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Abstract

We consider the problem of purchasing data for machine learning or statistical
estimation. The data analyst has a budget to purchase datasets from multiple data
providers. She does not have any test data that can be used to evaluate the col-
lected data and can assign payments to data providers solely based on the collected
datasets. We consider the problem in the standard Bayesian paradigm and in two
settings: (1) data are only collected once; (2) data are collected repeatedly and
each day’s data are drawn independently from the same distribution. For both
settings, our mechanisms guarantee that truthfully reporting one’s dataset is always
an equilibrium by adopting techniques from peer prediction: pay each provider
the mutual information between his reported data and other providers’ reported
data. Depending on the data distribution, the mechanisms can also discourage mis-
reports that would lead to inaccurate predictions. Our mechanisms also guarantee
individual rationality and budget feasibility for certain underlying distributions in
the first setting and for all distributions in the second setting.

1 Introduction

Data has been the fuel of the success of machine learning and data science, which is becoming a
major driving force for technological and economic growth. An important question is how to acquire
high-quality data to enable learning and analysis when data are private possessions of data providers.

Naively, we could issue a constant payment to data providers in exchange for their data. But data
providers can report more or less data than they actually have or even misreport values of their data
without affecting their received payments. Alternatively, if we have a test dataset, we could reward
data providers according to how well the model trained on their reported data performs on the test data.
However, if the test dataset is biased, this could potentially incentivize data providers to bias their
reported data toward the test set, which will limit the value of the acquired data for other learning or
analysis tasks. Moreover, a test dataset may not even be available in many settings. In this work, we
explore the design of reward mechanisms for acquiring high-quality data from multiple data providers
when a data buyer doesn’t have access to a test dataset. The ultimate goal is that, with the designed
mechanisms, strategic data providers will find that truthfully reporting their possessed dataset is their
best action and manipulation will lead to lower expected rewards. To make the mechanisms practical,
we also require our mechanisms to always have non-negative and bounded payments so that data
providers will find it beneficial to participate in (a.k.a. individual rationality) and the data buyer can
afford the payments.

In a Bayesian paradigm where data are generated independently conditioned on some unknown
parameters, we design mechanisms for two settings: (1) data are acquired only once, and (2) data
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are acquired repeatedly and each day’s data are independent from the previous days’ data. For both
settings, our mechanisms guarantee that truthfully reporting the datasets is always an equilibrium. For
some models of data distributions, data providers in our mechanisms receive strictly lower rewards in
expectation if their reported dataset leads to an inaccurate prediction of the underlying parameters,
a property we called sensitivity.1 While sensitivity doesn’t strictly discourage manipulations of
datasets that do not change the prediction of the parameters, it is a significant step toward achieving
strict incentives for truthful reporting one’s datasets, an ideal goal, especially because finding a
manipulation without affecting the prediction of the parameters can be difficult. Our mechanisms
guarantee IR and budget feasibility for certain underlying distributions in the first setting and for any
underlying distributions in the second setting.

Our mechanisms are built upon recent developments [17, 16] in the peer prediction literature. The
insight is that if we reward a data provider the mutual information [17] between his data and other
providers’ data, then by the data processing inequality, if other providers report their data truthfully,
this data provider will only decrease the mutual information, hence his reward, by manipulating his
dataset. We extend the peer prediction method developed by [16] to the data acquisition setting, and
to further guarantee IR and budget feasibility. One of our major technical contributions is the explicit
sensitivity guarantee of the peer-prediction style mechanisms, which is absent in the previous work.

2 Related Work

The problem of purchasing data from people has been investigated with different focuses, e.g.
privacy concerns [14, 10, 13, 23, 7, 28], effort and cost of data providers[25, 4, 1, 5, 30, 6], reward
allocation [12, 2]. Our work is the first to consider rewarding data without (good) test data that
can be used evaluate the quality of reported data. Similar to our setting, [12, 2] consider paying to
multiple data providers in a machine learning task. They use a test set to assess the contribution of
subsets of data and then propose a fair measurement of the value of each data point in the dataset,
which is based on the Shapley value in game theory. Both of the works do not formally consider
the incentive compatibility of payment allocation. [28] proposes a market framework that purchases
hypotheses for a machine learning problem when the data is distributed among multiple agents.
Again they assume that the market has access to some true samples and the participants are paid with
their incremental contributions evaluated by these true samples. Besides, there is a small literature
(see [9] and subsequent work) on aggregating datasets using scoring rules that also considers signal
distributions in exponential families.

