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1 Introduction

Designing machine learning algorithms that are robust to noise in training data has lately been a
subject of intense research. A large body of work addresses stochastic noise [12, 7], while another
one studies adversarial noise [11, 2] in which errors are introduced by an adversary with the explicit
purpose of sabotaging the algorithm. This is often too pessimistic, and leads to negative results.
The literature on game theory and mechanism design offers an interesting middle ground: strategic
noise. In this paradigm, training data is provided by strategic sources that purposefully introduce
errors for maximizing their own benefit. This is less pessimistic than adversarial noise where the
errors are introduced for simply harming the algorithm.

There is a growing body of research on designing machine learning algorithms that are robust to
strategic noise. This research can be categorized using three key axes: i) manipulable information,
ii) goal of the agents, and iii) use of payments and incentive guarantee. On the first axis, most
papers assume that independent variables (feature vectors) are public information, and dependent
variables (labels) are private, manipulable information [6, 15, 18], though some papers also design
algorithms robust to strategic feature vectors [8]. On the second axis, one body of research focuses
on agents motivated by privacy concerns (with a tradeoff between accuracy and privacy) [5, 3], while
another one focuses on agents who want the algorithm to make accurate assessment on their own
sample, even if this reduced the overall accuracy. Such strategic manipulations have been studied
for estimation [4], classification [13, 14, 15], and regression [19, 6] problems. On the third axis,
the research differs on whether monetary payments to agents are allowed [3], and on how strongly
to guarantee truthful reporting (the stronger “strategyproofness” requirement [18, 19, 15] versus the
weaker Bayes-Nash equilibrium requirement [9, 5]).

In this paper, we focus on the problem of linear regression, i.e., fitting a hyperplane through given
data, which is studied extensively in statistics and machine learning. We consider agents who can
manipulate their dependent variables in order to increase the algorithm’s accuracy on their own
samples, and design strategyproof mechanisms without payments.

Our contributions. In this work, we extend results about two existing families of strategyproof
mechanisms, introduce a novel family of strategyproof mechanisms, and along the way, provide two
useful (albeit non-constructive) characterizations of strategyproof mechanisms for linear regression.
More specifically, Dekel et al. [6] show that the empirical risk minimization (ERM) with the L1

loss (in short, L1-ERM), coupled with a specific tie-breaking rule, is strategyproof. We extend this
result and show that adding arbitrary agent-specific weights and convex regularization to the risk
function preserves strategyproofness. Moreover, Perote and Perote-Peña [19] introduce the family
of Clockwise Repeated Median (CRM) mechanisms, parametrized by two subsets of agents, S and
S′. They claim that CRM is strategyproof when S ⊆ S′ or S ∩ S′ = ∅. We identify a serious bug
in their proof, and refute their claim by producing counterexamples violating strategyproofness. We
then reclaim strategyproofness under more restrictive conditions on S and S′. In an effort to pro-
vide a short and algebraic proof of strategyproofness (as opposed to the long and geometric proof by
Perote and Perote-Peña [19]), we discover two novel characterizations of strategyproof mechanisms,
which are also useful for “sensitivity analysis”. Finally, we introduce a novel family of strategyproof
mechanisms by imposing a stronger condition known as impartiality, which requires that the out-
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come for agent i be independent of her report. While impartiality trivially implies strategyproofness,
it is apriori unclear if non-trivial impartial mechanisms even exist for linear regression. We provide
a large family of impartial mechanisms, and prove that our family is complete for two dimensions
(i.e., fitting a line through points in R2).

2 Model

Let N = [n] be the set of agents. In a collection of data points D = (xi, yi)i∈N , the independent
variables x = (xi)i∈N is public information, where xi ∈ Rd for d ∈ N, and the dependent variable
yi ∈ R is private to agent i. For fixed public information x, a linear regression mechanism M
takes as input the reported private information ỹ = (ỹi)i∈N , and returns a hyperplane in the form
of its normal vector M(ỹ) ∈ Rd. The outcome for agent i is given by ŷi(M(ỹ)) = M(ỹ)Txi. As
the public information x is non-manipulable, the mechanisms, functions, and constants we define
throughout the paper can depend on x, which we omit from notation.

