic absolute risk aversion (HARA) is
equivalent to a weighted pseudospherical market scor-
ing rule market maker [Hanson, 2003, 2007]. That is,
for any non-linear utility function in the class of HARA
utility functions, there is an equivalent scoring func-
tion in the class of weighted pseudospherical scoring
functions, such that the implied market makers are
behaviorally equivalent. In particular, our negative
exponential utility market maker corresponds to Han-
son’s logarithmic scoring rule market maker [Hanson,
2003, 2007]. Our logarithmic utility market maker—
which has never been proposed before to our knowl-

edge and corresponds to an atypical scoring rule—has
some advantages (and disadvantages) when compared
to Hanson’s logarithmic scoring rule market maker.
In Section 5, we show how both ours and Hanson’s
frameworks can be implemented using a cost func-
tion methodology. The cost function records the to-
tal amount spent by traders as a function of the to-
tal quantities of shares outstanding. We argue that,
when a cost function can be derived, it offers the most
intuitive and straightforward method for implement-
ing these market makers in practice. Unfortunately,
in some cases we cannot derive explicit cost functions
and must resort to indirect or implicit numerical im-
plementations.

In Section 6, we examine the trade-off between a mar-
ket maker’s worst-case loss and the instantaneous liq-
uidity, the continuous-price analog of the liquidity, un-
der some regularity conditions. For a fixed bound of
worst-case loss, we show that no market maker can
uniformly exhibit higher instantaneous liquidity than
another in all price regimes. We prove the lower bound
of the market maker’s worse-case loss for a given min-
imum instantaneous liquidity level. We conclude our
study in section 7. Due to limit of space, we omit
proofs of theorems, which can be obtained as an Ap-
pendix by request.

2 Background

Let v represent a discrete or discretized random vari-
able to be predicted, with N mutually exclusive and
exhaustive outcomes. ~r = (r1, r2, ..., rN ) be a prob-
ability estimate for the random variable v. A scor-
ing rule is a sequence of scoring functions, S = s1(~r),
s2(~r), ...,sN (~r), such that a score si(~r) is assigned to
~r if outcome i of the random variable v is realized. A
proper scoring rule [Winkler, 1969] is a scoring rule
that motivates truthful reporting.

Hanson [2003, 2007] proposes a mechanism where a
patron subsidizes an automated market maker in or-
der to improve liquidity and overcome no-trade reti-
cence. The patron is guaranteed up front not to lose
more than a fixed constant subsidy regardless of how
many trades are processed or what outcome eventually
occurs. Hanson’s mechanism is called a market scor-
ing rule market maker (MSR), so-named because the
mechanism can be thought of as a market version of a
proper scoring rule. Conceptually, the market maker
with a proper scoring rule S begins by setting an initial
probability estimate, ~r 0. Every trader can change the
current probability estimate to a new estimate of his
choice as long as he agrees to pay the market maker
the scoring rule payment associated with the current
probability estimate and receive the scoring rule pay-
ment associated with the new estimate. Myopically,



this modified scoring rule still incents the trader to
reveal his true probability estimate.

Because traders change the probability estimate in se-
quence, the MSR market maker in fact only pays the
last trader and receives payment from the first trader.
The market maker incurs the maximum loss when the
final probability estimate assigns probability 1 to the
true outcome, i.e. sj(~ej) − sj(~r

0), where j is the in-
dex for the true outcome and ej is the vector whose
jth element is 1 and all other elements are 0. If the
market maker starts with a uniform distribution, the
maximum amount to lose is bounded by b log N when
using a logarithmic scoring rule,

si(~r) = b log(ri) (b > 0), (1)

and by (N−1)b
N when using a quadratic scoring rule,

si(~r) = 2bri − b
∑

j

r2
j (b > 0). (2)

3 Utility-Based Market Makers

We propose a new class of market makers who have
a utility function and set prices equal to their risk-
neutral probabilities. We show some general condi-
tions under which the utility-based market maker has
provably bounded loss.

3.1 Risk-Neutral Probability

It is well studied in finance [Jackwerth, 2000] and de-
cision theory [Nau and McCardle, 1991, Kadane and
Winkler, 1988] that there is a relationship between
risk-neutral probability, subjective probability, and
utility function of wealth across states. Let an agent
have a state-independent utility function of money,
u(m), and a subjective probability estimate, ~π, for the
forecast variable. Let ~m represents his wealth vec-
tor across outcome states. Then, the agent’s risk-
neutral probabilities [Jackwerth, 2000] are the nor-
malized products of his subjective probabilities and
marginal utilities,

pi =
πiu

′(mi)
∑

j πju′(mj)
∀i. (3)

In a securities market setting, risk-neutral probabili-
ties are the price levels that the agent is indifferent be-
tween buying or selling an infinitely small number of
shares. The subjective probability estimate and risk-
neutral probability estimate are identical when the
agent is indifferent to risk. However, for a risk-averse
agent they differ by a risk aversion adjustment.