The main techniques of this work come from the literature of peer prediction [19, 24, 8, 11, 26,
17, 16, 18, 15]. Peer prediction is the problem of information elicitation without verification. The
participants receive correlated signals of an unknown ground truth and the goal is to elicit the true
signals from the participants. In our problem, the dataset can be viewed as a signal of the ground
truth. What makes our problem more challenging than the standard peer prediction problem is that (1)
the signal space is much larger and (2) the correlation between signals is more complicated. Standard
peer prediction mechanisms either require the full knowledge of the underlying signal distribution,
or make assumptions on the signal distribution that are not applicable to our problem. [16] applies
the peer prediction method to the co-training problem, in which two participants are asked to submit
forecasts of latent labels in a machine learning problem. Our work is built upon the main insights of
[16]. We discuss the differences between our model and theirs in the model section, and show how
their techniques are applied in the result sections.

Our work is also related to Multi-view Learning (see [29] for a survey). But our work focuses on the
data acquisition, but not the machine learning methods used on the (multi-view) data.

3 Model

A data analyst wants to gather data for some future statistical estimation or machine learning tasks.
There are n data providers. The i-th data provider holds a dataset Di consisting of Ni data points
d

(1)
i , . . . , d

(Ni)
i with support Di. The data generation follows a standard Bayesian process. For each

1This means that a data provider can report a different dataset without changing his reward as long as the
dataset leads to the same prediction for the underlying parameters as his true dataset.
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data set Di, data points d(j)
i ∈ Di are i.i.d. samples conditioned on some unknown parameters θ ∈ Θ.

Let p(θ, D1, . . . , Dn) be the joint distribution of θ and n data providers’ datasets. We consider two
types of spaces for Θ in this paper: (1) θ has finite support, i.e., |Θ| = m is finite, and (2) θ has
continuous support, i.e. θ ∈ Rm and Θ ⊆ Rm. For the case of continuous support, to alleviate
computational issues, we consider a widely used class of distributions, an exponential family.

The data analyst’s goal is to incentivize the data providers to give their true datasets with a budget
B. She needs to design a payment rule ri(D̃1, . . . , D̃n) for i ∈ [n] that decides how much to pay
data provider i according to all the reported datasets D̃1, . . . , D̃n. The payment rule should ideally
incentivize truthful reporting, that is, D̃i = Di for all i.

Before we formally define the desirable properties of a payment rule, we note that the analyst will
have to leverage the correlation between people’s data to distinguish a misreported dataset from a
true dataset because all she has access to is the reported datasets. To make the problem tractable, we
thus make the following assumption about the data correlation: parameters θ contains all the mutual
information between the datasets. More formally, the datasets are independent conditioned on θ.

Assumption 3.1. D1, . . . , Dn are independent conditioned on θ,

p(D1, . . . , Dn|θ) = p(D1|θ) · · · p(Dn|θ).

This is definitely not an assumption that would hold for arbitrarily picked parameters θ and any
datasets. One can easily find cases where the datasets are correlated to some parameters other than θ.
So the data analyst needs to carefully decide what to include in θ and Di, by either expanding θ to
include all relevant parameters or reducing the content of Di to exclude all redundant data entries
that can cause extra correlations.

Example 3.1. Consider the linear regression model where provider i’s data points d(j)
i = (z

(j)
i , y

(j)
i )

consist of a feature vector z
(j)
i and a label y(j)

i . We have a linear model

y
(j)
i = θT z

(j)
i + ε

(j)
i .

Then datasets D1, . . . , Dn will be independent conditioning on θ as long as (1) different data
providers draw their feature vectors independently, i.e., z

(j1)
1 , . . . , z

(jn)
n are independent for all

j1 ∈ [N1], . . . , jn ∈ [Nn], and (2) the noises are independent.

We further assume that the data analyst has some insight about the data generation process.

Assumption 3.2. The data analyst possesses a commonly accepted prior p(θ) and a commonly
accepted model for data generating process so that she can compute the posterior p(θ|Di), ∀i,Di.

