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ABSTRACT
We describe methods for routing a prediction task on a net-
work where each participant can contribute information and
route the task onwards. Routing scoring rules bring truth-
ful contribution of information about the task and optimal
routing of the task into a Perfect Bayesian Equilibrium un-
der common knowledge about the competencies of agents.
Relaxing the common knowledge assumption, we address the
challenge of routing in situations where each agent’s knowl-
edge about other agents is limited to a local neighborhood.
A family of local routing rules isolate in equilibrium routing
decisions that depend only on this local knowledge, and are
the only routing scoring rules with this property. Simulation
results show that local routing rules can promote effective
task routing.

Categories and Subject Descriptors
J.4 [Computer Applications]: Social and Behavioral Sci-
ences—Economics

General Terms
Algorithms, Economics, Theory

Keywords
Scoring rules, task routing, social networks

1. INTRODUCTION
Organizations rely on a mix of expertise and on means

for identifying and harnessing expertise for completing dif-
ferent kinds of tasks. The ability to leverage the expertise
and interests of individuals effectively is crucial for the suc-
cess of an organization. Accomplishing a task may require
the expertise of multiple actors, and harnessing that exper-
tise requires identifying who the experts are and providing
proper incentives for inducing contributions.

One approach to coordinating expertise is to pool knowl-
edge about competencies and preferences and to assign tasks
in a centralized manner. Another approach is to rely on in-
dividuals distributed across an organization to select tasks
themselves. Both approaches have flaws. In the former, an
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organization or system may not know which individuals have
the required expertise. In the latter, while individuals may
often be able to gauge their own expertise, they may not
know which tasks best match their respective competencies.

In social networks and organizations, an individual’s knowl-
edge extends beyond their own expertise on tasks and top-
ics to knowledge about the expertise of others. For example,
members within the same research group know whom within
that group can best review a paper, or best contribute to an-
swering a research question. Members of a social network
may know who among their friends can best answer a par-
ticular question, or otherwise provide valuable opinions on a
topic of discussion. Even in situations where an individual
cannot identify an expert who can best contribute to a task,
they may know others who would likely know experts, or
be able to identify subsets of individuals among whom the
requisite expertise is likely to exist (e.g., people who share
a particular interest).

We explore principles and methods for task routing that
aim to harness the ability of people or automated agents to
both contribute to a solution, and to route tasks to others
who they believe can also effectively solve and route. Task
routing provides an interesting paradigm for problem solv-
ing in which individuals become engaged with tasks based
on their peers’ assessments of their expertise. On the task
level, effective task routing aims to take advantage of agents’
knowledge about solving problems as well as agents’ knowl-
edge about other agents’ abilities to contribute. Agents
make routing decisions in a peer-to-peer manner, and the
system rewards participating agents for their contributions.
On the organizational level, task routing may provide a
means for bringing tasks to individuals effectively, where
agents’ routing decisions take into account not only an in-
dividual’s expertise on the particular task, but also their
ability to contribute as a router.

Methods for automated and manual routing of tasks have
been employed in online networks. For example, question-
answering services such as Aardvark [10] allow a user to ask
questions in natural language, which the system interprets
and automatically routes to appropriate individuals in the
user’s social graph based on an assessment of who is best
able and willing to provide an answer. Aardvark also allows
for peer routing, where a user can manually route questions
to others, enabling the system to reach users outside its fund
of knowledge about people and their expertise.

We consider methods for routing and solving tasks with a
focus on the challenge of efficiently obtaining accurate prob-
ability assessments about an uncertain event. For this task,



a question is passed among individuals on a network, and
each participant can update the posterior probability and
forward the task to a neighbor. We introduce routing scoring
rules for incentivizing contributions. Given an assumption
of common knowledge about the amount of information held
by each agent on the network, we obtain truthful reporting
of posterior probability assessments and optimal routing in
a Perfect Bayesian Equilibrium. Even with this common
knowledge assumption, we find that the equilibrium strat-
egy on a general network requires finding a routing path
through individuals that have the most information in ag-
gregate and is NP-hard. In comparison, a myopic routing
rule is optimal on simple topologies such as cliques.

A second difficulty is that common knowledge is unlikely
to hold for large social networks where each agent’s informa-
tion about the competencies of others is limited to a local
neighborhood (e.g., friends, and perhaps friends of friends).
To handle such cases, we also consider task routing where
knowledge about others’ abilities may be limited to only
those agents in an agent’s local neighborhood. Unfortu-
nately, equilibrium routing under the routing rules becomes
even more computationally challenging, requiring an agent
on the path to perform inference that takes into considera-
tion the previous routing decisions of agents.