3.2 Utility-Based Market Makers

Consider predicting a discrete random variable v with
N mutually exclusive and exhaustive outcomes. When

a prediction market offers a total of N securities and
each share of security i pays $ 1 when outcome i hap-
pens, a utility-based market maker is well-suited. A
utility-based market maker has a utility function for
money u(m) and a subjective probability estimate ~π.
The market maker myopically equates the instanta-
neous security prices to his current risk-neutral prob-
abilities (3), and is always willing to accept infinitely
small buy or sell orders at these prices.

The market maker’s wealth across all outcome states
changes when he accepts orders in the market. Sup-
pose a trader buys an infinitely small number of secu-
rity i, denoted ǫi. Then the market maker’s wealth in
state j 6= i increases by piǫi, while his wealth in state i
decreases by (1−pi) ǫi, because the market maker pays
off $ 1 per share in state i. Let ~q = (q1, q2, ..., qN ) be
the vector of the total quantities of outstanding shares.
Then, ∂mj/∂qi = pi when j 6= i, and ∂mi/∂qi = pi−1.
The following equation system thus defines a utility-
based market maker:















pi =
πiu

′(mi)
∑

j πju′(mj)
∀i

∂mj

∂qi
= pi − Iij ∀i, j

(4)

where Iij is an indicator function that equals 1 when
i = j and 0 otherwise.

Lemma 1 below shows that a utility-based market
maker who satisfies (4) simply keeps his expected util-
ity constant.

Lemma 1. At any time of the market, a utility-based
market maker who sets prices according to (4) satisfies

∑

j

πju(mj) = k, (5)

where k is a constant.

Lemma 1 is implied by the concept of risk-neutral
probability. It is proved by showing that the partial
derivatives of both sides of equation (5) relative to qi

are zeros for any i.

Thus, a utility-based market maker does not maximize
his expected utility. Instead, the market maker starts
the market with some initial expected utility and then
keeps this expected utility level during the whole pro-
cess of trading.

3.3 Loss of Market Makers

We have shown that the utility-based market maker’s
cost and price functions are well-defined when the mar-
ket maker has a continuous, differentiable, and strictly
increasing utility function. An important question to
ask is when a utility-based market maker has bounded
loss. A market maker can choose any initial feasible



wealth vector ~m 0 to start the market and k equals
∑

j πju(m0
j). Theorem 2 characterizes properties of

the market maker’s utility function that guarantee
bounded loss.

Theorem 2. For a real-valued, continuous and
strictly increasing utility function u(m), any fixed sub-
jective probability estimate ~π whose elements are non-
zeros, and a utility-based market maker who sets prices
according to (4), the necessary and sufficient condition
for the market maker to have bounded loss for any
feasible expected utility level k is that at least one of
the following conditions is satisfied: (1) The domain
of u(m) is bounded below; (2) The range of u(m) is
bounded above but not bounded below.

We prove Theorem 2 with the assistance from Lemma
1. A market maker has bounded loss if and only if
there exists a real constant l such that for any ~m that
meets (5) in Lemma 1, l ≤ mj is satisfied for all j.
Theorem 2 indicates that neither linear functions nor
strictly convex functions defined on (−∞, +∞) guar-
antee bounded loss.

4 Relationship Between MSR and

Utility-Based Market Makers

A trader with a probability estimate on the forecast
variable v can interact with either a MSR market
maker or a utility-based market maker for profit or
loss. Hence, a natural question to ask is how these
two classes of market makers are related. In this sec-
tion, we establish the equivalence relationship between
them for a class of utility functions, the HARA utility
class, and a class of proper scoring rules, the weighted
pseudospherical scoring rules.

4.1 HARA Utility Class

The hyperbolic absolute risk aversion (HARA) class
of utility functions contains most popular parametric
families of utilities, including constant absolute risk
aversion (CARA) family and constant relative risk
aversion (CRRA) family. The generic form of a HARA
utility function is

u(m) =
1

1 − γ

(

γ(M +
α

γ
m)1−γ − 1

)

, (6)

where M is a real number, γ is an extended real num-
ber, and α > 0. The utility function is defined on
the domain M + a

γ m ≥ 0, with strict inequality for

γ ≥ 1. Any affine transformation of (6) belongs to the
HARA utility class and leaves all economic analysis
unchanged. The characterization of the HARA utility
class is that utility functions have linear absolute risk

tolerance, − u′(m)
u′′(m) = M

α + m
γ , which is defined as the

inverse of the absolute risk aversion coefficient [Arrow,

1970]. For this reason, the HARA utility class is also
called the linear-risk-tolerance utility class.