When |Θ| is finite, p(θ|Di) can be computed as a function of p(θ|di) using the method in Appendix B.
For a model in the exponential family, p(θ|Di) can be computed as in Definition 4.2.

Note that we do not always require the data analyst to know the whole distribution p(Di|θ), it suffices
for the data analyst to have the necessary information to compute p(θ|Di).

Example 3.2. Consider the linear regression model in Example 3.1. We use zi to represent all the
features in Di and use yi to represent all the labels in Di. If the features zi are independent from θ,
the data analyst does not need to know the distribution of zi. It suffices to know p(yi|zi,θ) and p(θ)
to know p(θ|Di) because

p(θ|(zi,yi)) ∝ p((zi,yi)|θ)p(θ) = p(yi|zi,θ)p(zi|θ)p(θ) = p(yi|zi,θ)p(zi)p(θ)

∝ p(yi|zi,θ)p(θ).

Finally we assume that the identities of the providers can be verified.

Assumption 3.3. The data analyst can verify the data providers’ identities, so one data provider can
only submit one dataset and get one payment.

We now formally introduce some desirable properties of a payment rule. We say that a payment rule
is truthful if reporting true datasets is a weak equilibrium, that is, when the others report true datasets,
it is also (weakly) optimal for me to report the true dataset (based on my own belief).
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Definition 3.1 (Truthfulness). Let D−i be the datasets of all providers except i. A payment
rule r(D1, . . . , Dn) is truthful if: for any (commonly accepted model of) underlying distribution
p(θ, D1, . . . , Dn), for every data provider i and any realization of his dataset Di, when all other
data providers truthfully report D−i, truthfully reporting Di leads to the highest expected payment,
where the expectation is taken over the distribution of D−i conditioned on Di, i.e.,

ED−i∼p(D−i|Di)[ri(Di, D−i)] ≥ ED−i∼p(D−i|Di)[ri(D
′
i, D−i)], ∀i,Di, D

′
i.

Note that this definition does not require the agents to actually know the conditional distribution and
to be able to evaluate the expectation themselves. It is a guarantee that no matter what the underlying
distribution is, truthfully reporting is an equilibrium.

Because truthfulness is defined as a weak equilibrium, it does not necessarily discourage misreport-
ing.2 What it ensures is that the mechanism does not encourage misreporting.3 So, we want a stronger
guarantee than truthfulness. We thus define sensitivity: the expected payment should be strictly lower
when the reported data does not give the accurate prediction of θ.

Definition 3.2 (Sensitivity). A payment rule r(D1, . . . , Dn) is sensitive if for any (commonly ac-
cepted model of) underlying distribution p(θ, D1, . . . , Dn), for any provider i and any realiza-
tion of his dataset Di, when all other providers j 6= i report D̃j(Dj) with accurate posterior
p(θ|D̃j(Dj)) = p(θ|Dj), we have (1) truthfully reporting Di leads to the highest expected payment

ED−i∼p(D−i|Di)[ri(Di, D̃−i(D−i))] ≥ ED−i∼p(D−i|Di)[ri(D
′
i, D̃−i(D−i))], ∀D′i

and (2) reporting a dataset D′i with inaccurate posterior p(θ|D′i) 6= p(θ|Di) is strictly worse than
reporting a dataset D̃i with accurate posterior p(θ|D̃i) = p(θ|Di),

ED−i∼p(D−i|Di)[ri(D̃i, D̃−i(D−i))] > ED−i∼p(D−i|Di)[ri(D
′
i, D̃−i(D−i))],

Furthermore, let ∆i = p(θ|D′i)− p(θ|Di), a payment rule is α-sensitive for agent i if

ED−i∼p(D−i|Di)[ri(Di, D̃−i(D−i))]− ED−i∼p(D−i|Di)[ri(D
′
i, D̃−i(D−i))] ≥ α‖∆i‖,

for all Di, D
′
i and reports D̃−i(D−i) that give the accurate posteriors.

Our definition of sensitivity guarantees that at an equilibrium, the reported datasets must give the
correct posteriors p(θ|D̃i) = p(θ|Di). We can further show that at an equilibrium, the analyst will
get the accurate posterior p(θ|D1, . . . , Dn).

Lemma 3.1. When D1, . . . , Dn are independent conditioned on θ, for any (D1, . . . , Dn) and
(D̃1, . . . , D̃n), if p(θ|Di) = p(θ|D̃i) ∀i, then p(θ|D1, . . . , Dn) = p(θ|D̃1, . . . , D̃n).