Each agent i has single peaked preferences over her outcome, denoted <i, with peak at yi: ∀a, b ∈
R, (b ≥ a > yi) ∨ (b ≤ a < yi) ⇒ yi �i a <i b. The agent reports ỹi in order to achieve the
most preferred outcome. MechanismM is called strategyproof if for each agent i, reporting ỹi = yi
results in the most preferred outcome, irrespective of the reports of the other agents.

3 Strategyproof Linear Regression

There are two known (claimed) approaches to designing strategyproof linear regression mechanisms.

L1-ERM: Dekel et al. [6] show that using empirical risk minimization (ERM) with the L1 loss, and
breaking ties by minimizing the L2 norm of the regressor, yields a strategyproof mechanism. Their
algorithm is a two step procedure. Let r(β) =

∑
i∈N |ỹi − βTxi| be the empirical L1 risk. Then:

i) compute r∗ ← minβ r(β), and ii) return β∗ ← argminβ:r(β)=r∗ ‖β‖2. In fact, they establish
group-strategyproofness (i.e., even groups of agents cannot gain by misreporting collectively) for
possibly nonlinear regression if the minimization is over a convex family of regression functions.
We extend their result by showing that adding agent-specific weights independent of the private
information and any convex regularization to the risk function preserves group-strategyproofness.
For simplicity, we state the result only for strategyproofness and for linear regression. Our proof
essentially follows the line of argument presented by Dekel et al. [6].
Theorem 1. Let wi ∈ R denote the weight of agent i ∈ N , and let h be a convex regularizer.
Define the risk function r(β) =

∑
i∈N wi · |ỹi −βTxi|+ h(β)1. Then, the following mechanism is

strategyproof: i) compute r∗ ← minβ r(β), and ii) return β∗ ← argminβ:r(β)=r∗ ‖β‖2.

Clockwise Repeated Median (CRM): The second approach is suggested by Perote and Perote-Peña
[19] for the special case of 2D linear regression, i.e., for fitting a line through points on a plane.
They introduce the family of CRM mechanisms parametrized by two sets of agents S, S′ ⊆ N .
Informally, the (S, S′)-CRM mechanism operates as follows. First, for each i ∈ S, the mechanism
finds the “clockwise angle”2 to each point j ∈ S′, and keeps the median of those. Then, it picks
i∗ ∈ S by taking the median of the median clockwise angles, and draws the line passing through i∗
and j∗, where j∗ ∈ S′ produces the median of all clockwise angles from i∗ to points in S′. For a
more rigorous definition, we refer the reader to the original paper [19]. Perote and Perote-Peña [19]
claim that (S, S′)-CRM is strategyproof when S ⊆ S′ or S∩S′ = ∅. Their proof is long, geometric,
and difficult to understand. We identify a serious bug in their proof, and refute their overall claim by
producing an example with S ⊆ S′ and another example with S∩S′ = ∅ such that the corresponding
(S, S′)-CRMs violate strategyproofness. Fortunately, we manage to reclaim strategyproofness for
three interesting cases given by stricter constraints on S and S′. Our proof is short, algebraic, and
uses two novel characterizations of strategyproof mechanisms that we introduce (described later).
Theorem 2. (S, S′)-CRM is strategyproof when i) S = S′, ii) |S| = 1 or |S′| = 1, or iii) S and S′
are separable, i.e., maxi∈S xi < minj∈S′ xj or mini∈S xi > maxj∈S′ xj .

1Note that a strictly convex regularizer h can be used to eliminate the need for tie-breaking as the first step
now yields a unique minimizer.