Special choices of parameters M , γ, and α give rise to
different (families of) utility functions. When γ = 0,
linear or risk-neutral utility function u(m) = αm − 1
is obtained. When γ > 0, (6) is the family of constant
relative risk aversion (CRRA) utility functions. The
limiting case where γ → 1 gives the logarithmic util-
ity function, lim

γ→1
u(m) = log(M + αm). In the limit

as γ → −∞ or γ → +∞, (6) becomes the negative
exponential utility, lim

γ→±∞
u(m) = −e−αm, which is a

constant absolute risk aversion (CARA) utility func-
tion. Utility functions corresponding to γ < 0 has
domains that are bounded above, which do not sat-
isfy the economics principle of nonsatiation. A more
extensive review of the HARA utility class has been
given by Feigenbaum [2003].

It can be verified that with the exception of the linear
utility function, all HARA utility functions satisfy the
condition in Theorem 2. Hence, a utility-based mar-
ket maker using a non-linear HARA utility function is
guaranteed to have bounded loss.

4.2 Weighted Pseudospherical Scoring Rules

Jose et al. [2006] in their recent work proposes a class of
strictly proper scoring rules that generalizes the pseu-
dospherical scoring rules, called weighted pseudospher-
ical scoring rules. The scoring function of this class is

si(~r) = ai + b
β−1

[

(

ri
πi

(
P

j πj(
rj
πj

)β)1/β

)β−1

− 1

]

, (7)

where b > 0 and the reported probability estimate ~r is
weighted by a base-line probability estimate ~π. Scor-
ing rule payments are based on the improvement of the
reported probability estimate on the base-line proba-
bility estimate. If weighted by a uniform distribution,
weighted pseudospherical scoring rules reduce to pseu-
dospherical scoring rules. Weighted pseudospherical
scoring rules are strictly proper for any real β. Choices
of β give rise to different scoring functions. For exam-
ple, the limiting case where β → 1 defines a weighted
logarithmic scoring rule,

si(~r) = ai + b log(
ri

πi
). (8)

It becomes the (unweighted) logarithmic scoring rule
(1) when all πi’s are equal. When β = 2 and ~π is uni-
form, (7) is the spherical scoring rule. The limit case
as β → 0 gives the following atypical scoring function,

si(~r) = ai − b
πi

ri
exp





∑

j

πj log(
rj

πj
)



 . (9)



The quadratic scoring rule (2), however, does not be-
long to this class. Because the payment when proba-
bility 1 is reported for the true outcome is finite for all
weighted pseudospherical scoring rules, a MSR market
maker’s loss is bounded when using any one of them.

4.3 The Market Maker Equivalence Theorem

Jose et al. [2006] show that the weighted pseudospher-
ical scoring rules can arise from the solution of an
expected-utility-maximization problem of a forecaster
against a betting opponent. A market with a market
maker can be viewed as a sequence of two-person bet-
ting, each happening between a trader and the mar-
ket maker. Taking this view, we show the equivalence
between non-linear HARA-utility market makers and
weighted pseudospherical market scoring rule market
makers.

A bet between two agents, A and B, on the random
variable v can be interpreted as selecting a vector ~m
such that the contingent wealth vectors for agents A
and B are ~m and −~m respectively and both agents are
willing to accept it given their subjective probability
estimates on v. Any trade in the market with a utility-
based market maker is a betting between the market
maker and the trader. Facing the existing wealth vec-
tor of the market maker, ~mold, the (risk-neutral) trader
with probability estimate ~r wants to select a new
wealth vector ~mnew for the market maker such that the
trader’s expected wealth,

∑

i ri[(−mnew
i ) − (−mold

i )],
is maximized. The market maker is willing to accept
the wealth vector ~mnew only if it satisfies equation
(5). Hence, any trade between the utility-based mar-
ket maker and a trader with probability estimate ~r can
be modeled by the following optimization problem,

max
~m

−
∑

i rimi (10)

s.t.
∑

i πiu(mi) = k.

Based on (10), we obtain our Market Maker Equiva-
lence Theorem.

Theorem 3 (Market Maker Equivalence Theorem). A
utility-based market maker who has a subjective prob-
ability estimate ~π and a HARA utility function with
γ 6= 0 is equivalent to a market scoring rule market
maker who utilizes a ~π-weighted pseudospherical scor-
ing rule with β = 1 − 1

γ .

We prove the theorem by showing that the payment at
state i that a trader with probability estimate ~r gets
from a utility-based market maker, i.e. −mi of the op-
timal solution of (10), equals the scoring rule payment
at state i when the trader interacts with a MSR mar-
ket maker, i.e. si(~r) if β = 1 − 1

γ . As expected, linear

utility function (γ = 0), which does not guarantee a

utility-based market maker’s loss to be bounded ac-
cording to Theorem 2, does not have a corresponding
scoring rule. The following corollary arises directly by
applying Theorem 3 with γ = ±∞ and γ = 1.

Corollary 4. A negative exponential utility market
maker is equivalent to a MSR market maker with a
weighted logarithmic scoring rule (8). A logarithmic
utility market maker is equivalent to a MSR market
maker with the scoring rule defined in (9).

If starting the market with uniform prior probabilities,
a negative exponential utility market maker is equiva-
lent to a logarithmic MSR market maker.