A more ideal property would be that the expected payment is strictly lower for any dataset D′i 6= Di.
Mechanisms that satisfy sensitivity can be viewed as an important step toward this ideal goal, as
the only possible payment-maximizing manipulations are to report a dataset D̃i that has the correct
posterior p(θ|D̃i) = p(θ|Di). Arguably, finding such a manipulation can be challenging. Sensitivity
guarantees the accurate prediction of θ at an equilibrium.

Second, we want a fair payment rule that is indifferent to data providers’ identities.

Definition 3.3 (Symmetry). A payment rule r is symmetric if for all permutation of n elements π(·),
ri(D1, . . . , Dn) = rπ(i)(Dπ(1), . . . , Dπ(n)) for all i.

Third, we want non-negative payments and the total payment should not exceed the budget.

Definition 3.4 (Individual rationality and budget feasibility). A payment rule r is individu-
ally rational if ri(D1, . . . , Dn) ≥ 0, ∀i,D1, . . . , Dn. A payment rule r is budget feasible if∑n
i=1 ri(D1, . . . , Dn) ≤ B, ∀D1, . . . , Dn.

We will consider two acquisition settings in this paper:

2A constant payment rule is just a trivial truthful payment rule.
3Using a fixed test set may encourage misreporting.
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One-time data acquisition. The data analyst collects data in one batch. In this case, our problem
is very similar to the single-task forecast elicitation in [16]. But our model considers the budget
feasibility and the IR, whereas they only consider the truthfulness of the mechanism.

Multiple-time data acquisition. The data analyst repeatedly collects data for T ≥ 2 days. On day t,
(θ(t), D

(t)
1 , . . . , D

(t)
n ) is drawn independently from the same distribution p(θ, D1, . . . , Dn). The

analyst has a budget B(t) and wants to know the posterior of θ(t), p(θ(t)|D(t)
1 , . . . , D

(t)
n ). In this

case, our setting differs from the multi-task forecast elicitation in [16] because providers can decide
their strategies on a day based on all the observed historical data before that day.4 The multi-task
forecast elicitation in [16] asks the agents to submit forecasts of latent labels in multiple similar
independent tasks. It is assumed that the agent’s forecast strategy for one task only depends on his
information about that task but not the information about other tasks.

4 Preliminaries

In this section, we introduce some necessary background for developing our mechanisms. We first
give the definitions of exponential family distributions. Our designed mechanism will leverage the
idea of mutual information between reported datasets to incentivize truthful reporting.

4.1 Exponential Family

Definition 4.1 (Exponential family [21]). A likehihood function p(x|θ), for x = (x1, . . . , xn) ∈ Xn
and θ ∈ Θ ⊆ Rm is said to be in the exponential family in canonical form if it is of the form

p(x|θ) =
1

Z(θ)
h(x) exp

[
θTφ(x)

]
or p(x|θ) = h(x) exp

[
θTφ(x)−A(θ)

]
(1)

Here φ(x) ∈ Rm is called a vector of sufficient statistics, Z(θ) =
∫
Xn h(x) exp

[
θTφ(x)

]
is called

the partition function, A(θ) = lnZ(θ) is called the log partition function.

In Bayesian probability theory, if the posterior distributions p(θ|x) are in the same probability
distribution family as the prior probability distribution p(θ), the prior and posterior are then called
conjugate distributions, and the prior is called a conjugate prior for the likelihood function.
Definition 4.2 (Conjugate prior for the exponential family [21]). For a likelihood function in the
exponential family p(x|θ) = h(x) exp

[
θTφ(x)−A(θ)

]
. The conjugate prior for θ with parameters

ν0, τ 0 is of the form

p(θ) = P(θ|ν0, τ 0) = g(ν0, τ 0) exp
[
ν0θ

T τ 0 − ν0A(θ)
]
. (2)

Let s = 1
n

∑n
i=1 φ(xi). Then the posterior of θ can be represented in the same form as the prior

p(θ|x) ∝ exp
[
θT (ν0τ 0 + ns)− (ν0 + n)A(θ)

]
= P

(
θ|ν0 + n,

ν0τ 0 + ns

ν0 + n

)
,

where P
(
θ|ν0 + n, ν0τ0+ns

ν0+n

)
is the conjugate prior with parameters ν0 + n and ν0τ0+ns

ν0+n .