2This belongs to [0, 2π), where 0 means j is directly above i, π/2 means j is exactly to the left of i, etc.
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The first case is a variant of the repeated median estimator of Siegel [20], and the third case precisely
coincides with the well-known family of resistant line methods [10] from the statistics literature.
Two popular examples of resistant line methods are the Brown-Mood [1] and Tukey estimators [21].

Impartial mechanisms. A mechanism is called impartial if the outcome for each agent i (in our
case, M(ỹ)Txi) is independent of the report of agent i (in our case, ỹi). It is apriori unclear if non-
trivial impartial mechanisms even exist for linear regression. We provide a large family of non-trivial
impartial (thus strategyproof) mechanisms, and show that it characterizes impartial mechanisms in
2D (i.e., for fitting a line through points on a plane).

Theorem 3. For functions {gi : R → Rd}i∈N and constant c ∈ R, mechanism M under which
ŷi(M(ỹ)) =

∑
j∈N\{i} 〈gj(ỹj),xi − xj〉 + c for each i ∈ N is a valid and impartial mechanism

for linear regression, where 〈·, ·〉 is the inner product. This is the set of all impartial mechanisms for
linear regression when d = 1.

Characterizations of strategyproof mechanisms. We propose two characterizations of strate-
gyproof mechanisms for linear regression. They build upon the characterization of strategyproof
mechanisms for aggregating real-valued reports by Moulin [16]. We first need the following defini-
tion.

Definition 1 (Locally Constant Function). For A,B ⊆ R, function f : A → B is called locally
constant at x ∈ A if there exists ε > 0 such that f(x′) = f(x) for all x′ ∈ [x− ε, x+ ε].

Theorem 4. Mechanism M for linear regression is strategyproof if and only if one of the following
two conditions hold.

1. For every ỹ−i ∈ Rn−1 and i ∈ N , there exist `i, hi ∈ R ∪ {−∞,∞} such that for every
ỹi ∈ R, we have ŷi(M(ỹ)) = med(ỹi, `i, hi).

2. For every ỹ−i ∈ Rn−1 and i ∈ N , the function fi(·) = ŷi(M(·, ỹ−i)) is continuous, and
for every ỹi ∈ R, either fi(ỹi) = ỹi or fi is locally constant at ỹi.

The second condition provides a useful way for checking strategyproofness of a proposed mecha-
nism and we use it to establish strategyproofness of CRM mechanisms in Theorem 2. In contrast,
the first condition provides a simple analytical form. Note that `i and hi define the influence region
of agent i: all other reports fixed, if the agent reports ỹi ∈ [`i, hi], she becomes a dictator (ŷi = ỹi),
and if she reports a value less than `i (resp. higher than hi), her outcome remains fixed at `i (resp.
hi). This, in particular, implies a weaker property: an agent on one side of the hyperplane cannot
change her outcome as long as she remains on the same side. This weaker property was observed for
L1-ERM by Narula and Wellington [17], who argued that this makes L1-ERM robust to fluctuations
in the dependent variables. They computed the influence regions in L1-ERM on certain examples,
and termed it “sensitivity analysis”. As a corollary of our characterization, we provide an algorithm
to compute exactly the influence bounds usingO(d ·nd+1 · log n) calls to the mechanism in question.
We omit the details due to lack of space.

4 Ongoing & Future Work

The results presented here are part of ongoing work, in which we are exploring a number of open
questions. First, while theL1-ERM is group-strategyproof, we do not know if (though we conjecture
that) CRM mechanisms are group-strategyproof. Second, unlike the L1-ERM and the impartial
mechanisms, the CRM mechanisms are only defined for 2D. We are working on extending them
to higher dimensions; however, this seems tricky because the “angle” in higher dimensions is a
vector, so the “single-parameter” result of Moulin [16] cannot be applied directly. Finally, the most
ambitious challenge is to find a constructive characterization of strategyproof mechanisms for linear
regression. We hope to be able to derive a characterization using residuals, which seem to play a
key role in all the existing families of strategyproof mechanisms. Such a characterization may allow
us to identify the most efficient strategyproof mechanism, where efficiency is measured by the mean
squared error.