Beyond formalizing the joint routing and solution chal-
lenge, our main contribution is to introduce a family of local
routing rules that isolate simple routing decisions in equilib-
rium, while still taking advantage of knowledge about the
expertise of others to promote effective routing decisions.
We achieve this by incentivizing agents to make routing de-
cisions based on short, locally optimal paths that can be
computed easily using shared local knowledge. In summary,
we design incentive schemes that explicitly enable equilib-
rium behavior for which the inference required of agents is
tractable.1 We provide a full characterization of local rout-
ing rules, and show that they are the only routing scoring
rules that induce truthful equilibria in which agents’ routing
decisions can be computed using only local common knowl-
edge. Simulation results demonstrate that equilibrium rout-
ing strategies based on local routing rules lead to effective
information aggregation.

1.1 Related work
Leveraging individuals’ abilities to both solve and route

is a key component of the winning team’s strategy in the
DARPA Red Balloon Challenge [13]. The task was to find
large, salient helium-filled balloons placed in ten undisclosed
locations across the continental United States. The winning
team introduced an incentive mechanism that uses a limited
budget to incentivize individuals to look for balloons and
to let their friends know about the task; see also Emek et
al. [8] and Douceur and Moscibroda [7] for related theoreti-
cal analysis, and work on query incentive networks [12, 2, 5]
that analyze games in which players split rewards to recruit
others to answer a query. The mechanism used by the win-
ning team differs from those in our work because it aims to
induce agents to broadcast the task to everyone they know
regardless of their expertise or knowledge of others’ exper-
tise, whereas mechanisms in our work aim to induce agents
to identify particular experts that can best contribute to the
task and route it to others.

1This is analogous to the role of strategyproofness in simpli-
fying strategic problems facing agents in mechanism design.

The problem of task routing is also related to the prob-
lem of decentralized search on networks in which the goal
is to find a target node quickly through local routing deci-
sions [15, 6, 16, 11, 1]. In such work, the goal is to identify a
single target node representing a particular individual; while
a single-target task differs from the task routing problem we
seek to solve, the results on its solution provides theoreti-
cal and experimental support for the prospect that routing
decisions with local information may have effective, global
performance.

One can view routing scoring rules as an extension of
market scoring rules [9] used in prediction markets. Mar-
ket scoring rules provide proper incentives for individuals to
improve probability estimates by contributing additional in-
formation. The major difference between task routing and a
prediction market is in the ‘burden’ of identifying expertise:
while prediction markets place the responsibility on indi-
viduals to find prediction tasks for which they have useful
information, task routing incentivizes individuals to notify
others with appropriate expertise who may otherwise be un-
aware of the task.

2. MODEL
To formalize the setting, consider a single prediction task

T , for which we would like to gather an accurate probability
assessment of the true state ω ∈ Ω. The probability assess-
ment task can be for any state of the world that will be
revealed later in time, e.g., “Will it snow next Tuesday in
Boston?” or “Will the Celtics win the NBA championship
this year?” We consider discrete state spaces, and assume
without loss of generality a binary state space, such that
Ω = {Y,N}.

Consider a game with n players, where each player is rep-
resented by a node on the routing graph G = (V,E). Edges
in the graph may be directed or undirected, and indicate
whether a particular player can route the task to another
player. The task is initially assigned to a source player
named player 1, with later players on a routing path num-
bered sequentially. The source player is either determined
by the system, or the individual who originally posed the
task. The source player is asked to update the probability
of state Y from the prior probability p0 to some probability
p1, and, in addition, to route the task to a neighbor. The
selected neighbor is then asked to update the assessment p1

to p2 and route the task to a neighbor, and so on, until the
game ends after a pre-specified number of rounds R that
denotes when a final assessment must be made. We assume
players receiving the task are provided with a list of people
or agents who have participated so far, as well as informa-
tion about the number of rounds that remain. Our goal is to
design incentive mechanisms that will induce each player to
update probability assessments truthfully and route the task
to other players that can best refine the prediction, so as to
arrive at an accurate assessment after R rounds.