A lot of commonly used distributions belong to the exponential family. Gaussian, Multinoulli,
Multinomial, Geometric, etc. Due to the space limit, we introduce only the definitions and refer the
readers who are not familiar with the exponential family to [21] for more details.

4.2 Mutual Information

We will use the point-wise mutual information and the f -mutual information gain defined in [16].
We introduce this notion of mutual information in the context of our problem.

4This is not to say that the providers will update their prior for θ(t) using the data on first t − 1 days.
Because we assume that θ(t) is independent from θ(t−1), . . . ,θ(t−1), so the data on first t− 1 days contains
no information about θ(t). We use the same prior p(θ) throughout all T days. What it means is that when the
analyst decides the payment for day t not only based on the report on day t but also the historical reports, the
providers may also use different strategies for different historical reports.
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Definition 4.3 (Point-wise mutual information). We define the point-wise mutual information between
two datasets D1 and D2 to be

PMI(D1, D2) =

∫
θ∈Θ

p(θ|D1)p(θ|D2)

p(θ)
dθ. (3)

For finite case, we define PMI(D1, D2) =
∑
θ∈Θ

p(θ|D1)p(θ|D2)
p(θ) dθ.

When |Θ| is finite or a model in the exponential family is used, the PMI will be computable.
Lemma 4.1. When |Θ| is finite, PMI(·) can be computed in O(|Θ|) time. If a model in exponential
family is used, so that the prior and all the posterior of θ can be written in the form

p(θ) = P(θ|ν0, τ 0) = g(ν0, τ 0) exp
[
ν0θ

T τ 0 − ν0A(θ)
]
,

p(θ|Di) = P(θ|νi, τ i) and p(θ|D−i) = P(θ|ν−i, τ−i), then the point-wise mutual information
can be computed as

PMI(Di, D−i) =
g(νi, τ i)g(ν−i, τ−i)

g(ν0, τ 0)g(νi + ν−i − ν0,
νiτ i+ν−iτ−i−ν0τ0

νi+ν−i−ν0 )
.

For single-task forecast elicitation, [16] proposes a truthful payment rule.

Definition 4.4 (log-PMI payment [16]). Suppose there are two data providers reporting D̃A and
D̃B respectively. Then the log-PMI rule pays them rA = rB = log(PMI(D̃A, D̃B)).

Proposition 4.1. When the log-PMI rule is used, the expected payment equals the mutual information
between D̃A and D̃B , where the expectation is taken over the distribution of D̃A and D̃B .

We now give the definition of the f -mutual information. An f -divergence is a function that measures
the difference between two probability distributions.
Definition 4.5 (f -divergence). Given a convex function f with f(1) = 0, for two distributions over

Ω, p, q ∈ ∆Ω, define the f -divergence of p and q to be Df (p, q) =
∫
ω∈Ω

p(ω)f
(
q(ω)
p(ω)

)
.

The f -mutual information of two random variables is a measure of the mutual dependence of two
random variables, which is defined as the f -divergence between their joint distribution and the
product of their marginal distributions.

In duality theory, the convex conjugate of a function is defined as follows.
Definition 4.6 (Convex conjugate). For any function f : R → R, define the convex conjugate
function of f as f∗(y) = supx xy − f(x).

The following inequality ([22, 16]) will be used in our proof.
Lemma 4.2 (Lemma 1 in [22]). For any differentiable convex function f with f(1) = 0, any two
distributions over Ω, p, q ∈ ∆Ω, let G be the set of all functions from Ω to R, then we have

Df (p, q) ≥ sup
g∈G

∫
ω∈Ω

g(ω)q(ω)− f∗(g(ω))p(ω) dω = sup
g∈G

Eqg − Epf∗(g).

A function g achieves equality if and only if g(ω) ∈ ∂f
(
q(ω)
p(ω)

)
∀ω with p(ω) > 0, where ∂f

( q(ω)
p(ω)

)
represents the subdifferential of f at point q(ω)/p(ω).