5 Cost-Function Formulation of

Market Makers

5.1 Cost-Function Formulation

We describe an equivalent formulation of market mak-
ers based on maintaining a cost function that seems
most natural for implementation purposes. The mar-
ket contains a total of N securities, each paying $ 1
per share if its corresponding outcome happens. ~q is
the vector of all quantities of shares held by traders.
Then, the market maker works as follow: (1) The mar-
ket maker utilizes a cost function C(~q) that records the
total amount of money traders have spent as a func-
tion of the total number of shares held of each security.
The market maker initiates the market with a quantity
vector ~q 0. (2) A trader who buys or sells any security
or any bundles of securities in the market changes the
the total number of outstanding securities, i.e. ~q, from
~q old to ~q new. The market maker charges the agent
C(~q new) − C(~q old) dollars for the transaction. Nega-
tive quantities encode sell orders and negative “pay-
ments” represent sale proceeds earned by the trader.
(3) At any time of the market, the going price of secu-
rity i, pi(~q), equals ∂C/∂qi. The price is the cost per
share for purchasing an infinitesimal quantity of secu-
rity i. The full cost for purchasing any finite quantity
is the integral of price evaluated from ~q old to ~q new,
which equals C(~q new) − C(~q old). (4) Once the true
outcome becomes known, the market maker pays $1
per share to traders holding the winning security.

Prices of all securities are restricted to lie in [0, 1] at all
times, and the sum of prices always equals 1 to ensure
no arbitrage. The cost and price functions thus satisfy
the following property.

Property 5. For a market maker with a cost func-
tion C(~q) and price functions pi(~q) in an arbitrage-free
market, the following equations hold,

C(~q + a~1) = a + C(~q), (11)

and



pi(~q + a~1) = pi(~q) ∀i, (12)

where a is any real constant.

5.2 Cost Functions and Utility-Based Market

Makers

We show that any utility-based market maker can be
conveniently translated to a cost-function formulation.

Theorem 6. A utility-based market maker has a cost
function that is defined by

∑

j

πju(C − qj) = k, (13)

where k is a constant.

Theorem 6 follows from Lemma 1, since C(~q) is the
total money collected by the market maker and qj is
the total money that the market maker needs to pay
if outcome j happens.

According to the implicit function theorem in mathe-
matical analysis, we can see that if the utility function
u(m) is continuous, differentiable, and strictly increas-
ing, there exists a unique function C(~q). If C(~q) does
not have an explicit form, numerical methods can be
used to calculate the value of C for any given ~q. Prices
are the partial derivatives of the cost function.

Logarithmic utility and negative exponential utility
are two widely used utility functions that both belong
to the HARA utility class. The cost function corre-
sponding to the logarithmic utility function, u(m) =
log(b + m) with b > 0, is the implicit function de-
fined by equation (13). If the event only has two out-
comes and the market maker’s subjective probability
estimate is uniform, the explicit cost and price func-
tions for the market maker is

C(~q) = −b +
1

2
(q1 + q2) +

1

2

√

4b2 + (q1 − q2)2. (14)

and

p1(~q) =
1

2
+

1

2

(q1 − q2)
√

4b2 + (q1 − q2)2
, (15)

p2(~q) =
1

2
−

1

2

(q1 − q2)
√

4b2 + (q1 − q2)2
. (16)

For the negative exponential utility function, u(m) =
−e−αm with α > 0, the market maker’s cost function
is

C(~q) =
1

α
log(

∑

j

πje
αqj ). (17)

We omit the price function here, which can be easily
obtained by differentiation.

5.3 Cost Functions and Market Scoring

Rules

Given the Market Maker Equivalence Theorem and
Theorem 6, a weighted pseudospherical scoring rule
market maker can be translated into the correspond-
ing cost function formulation via his equivalent utility-
based market maker. For scoring rules, such as
quadratic scoring rule, that do not belong to the
weighted pseudospherical scoring rule class, we de-
scribe how to make the translation directly.

Suppose the current probability estimate in MSR is
~p. A trader who has probability estimate ~p ′ changes
the market probabilities from ~p to ~p ′ and gets profit
si(~p

′)− si(~p). Now suppose, in a market maker mech-
anism that offers N mutually exclusive and exhausted
securities, the current quantity vector is ~q and price
vector is ~p. A trader with probability estimate ~p ′

is myopically incented to buy or sell securities until
the market price becomes ~p ′. His trading behavior
changes the quantity vector to ~q ′. His profit when
outcome i happens is (q′i − qi) − (C(~q ′) − C(~q)). If
the two mechanisms are equivalent, the trader should
obtain the same profit no matter which outcome of
the random variable is realized. Thus, without lose of
generality, the following equation system establishes
the equivalence between a MSR market maker and a
cost-function formulation











si(~p) = qi − C ∀i
∑

i pi = 1

pi = ∂C
∂qi

.