We model players’ knowledge about the task as follows:
the true state of the world is drawn according to the proba-
bility distribution Pr(Y ) = p0 and Pr(N) = 1− p0, which is
common knowledge to all players. While no player observes
the true state directly, each player may receive additional
information about the true state. To model this state of
affairs, each player privately observes the outcome of some
number of coin flips drawn according to a commonly known
distribution that depends on the true state. Different players



may observe different numbers of coin flips, where players
observing more coin flips are a priori more knowledgeable.

Formally, we represent player i’s signal ci as a random
bit vector of length li, where bit cik is a random variable
over the outcome of the k-th coin flip observed by player
i. We assume the value of bits of signal are conditionally
independent given the true state, and drawn from the same
distribution (known to all players) for all players and all bits,
such that Pr(cik = H|ω) = Pr(cjm = H|ω) for all players
i, j, bits k,m, and realization H (head). Each bit of signal
is assumed to be informative, that is, Pr(cik = H|ω = Y ) 6=
Pr(cik = H|ω = N) for all i, k. We also assume that bits
of signal are distinct, that is, Pr(ω = o|cik = H) 6= Pr(ω =
o|cik = T ) for all i, k, o, where H is heads and T is tails.2

We assume the realization of each player’s signal is private,
but make different assumptions about the knowledge of one
player about the number of coin flips of another player.

With conditionally independent signals, each player can
properly update the posterior probability without having
to know the signals of previous players or their length, as
long as previous updates were done truthfully [4]. This is
useful practically in that players do not have to keep track
of nor communicate their signals, and can simply report an
updated posterior probability that sufficiently summarizes
all information collected thus far.

3. ROUTING SCORING RULES
With rational, self-interested players who have no intrin-

sic value (or cost) for solving or routing a particular task,
effective task routing requires mechanisms that will incen-
tivize players to both truthfully update and report posterior
probabilities and to route tasks to individuals who can best
refine the predictions of the tasks. In this section, we review
strictly proper scoring rules and market scoring rules for in-
centivizing truthful reports, and introduce routing scoring
rules, which also incentivize effective routing decisions.

In the forecasting literature, strictly proper scoring rules [14]
are mechanisms that strictly incentivize a forecaster to truth-
fully reveal his subjective probability of an event, typically
under the assumption that agents are risk neutral. The out-
come of the event is assumed observable in the future, and
payments are conditioned on the outcome. A well-known
strictly proper scoring rule is the quadratic scoring rule, un-
der which a player reporting probability q for state Y is
rewarded 1 − (1 − q)2 when the true state is Y and 1 − q2
when the true state is N . Other strictly proper scoring rules
include the logarithmic and spherical scoring rules, and any
strictly proper scoring rule can be scaled or normalized via
linear transformations to form another strictly proper scor-
ing rule [3].

Market scoring rules [9] extend strictly proper scoring
rules to settings where we wish to aggregate information
across multiple people. Given a sequence of reports, player
i reporting pi is rewarded si − si−1, where si denotes the
score of player i as computed by some strictly proper scor-
ing rule applied to this agent’s report alone. Note that since
strictly proper scoring rules incentivize accurate reports, a
player’s reward under a market scoring rule is positive if and
only if he improves the prediction.

2These assumptions rule out degenerate cases and can be
made without loss of generality. A signal that is not infor-
mative can be removed from the signal space, and two signals
that are not distinct can be treated as the same signal.

Building on market scoring rules, we introduce routing
scoring rules to incentivize accurate predictions, along with
effective routing decisions.

Definition 1. A routing scoring rule defines a se-
quence of positive integers k1, . . . , kR−1, which rewards play-
ers i ∈ {1, . . . , R− 1} on the routing path:

(1− α)si + αsi+ki − si−1

where si is the score under an arbitrary strictly proper scor-
ing rule, α ∈ (0, 1) is a constant, and i + ki ≤ R for all
players i. Player R reports but does not route and is paid
sR − sR−1.

In a routing scoring rule, player i’s payment is based on
the marginal value the player provides for refining the pre-
diction, as measured by his report and the report of the
player who receives the task ki steps after him, in compari-
son to the report of the player just before him. For player 1,
s0 denotes the score computed with respect to the prior p0.
Each player i can be paid for up to R− i steps forward, and
the final player R does not route and is paid by the market
scoring rule sR − sR−1.

Intuitively, routing scoring rules reward players who are
experts and players who are knowledgeable about the ex-
pertise of other players. We introduce here several routing
scoring rules of particular interest. We first consider the my-
opic routing scoring rule (MRSR), which sets ki = 1 for all
players i < R. This routing scoring rule aims to reward a
player for submitting accurate probability assessments and
routing in a greedy manner to the player who can most ac-
curately refine the probability assessment.