5 One-time Data Acquisition

In this section we apply [16]’s log-PMI payment rule to our one-time data acquisition problem.
The log-PMI payment rule ensures truthfulness, but its payment can be negative or unbounded or
even ill-defined. So we mainly focus on the mechanism’s sensitivity, budget feasibility and IR. To
guarantee budget feasibility and IR, our mechanism requires a lower bound and an upper bound of
PMI, which may be difficult to find for some models in the exponential family.
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If the analyst knows the distribution p(Di|θ), then she will be able to compute p(D−i|Di) =∑
θ p(D−i|θ)p(θ|Di). In this case, we can employ peer prediction mechanisms [19] to design

payments and guarantee truthfulness. In Appendix C.1, we give an example of such mechanisms.

In this work we do not assume that p(Di|θ) is known (see Example 3.2). When p(Di|θ) is unknown
but the analyst can compute p(θ|Di), our idea is to use the log-PMI payment rule in [16] and then add
a normalization step to ensure budget feasibility and IR. However the log-PMI will be ill-defined if
PMI = 0. To avoid this, for each possible D−i, we define set Di(D−i) = {Di|PMI(Di, D−i) >

0} and the log-PMI will only be computed for D̃i ∈ Di(D̃−i).

The normalization step will require an upper bound R and lower bound L of the log-PMI payment.5
If |Θ| is finite, we can find a lower bound and an upper bound in polynomial time, which we prove in
Appendix C.2. When a model in the exponential family is used, it is more difficult to find L and R.
By Lemma 4.1, if the g function is bounded, we will be able to bound the payment. For example, if
we are estimating the mean of a univariate Gaussian with known variance, L and R will be bounded
if the number of data points is bounded. Details can be found in Appendix C.3. Our mechanism
works as follows.

Mechanism 1: One-time data collecting mechanism.

(1) Ask all data providers to report their datasets D̃1, . . . , D̃n.
(2) If data provider i’s reported dataset D̃i ∈ Di(D̃−i), we compute a score for his dataset
si = logPMI(D̃i, D̃−i).
(3) The final payment for data provider i is:

ri(D̃1, . . . , D̃n) =

{
B
n ·

si−L
R−L if D̃i ∈ Di(D̃−i)

0 otherwise.

Theorem 5.1. Mechanism 1 is IR, truthful, budget feasible, symmetric.

Note that by Proposition 4.1, the expected payment for a data provider is decided by the mutual
information between his data and other people’s data. The payments are efficiently computable for
finite-size Θ and for models in exponential family (Lemma 4.1).

Next, we discuss the sensitivity. In [16], checking whether the mechanism will be sensitive requires
knowing whether a system of linear equations (which has an exponential size in our problem) has a
unique solution. So it is not clear how likely the mechanisms will be sensitive. In our data acquisition
setting, we are able to give much stronger and more explicit guarantees. This kind of stronger
guarantee is possible because of the special structure of the reports (or the signals) that each dataset
consists of i.i.d. samples.

We first define some notations. When |Θ| is finite, letQ−i be a (Πj∈[n],j 6=i|Dj |Nj )× |Θ| matrix that
represents the conditional distribution of θ conditioning on every realization of D−i. So the element
in row D−i and column θ is equal to p(θ|D−i). We also define the data generating matrix Gi with
|Di| rows and |Θ| columns. Each row corresponds to a possible data point di ∈ Di in the dataset and
each column corresponds to a θ ∈ Θ. The element in the row corresponding to data point di and the
column θ is p(θ|di). We give the sufficient condition for the mechanism to be sensitive.
Theorem 5.2. When |Θ| is finite, Mechanism 1 is sensitive if for all i, Q−i has rank |Θ|.

Since the size of Q−i can be exponentially large, it may be computationally infeasible to check the
rank of Q−i. We thus give a simpler condition that only uses Gi, which has a polynomial size.
Definition 5.1. The Kruskal rank (or k-rank) of a matrix M , denoted by rankk(M), is the maximal
number r such that any set of r columns of M is linearly independent.
Corollary 5.1. When |Θ| is finite, Mechanism 1 is sensitive if for all i,

∑
j 6=i (rankk(Gj)− 1) ·

Nj + 1 ≥ |Θ|, where Nj is the number of data points in Dj .

In Appendix C.5.1, we also give a lower bound for α so that Mechanism 1 is α-sensitive.