(18)

Solving (18), we get the cost function for the MSR
market maker with logarithmic scoring rule as in (1),

C(~q) = b log(
∑

j

eqj/b), (19)

which is equivalent to the cost function (17) derived for
negative exponential utility market maker by setting ~π
to be uniform and with some variable substitution, ver-
ifying the stated equivalence result in Corollary 4. The
corresponding instantaneous price function for loga-
rithmic scoring rule market maker is

pi(~q) =
eqi/b

∑

j eqj/b
(20)

for all i. The equivalent cost and price functions for a
MSR market maker with a quadratic scoring rule (2)

C(~q) =
P

j qj

N +
P

j q2

j

4b −
(
P

j qj)2

4Nb − b
N , (21)

and

pi(~q) =
1

N
+

qi

2b
−

∑

j qj

2Nb
. (22)



Noting that the price function (22) can have values
that are greater than 1 or less than 0, a quadratic
scoring rule market maker needs to explicitly restrict
that prices are between [0, 1] at all times.
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Figure 1: Market Maker Equivalence Relations

At this point we have established equivalence trans-
lations for restricted classes among utility-based mar-
ket makers, market scoring rule market makers, and a
third formulation of market makers based on maintain-
ing a cost function. Figure 1 summarizes our equiva-
lence results. The equivalence relations enable easy
navigation among different formulations. The cost
function formulation seems most natural for imple-
mentation purposes. Market scoring rules make many
analysis such as loss of market makers straightforward,
however directly converting them to cost-function for-
mulations is not always easy. Utility-based market
makers, whose cost functions are easy to find, con-
nect the MSR with cost-formulation for a large class
of scoring rules.

6 Liquidity and Market Maker Loss

6.1 Instantaneous Liquidity

In financial markets, high liquidity is often character-
ized by small bid-ask spread, which is the difference
between the (ask) price at which a market maker is
willing to accept buy orders and the (bid) price at
which the market maker is willing to accept sell or-
ders. It is common that any bid and ask prices set
by the market maker are only valid for trading a fixed
number of shares, after which the market maker ad-
justs prices and/or the bid-ask spread. Such a market
maker essentially has a step-wise price function. An-
other concept that is often associated with liquidity is
market depth. A market is considered deep if moving
the price up (down) by a unit requires buying (selling)
a large number of shares. A deep market often implies
high liquidity.

For our continuous and differentiable price functions,

these concepts of bid-ask spread, market depth, and
hence liquidity for financial markets are not directly
applicable. We define instantaneous liquidity to reflect
the liquidity in such markets.

Definition 1. The instantaneous liquidity for security
i at ~q is ρi(~q) = 1

∂pi(~q)/∂qi
.

The slope of the price function, ∂pi(~q)/∂qi, approx-
imates the bid-ask spread for the differentiable price
function pi(~q). Although only one price rather than a
bid and an ask is announced and the bid-ask spread
is technically zero for infinitely small trades, the pay-
ment required for buying certain number of shares is
typically higher than the proceeds received for selling
the same number of shares at any time of the market.
∂pi(~q)/∂qi approximates the price difference between
buying one share of security i from the market maker
and selling one share to the market maker at the cur-
rent state ~q. Moreover, ∂pi(~q)/∂qi inversely relates to
the instantaneous depth of the market for security i. A
smaller ∂pi(~q)/∂qi means that it requires more shares
to drive price up or down by one unit, hence imply-
ing a deeper market. Thus, the definition of instanta-
neous liquidity captures both the negative correlation
between liquidity and bid-ask spread and the positive
correlation between liquidity and market depth.

6.2 Loss and Instantaneous Liquidity

For a market maker having a step-wise price func-
tion, Schwarz [2005] shows that the minimum worst-
case loss for him to keep a bid-ask spread no greater
than s is bounded by 1

8s if he adjusts prices after every
share of trading. Schwarz only considers two-outcome
markets. In this part, we explore the relationship
between instantaneous liquidity and market maker’s
worst-case loss for markets with continuous and differ-
entiable price functions over N outcomes.

We consider a class of market makers whose cost func-
tions are symmetric and second-order differentiable. A
second-order differentiable cost function ensures that
price functions are differentiable. A symmetric cost
function means that if a quantity vector ~q ′ contains a
permutation of the elements of ~q, C(~q ′) equals C(~q). A
symmetric cost function automatically gives symmet-
ric price functions, meaning that if ~q ′ is achieved by
switching qi and qj in ~q, pi(~q) equals pj(~q

′). This fur-
ther implies that when all qi’s are equal, all pi’s equal
to 1

N . Assuming the market is started with ~q 0 = ~0,
the initial market prices are uniform. Without loss of
generality, we further assume that the market maker
normalizes his cost function to satisfy C(~0) = 0.

Using properties given in Property 5, we can charac-
terize the maximum loss of the market maker.