3



References
[1] G. W. Brown and A. M. Mood. On median tests for linear hypotheses. In Proceedings of the

2nd Berkeley Symposium on Mathematical Statistics and Probability, pages 159–166, 1951.

[2] N. H. Bshouty, N. Eiron, and E. Kushilevitz. PAC learning with nasty noise. Theoretical
Computer Science, 288(2):255–275, 2002.

[3] Y. Cai, C. Daskalakis, and C. H. Papadimitriou. Optimum statistical estimation with strate-
gic data sources. In Proceedings of the 28th Conference on Computational Learning Theory
(COLT), pages 280–296, 2015.

[4] I. Caragiannis, A. D. Procaccia, and N. Shah. Truthful univariate estimators. In Proceedings
of the 33rd International Conference on Machine Learning (ICML), pages 127–135, 2016.

[5] R. Cummings, S. Ioannidis, and K. Ligett. Truthful linear regression. In Proceedings of the
28th Conference on Computational Learning Theory (COLT), pages 448–483, 2015.

[6] O. Dekel, F. Fischer, and A. D. Procaccia. Incentive compatible regression learning. Journal
of Computer and System Sciences, 76(8):759–777, 2010.

[7] S. A. Goldman and R. H. Sloan. Can PAC learning algorithms tolerate random attribute noise?
Algorithmica, 14(1):70–84, 1995.

[8] M. Hardt, N. Megiddo, C. H. Papadimitriou, and M. Wootters. Strategic classification. In
Proceedings of the 7th Innovations in Theoretical Computer Science Conference (ITCS), pages
111–122, 2016.

[9] S. Ioannidis and P. Loiseau. Linear regression as a non-cooperative game. In Proceedings of
the 9th Conference on Web and Internet Economics (WINE), pages 277–290, 2013.

[10] I. M. Johnstone and P. F. Velleman. The resistant line and related regression methods. Journal
of the American Statistical Association, 80(392):1041–1054, 1985.

[11] M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on Comput-
ing, 22(4):807–837, 1993.

[12] Nicholas Littlestone. Redundant noisy attributes, attribute errors, and linear-threshold learning
using winnow. In Proceedings of the fourth annual workshop on Computational learning
theory, pages 147–156. Morgan Kaufmann Publishers Inc., 1991.

[13] R. Meir, A. D. Procaccia, and J. S. Rosenschein. On the limits of dictatorial classification.
In Proceedings of the 9th International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 609–616, 2010.

[14] R. Meir, S. Almagor, A. Michaely, and J. S. Rosenschein. Tight bounds for strategyproof
classification. In Proceedings of the 10th International Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS), pages 319–326, 2011.

[15] R. Meir, A. D. Procaccia, and J. S. Rosenschein. Algorithms for strategyproof classification.
Artificial Intelligence, 186:123–156, 2012.

[16] H. Moulin. On strategy-proofness and single-peakedness. Public Choice, 35:437–455, 1980.

[17] S. C. Narula and J. F. Wellington. Interior analysis for the minimum sum of absolute errors
regression. Technometrics, 27(2):181–188, 1985.

[18] J. Perote and J. Perote-Peña. The impossibility of strategy-proof clustering. Economics Bul-
letin, 4(23):1–9, 2003.

[19] J. Perote and J. Perote-Peña. Strategy-proof estimators for simple regression. Mathematical
Social Sciences, 47:153–176, 2004.

[20] A. F. Siegel. Robust regression using repeated medians. Biometrika, 69(1):242–244, 1982.

[21] J Tukey. Exploratory data analysis. (limited preliminary edition) addison-wesley. Reading,
Massachusetts, 1970.

4


	Introduction
	Model
	Strategyproof Linear Regression
	Ongoing & Future Work