Our sensitivity results (Theorem 5.2 and Corollary 5.1) basically mean that when there is enough
correlation between other people’s data D−i and θ, the mechanism will be sensitive. Corollary 5.1

5WLOG, we can assume that L < R here. Because L = R implies that all agents’ datasets are independent.
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quantifies the correlation using the k-rank of the data generating matrix. It is arguably not difficult
to have enough correlation: a naive relaxation of Corollary 5.1 says that assuming different θ lead
to different data distributions (so that rankk(Gj) ≥ 2), the mechanism will be sensitive if for any
provider i, the total number of other people’s data points ≥ |Θ| − 1.

When Θ ⊆ Rm, it becomes more difficult to guarantee sensitivity. Suppose the data analyst uses a
model from the exponential family so that the prior and all the posterior of θ can be written in the
form in Lemma 4.1. The sensitivity of the mechanism will depend on the normalization term g(ν, τ )
(or equivalently, the partition function) of the pdf. More specifically, define

hD−i
(νi, τ i) =

g(νi, τ i)

g(νi + ν−i − ν0,
νiτ i+ν−iτ−i−ν0τ0

νi+ν−i−ν0 )
, (4)

then we have the following sufficient and necessary conditions for the sensitivity of the mechanism.
Theorem 5.3. When Θ ⊆ Rm, if the data analyst uses a model in the exponential family, then
Mechanism 1 is sensitive if and only if for any (ν′i, τ

′
i) 6= (νi, τ i), we have PrD−i [hD−i(ν

′
i, τ
′
i) 6=

hD−i(νi, τ i)] > 0.

The theorem basically means that the mechanism will be sensitive if any pairs of different reports
that will lead to different posteriors of θ can be distinguished by hD−i

(·) with non-zero probability.
However, for different models in the exponential family, this is not always true. For example, if we
estimate the mean µ of a univariate Gaussian with a known variance and the Gaussian conjugate
prior is used, then the normalization term only depends on the variance but not the mean, so in this
case h(·) can only detect the change in variance, which means that the mechanism will be sensitive
to replication and withholding, but not necessarily other types of manipulations. But if we estimate
the mean of a Bernoulli distribution whose conjugate prior is the Beta distribution, then the partition
function will be the Beta function, which can detect different posteriors and thus the mechanism will
be sensitive. See Appendix C.4 for more details. The missing proofs can be found in Appendix C.5.

6 Multiple-time Data Acquisition

Now we consider the case when the data analyst needs to repeatedly collect data for the same task.
At day t, the analyst has a budget B(t) and a new ensemble (θ(t), D

(t)
1 , . . . , D

(t)
n ) is drawn from the

same distribution p(θ, D1, . . . , Dn), independent of the previous data. Again we assume that the
data generating distribution p(Di|θ) can be unknown, but the analyst is able to compute p(θ|Di))
after seeing the data(See Example 3.2). The data analyst can use the one-time purchasing mechanism
(Section 5) at each round. But we show that if the data analyst can give the payment one day after the
data is reported, a broader class of mechanisms can be applied to guarantee the desirable properties,
which ensures bounded payments without any assumptions on the underlying distribution. Our
method is based on the f -mutual information gain in [16] for multi-task forecast elicitation. The
payment function in [16] has a minor error. We correct the payment function in this work.6

Our mechanism (Mechanism 2) works as follows. On day t, the data providers are first asked to
report their data for day t. Then for each provider i, we use the other providers’ reported data on day
t− 1 and day t to evaluate provider i’s reported data on day t− 1. A score si will be computed for
each provider’s D̃(t−1)

i . The score si is defined in the same way as the f -mutual information gain
in [16], which is specified by a differentiable convex function f : R→ R and its convex conjugate
f∗ (Definition 4.6),

si = f ′

(
1

PMI(D̃
(t−1)
i , D̃

(t)
−i)

)
− f∗

(
f ′

(
1

PMI(D̃
(t−1)
i , D̃

(t−1)
−i )

))
.7 (5)

The score is defined in this particular way because it can guarantee truthfulness according to
Lemma 4.2. It can be proved that when the agents truthfully report Di, the expectation of si will
reach the supremum in Lemma 4.2, and will then be equal to the f -mutual information of D(t−1)

i

6The term PMI(·) in the payment function of [16] should actually be 1/PMI(·). This is because when
[16] cited Lemma 1 in [22], q(·)/p(·) is mistakenly replaced by p(·)/q(·).