Lemma 7. With a second-order differentiable and



symmetric cost function C(~q) and corresponding price
functions pi(~q), a market maker’s worst-case loss is
bounded by

Lmax =

∫ +∞

0

(

1 − pi(~q
i)

)

d qi, (23)

where ~q i is a vector whose i-th element is qi and all
others are zero. Choice of i is arbitrary.

Lemma 7 greatly simplifies the analysis of worst-case
loss. It indicates that instead of considering the mul-
tivariate price function pi(~q), we only need to con-
sider the univariate price function pi(~q

i). If plotting
the price function pi(~q

i) in a x-y plane as in Figure
2, the worst-case loss of a market maker equals the
area formed by the y-axis, the horizontal line pi = 1,
and the curve of pi(~q

i) in the first quarter. Based
on this result, we present our theorems on the rela-
tionship between instantaneous liquidity and market
maker worst-case loss.

Theorem 8. For all market makers who utilize a
second-order differentiable and symmetric cost func-
tion over N outcomes and have a fixed bound on
worst-case loss, no market maker can exhibit uniformly
greater or equal instantaneous liquidity than a different
market maker for all ~q.

Theorem 8, which is proved by contradiction, states
an impossibility result — it is impossible for a mar-
ket maker to have greater instantaneous liquidity in
all regimes given a fixed bound of worst-case loss. For
a two-outcome market, Figure 2 plots the univariate
price function of outcome 1, p1(~q

1), for two market
makers who have the same bound of worst-case loss.
It shows that neither of the price functions consistently
has a smaller slope, i.e. greater instantaneous liquid-
ity. Comparing the logarithmic utility market maker
and the logarithmic MSR (negative exponential util-
ity) market maker, we find that the logarithmic MSR
market maker has greater instantaneous liquidity when
prices are close to 0.5, while the logarithmic utility
market maker exhibits greater instantaneous liquidity
near extreme prices.

Theorem 9. For all market makers who utilize a
second-order differentiable and symmetric cost func-
tion over N outcomes and maintain an instantaneous
liquidity level no lower than ρ for all ~q, the minimum

worst-case loss is (N−1)2ρ
2N2 .

Theorem 9 indicates that among all market makers
who keep the same lowest liquidity level ρ, the market
maker’s worst-case loss is bounded below by the loss of
a linear price function pi(~q

i) whose slope is 1
ρ . Com-

paring with the bound, 1
8s , derived by Schwarz [2005]
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Figure 2: Price function p1(~q
1) for a two-outcome market.

Worst-case loss for both market makers are 50.

for market makers who utilize step-wise price func-
tions to maintain a bid-ask spread no greater than s,
Theorem 9 gives the same bound by setting N = 2
and ρ = 1

s . The optimal market maker described by
Schwarz indeed is a discrete approximation of a con-
tinuous linear price function.

7 Conclusion

We introduce a class of utility-based market makers
who are always willing to accept orders at their risk-
neutral prices. We give the necessary and sufficient
condition for such market makers to have bounded
worst-case loss. We establish equivalence translations
among utility-based market makers, market scoring
rule market makers, and a third formulation of market
makers based on maintaining a cost function. Specifi-
cally, (1) HARA utility market makers with parameter
γ are equivalent to weighted pseudospherical market
scoring rule market makers with parameter β = 1− 1

γ

for γ 6= 0. (2) Translation between a utility-based
market maker and the cost function formulation is
based on the ”expected utility keeps constant” equa-
tion, which implicitly defines the cost function; and (3)
A market scoring rule market maker can be translated
into a cost function formulation through a system of
equations (18). We derive the corresponding cost and
price functions for two special cases, logarithmic and
quadratic scoring rules.

We show that for a fixed bound on worst-case loss,
some market makers exhibit greater liquidity near uni-
form prices and some exhibit greater liquidity near ex-
treme prices, but no market maker can exhibit uni-
formly greater liquidity in all regimes. For a fixed
minimum liquidity level, we prove the lower bound for
the worst-case loss of maker makers.
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Appendix

A Proofs

A.1 Proof of Lemma 1

Equation (5) is implied by the concept of risk-neutral prob-
ability. Here, we mathematically prove it given equation
system (4).

Let EU =
P

j πju(mj). Taking partial derivative of EU

relative to qi, we have

∂EU

∂qi
=

X

j

πju
′(mj)

∂mj

∂qi

= (
X

j

πju
′(mj)

∂C

∂qi
) − πiu

′(mi)

= (
X

j

πju
′(mj))pi − πiu

′(mi)

= (
X

j

πju
′(mj))

πiu
′(mi)

P

j πju′(mj)
− πiu

′(mi)

= 0

The second equality comes from
∂mj

∂qi
= pi − Iij .

∂EU
∂qi

equals 0 for all i means that EU does not change with the
changes in ~q. Hence, equation (5) holds at any time of the
market.

A.2 Proof of Theorem 2

We prove the sufficient condition first. If condition 1 is
satisfied, it is trivial that the market maker has bounded
loss, because the lower bound l is simply c. If condition 2
is satisfied, we know u(mj) ≤ d for all j and k ≤ d. Based
on (5), we have

X

j

πj(d − u(mj)) = d −
X

j

πju(mj) = d − k ≥ 0

Combining the above with u(mj) ≤ d, we get

0 ≤ πj(d − u(mj)) ≤ d − k,

which leads to

d −
d − k

πj
≤ u(mj) ≤ d.

Let aj = d − d−k
πj

. We have

u
−1(aj) ≤ mj ≤ u

−1(d).

Let l = minj(u
−1(aj)). Then, l ≤ mj for any j.

To prove the necessary condition, suppose that neither con-
dition 1 nor condition 2 is satisfied and there exists a l
such that l ≤ mj for any j. Then, the domain of u(m) can
be (−∞,+∞), (−∞, c], or its open interval variant. The
range of u(m) can be (−∞, +∞), [d, +∞), [d, g], or their
open interval variants. c, d, and g are real constants. Let
the market maker starts with equal wealth in all states, i.e.
m0

j = m0 ≥ l for all j. Then, k = u(m0). Now suppose



that trading activities drive the market maker’s wealth vec-
tor to ~m′, where m′

1 = x < l, m′
3 to m′

N still equal to m0,
and

m
′

2 = u
−1

„

(π1 + π2)k − π1u(x)

π2

«

.

It is easy to verify that this ~m′ satisfies equation (5).
m′

1 has a feasible value since the domain of u(m) is not
bounded from below. m′

2, greater than m0, is a feasi-
ble value for any k if the range of u(m) is (−∞,+∞),
[d, +∞), or its open interval variant. When the range of
u(m) is [d, g] or its open interval variants, m′

2 is a fea-

sible value only when (π1+π2)k−π1u(x)
π2

≤ g, that is when

k ≤ π1

π1+π2

u(x) + π1

π1+π2

g. Thus, for any l, we can find

some k and a wealth vector ~m′ such that m′
1 < l. The

market maker’s loss is not bounded.

A.3 Proof of Theorem 3

For HARA utility functions, the Lagrange augmented func-
tion for the optimization problem (10) is

L = −
P

i rimi+λ
h

P

i πi
1

1−γ

“

γ(M + α
γ
mi)

1−γ − 1
”

− k
i

,

where λ is the Lagrange multiplier. First order conditions
of L are

(

∂L

∂mi
= −ri + λαπi(M + α

γ
mi)

−γ = 0
∂L

∂λ
=
P

i πi
1

1−γ

“

γ(M + α
γ
mi)

1−γ − 1
”

− k = 0.

Solving the above equation system, we have

λ =
1

α

0

@

k(1 − γ) + 1

γ
P

i πi(
ri
πi

)
γ

1−γ

1

A

γ
1−γ

,

and

mi = γ
α

0

B

B

B

B

@

“

k(1−γ)+1
γ

” 1

1−γ

0

B

B

B

@

ri
πi

0

@

P

j πj

„

rj
πj

« γ−1

γ

1

A

γ
γ−1

1

C

C

C

A

−
1

γ

− M

1

C

C

C

C

A

.

Since γ 6= 0, let β = 1 − 1
γ
, b = (1−β(k+1))

β−1

β

α
, and ai =

M−(1−β(k+1))
β−1

β

α(β−1)
. Then, mi can be rewritten as

mi =

(1 − β(k + 1))
β−1

β

0

B

@

ri
πi

 

P

j πj

„

rj
πj

«β
!

1/β

1

C

A

β−1

− M

(1 − β)α

= −ai −
b

β − 1

2

4

 

ri
πi

(
P

j πj(
rj

πj
)β)1/β

!β−1

− 1

3

5 .

It is clear that according to the above expression (−mi) is
exactly the weighted pseudospherical scoring rule defined
in (7).

As the market maker’s gain is the trader’s loss, (−mi) is
the gain of the trader. For a trader with a risk neutral

probability estimate ~r, the monetary gain she receives from
interacting with a utility-based market maker is the same
as the scoring rule payment she gets from interacting with
a MSR market maker. Hence, the equivalence between
utility-based market makers and MSR market makers is
established.

A.4 Proof of Property 5

Because the market includes mutually exclusive and ex-
haustive securities whose prices sum to 1, the total cost for
buying a shares of each security is a dollars. Hence, equa-
tion (11) holds. Equation (12) can be achieved by taking
derivative on both side of the equation (11) relative to qi.

A.5 Proof of Theorem 6

Because C(~q) is the total money collected by the market
maker and qi is the total number of shares that the market
maker needs to pay $ 1 per share if outcome i happens.
Hence, the market maker’s wealth if outcome i happens is
mi = C − qi. Equation (13) is immediately obtained by
plugging mi = C − qi into equation (5) of Lemma 1.