7Here we assume that PMI(·) is non-zero. For PMI(·) = 0, we can just do the same as in the one-time
acquisition mechanism.
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and D(t−1)
−i . We can further prove that if data provider i reports a dataset D̃(t−1)

i that leads to a

different posterior p(θ|D̃(t−1)
i ) 6= p(θ|D(t−1)

i ), the expectation of si will deviate from the supremum
in Lemma 4.2 and thus get lower.

According to the definition (5), if we carefully choose the convex function f to be a differentiable
convex function with a bounded derivative f ′ ∈ [0, U ] and with the convex conjugate f∗ bounded
on [0, U ], then the scores s1, . . . , sn will always be bounded. We can then normalize s1, . . . , sn so
that the payments are non-negative and the total payment does not exceed B(t−1). Here we give one
possible choice of f ′ that can guarantee bounded scores: the Logistic function 1

1+e−x .

f(x) f ′(x) range of f ′(x) f∗(x) range of f∗(x)
ln(1 + ex) 1

1+e−x [ 1
2 , 1) on R≥0 x lnx+ (1− x) ln(1− x) [− ln 2, 0] on [ 1

2 , 1)

Finally, if day t is the last day, we adopt the one-time mechanism to pay for day t’s data as well.

Mechanism 2: Multi-time data collecting mechanism.
Given a differentiable convex function f with f ′ ∈ [0, U ] and f∗ bounded on [0, U ]
for t = 1, . . . , T do

(1) On day t, ask all data providers to report their datasets D̃(t)
1 , . . . , D̃

(t)
n .

(2) If t is the last day t = T , use the payment rule of Mechanism 1 to pay for day T ’s data or
just give each data provider B(T )/n.
(3) If t > 1, give the payments for day t− 1 as follows. First compute all the scores si as in (5).
Then normalize the scores so that the total payment is no more than B(t−1). Let the range of the
scores be [L,R]. Assign payments

ri(D̃
(t−1)
1 , . . . , D̃

(t−1)
n ) = B(t−1)

n · si−LR−L .
end for

Our first result is that Mechanism 2 guarantees all the basic properties of a desirable mechanism.
Theorem 6.1. Given any differentiable convex function f that has (1) a bounded derivative f ′ ∈
[0, U ] and (2) the convex conjugate f∗ bounded on [0, U ], Mechanism 2 is IR, budget feasible, truthful
and symmetric in all T rounds.

If we choose computable f ′ and f∗ (e.g. f ′ equal to the Logistic function), the payments will also be
computable for finite-size Θ and for models in exponential family (Lemma 4.1). If we use a strictly
convex function f with f ′ > 0, then Mechanism 2 has basically the same sensitivity guarantee as
Mechanism 1 in the first T − 1 rounds. We defer the sensitivity analysis to Appendix D.1. The
missing proofs in this section can be found in Appendix D.2.

7 Discussion

Our work leaves some immediate open questions. Our one-time data acquisition mechanism requires
a lower bound and an upper bound of PMI, which may be difficult to find for some models in the
exponential family. Can we find a mechanism that would work for any data distribution, just as
our multi-time data acquisition mechanism? Another interesting direction is to design stronger
mechanisms to strengthen the sensitivity guarantees. Finally, our method incentivizes truthful
reporting, but it is not guaranteed that datasets that give more accurate posteriors will receive higher
payments (in expectation). It would be desirable if the mechanism could have this property as well.

An observation of our mechanism also raises an important issue of adversarial attacks for data
acquisition. Our mechanism guarantees that the data holders who have some data will truthfully
report the data at the equilibrium. But an adversary without any real data can submit some fake
data and get a positive payoff. The situation is even worse if the adversary can create multiple
fake accounts to submit data. This is tied to the individual rationality guarantee that we placed on
our mechanism, which requires the payments to always be non-negative and which is generally
considered an important property for incentivizing desirable behavior of strategic agents. However,
this observation suggests that future work needs to carefully explore the tradeoff between guarantees
for strategic agents and guarantees for adversarial agents for data acquisition problems.
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Broader Impact

The results in this work are mainly theoretical. They contribute to the ongoing efforts on encouraging
data sharing, ensuring data quality and distributing values of generated from data back to data
contributors.
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