A.6 Proof of Lemma 7

For any ~q ′, the loss of the market maker when outcome
i happens is Li = q′i − C(~q ′). Let q′min be the mini-
mum value among all q′i’s and subtract it from all q′i’s to
obtain the vector ~q = ~q ′ − q′min

~1. All elements of the
new vector ~q are non-negative. According to Lemma 5,
q′i − C(~q ′) = qi − C(~q). Hence, the market maker’s loss
can be written in terms of non-negative ~q. Because the
cost function is an increasing function. C(~q) is greater or
equal than C(~q i) , where ~q i is the vector whose i-th ele-
ment is qi and all other elements are 0. This means that
for any level of qi the most adverse trading sequence for
the market maker if outcome i happens is selling qi shares
of security i to traders and nothing else. The maximum
loss for the market maker when there are qi shares of se-
curity i outstanding and outcome i happens is qi − C(~q i),
which equals

R qi

0

`

1 − pi(~q
i)
´

d qi according to the defini-

tion of the price function. Since the price pi(~q
i) is less

or equal to 1, the bigger qi is the more the market maker
loses. Thus, the maximum loss for the market maker is
R +∞

0

`

1 − pi(~q
i)
´

d qi. As price functions are symmetric,
the above expression has the same value for all i.

A.7 Proof of Theorem 8

We prove the theorem by contradiction. Suppose a market
maker A with a price function p∗

i (~q) exhibits uniformly
greater or equal instantaneous liquidity than a market
maker B with a price function pi(~q) for all ~q. Then, consid-

ering all ~q i ≥ ~0, the instantaneous liquidity of security i for
the two markets must satisfy ρ∗

i (~q
i) ≥ ρi(~q

i). According
to the definition of instantaneous liquidity, we know that

∂p∗

i (~q
i)

∂qi
≤

∂pi(~q
i)

∂qi
∀qi ≥ 0.

Because p∗

i (~0) = pi(~0) = 1
N

due to the symmetry of cost
functions, the above inequality implies that

p
∗

i (~q
i) ≤ pi(~q

i) ∀qi ≥ 0.



Since market makers A and B are different, the equality in
the above expression only holds at some qi ≥ 0. Thus, we
have the following strict inequality,

Z +∞

0

“

1 − p
∗

i (~q
i)
”

d qi >

Z +∞

0

“

1 − pi(~q
i)
”

d qi.

According to Lemma 7, the left-hand and right-hand sides
of the inequality are the worst-case loss of market maker
A and B respectively. The inequality contradicts with the
fact that both market makers have the same worst-case
loss.

A.8 Proof of Theorem 9

Let’s consider a price function pi(~q
i) for an arbitrary mar-

ket maker, where the i-th element of ~q i is qi and all others
are zero. Because the market maker maintains an instan-
taneous liquidity level no lower than ρ, we have ρi(~q

i) ≥ ρ

for all ~q i. According to the definition of instantaneous
liquidity, the slope of the price function pi(~q

i) satisfies

∂pi(~q
i)

∂qi
≤

1

ρ
∀qi.

We define another price function

p
∗

i (~q
i) =

8

>

<

>

:

0 if qi < − ρ
N

,
qi
ρ

+ 1
N

if − ρ
N

≤ qi ≤
(N−1)ρ

N
,

1 if qi >
(N−1)ρ

N
.

It’s easy to verify that ρ∗

i (~q
i) ≥ ρ when − ρ

N
≤ qi ≤

(N−1)ρ
N

and p∗

i (~0) = 1
N

= pi(~0). However, p∗

i is not everywhere
differentiable.

We now prove that p∗

i (~q
i) ≥ pi(~q

i) for all qi > 0. For
easy illustration, denote p∗

i (~q
i) as p∗

i (qi) and pi(~q
i) as

pi(qi) since they are essentially functions of qi. When

qi >
(N−1)ρ

N
, we automatically have p∗

i (qi) ≥ pi(qi) because

pi(qi) ≤ 1. Suppose that there is a q̃i, 0 < q̃i ≤
(N−1)ρ

N
,

such that p∗

i (q̃i) < pi(q̃i). According to mean-value theo-
rem, there exists a q̂i ∈ (0, q̃i) such that

∂pi(q̂i)

∂qi
=

pi(q̃i) − pi(0)

q̃i − 0
>

p∗

i (q̃i) − p∗

i (0)

q̃i − 0
=

1

ρ
,

which means that ρi(q̂i) < ρ. This contradicts with the
fact that instantaneous liquidity is no lower than ρ. Hence,
p∗

i (~q
i) ≥ pi(~q

i) for all qi > 0. Since our price functions are
everywhere differentiable, the inequality is strict for some
qi > 0.

Combining p∗

i (~q
i) ≥ pi(~q

i) with Lemma 7, we have the
worst-case loss of a market maker with price function pi(~q

i)
to be

Z +∞

0

“

1 − pi(~q
i)
”

d qi >

Z +∞

0

“

1 − p
∗

i (~q
i)
”

d qi

=
(N − 1)2ρ

2N2
.