Lemma 1. The total payment from the system in the rout-
ing game with MRSR is sR − s0 + α(sR − s1).

The lemma follows from taking telescoping sums, and
states that, for MRSR, the center needs to only pay for
the difference between the final assessment and the initial
assessment, since each player is only paid for the additional
information they provide and their routing decision.

We can extend the MRSR to reward players’ routing de-
cisions based on the accuracy of information after ki =
min(k,R− i) more players have provided their information.
The k-step routing scoring rule (kRSR) rewards a player
based on his report, as well as the eventual consequence of
his routing decision k steps into the future. Unlike MRSR,
kRSR rewards players for routing to players who may not
have information themselves but who are still able to route
to others who do.

In particular, when player i’s routing payment is based on
player R’s score, that is, i + ki = R, for all i, we call this
the path-rewarding routing scoring rule (PRSR). As its name
suggests, this routing scoring rule seeks to focus a player’s
attention on the final consequence of his routing decision, as
judged at the end of the solving and routing process.

The choice of routing scoring rule affects players’ routing
decisions in equilibrium, which in turn affects how much
information is aggregated. To see the connection between
a player’s score and the amount of information aggregated,
note that the expected score is strictly increasing in the total
number of coin flips collected:

Lemma 2. Let S′ and S′′ denote two possible sequences of
players through the first k rounds of the routing process that



are identical up to player i < k. Assume all players truth-
fully update posterior probabilities, and that player i knows
lj for players i < j ≤ k on S′ and S′′. Let Ei

S [sk] denote
player i’s ex-ante expectation of the score after player k’s
report in path S. Ei

S′ [sk] > Ei
S′′ [sk] holds if and only ifP

m∈u(S′) lm >
P

n∈u(S′′) ln, where u(S) is the (unique) set
of players in S.

Proof. (sketch) Assume without loss of generality that
there are a total of n coin flips in S′, and n + m coin flips
in S′′, m > 0. The expected score of player k from S′′

consists of two (hypothetical) parts, (a) the score he would
get when giving a prediction after receiving the first n coin
flips, denoted s[n], and (b) the difference in the score he
would get by changing his prediction after receiving the next
m coin flips, denoted s[n+m] − s[n]. The expectation of the
first part is the same as the expected score of player k from
S′, and the expectation of the second part is always non-
negative given any strictly proper scoring rule.

Intuitively speaking, additional bits of information can
only improve the accuracy of the prediction in expectation.
Since strictly proper scoring rules reward accuracy, collect-
ing more coin flips will lead to higher scores in expectation.

4. CASE OF COMMON KNOWLEDGE
Having introduced routing scoring rules of interest, we

consider an equilibrium analysis of the associated routing
game. We first consider the case where the number of coin
flips li observed by each player i is common knowledge.3

Note the actual signal realizations are still assumed private.

4.1 Clique topology
Let us now consider the routing game on a clique, where

each player can route the task to any other player. From
Lemma 2, and given the clique topology, an optimal routing
algorithm can just route myopically and collect as many
coin flips as possible at each step. This is because there is
no opportunity cost for being greedy in this way, due to the
clique topology. We have the following equilibrium result:

Theorem 1. Assume the number of coin flips of each
player is common knowledge, and that players are risk neu-
tral. Consider a routing game in which the routing graph is
a clique, and let S>i denote the set of players who have yet
to receive the task after i rounds. Under the myopic routing
scoring rule, it is a Perfect Bayesian Equilibrium (PBE) for
each player i to truthfully update the posterior probability,
and to route the task to player i+1 ∈ argmaxm∈S>i

lm, with
the belief that all other players update the posterior probabil-
ity truthfully.

Proof. (sketch) We show that no player wishes to devi-
ate from the equilibrium strategy, given the belief that all
other players report truthfully. Consider player i. To prove
the theorem, we first show that player i should honestly up-
date the posterior beliefs by establishing that (a) truthful
reporting maximizes si, and that (b) for any player m who
may be routed the task, truthful reporting by player i max-
imizes the score sm. For (a), note that, since si is based on

3By taking appropriate expectations, the analysis through-
out the paper extends easily to settings where players are
equally well-informed but are uncertain about the number
of coin flips that other players observe.

a strictly proper scoring rule, truthful reporting maximizes
the expectation of si. For (b), note that the expected score
of sm (from the perspective of player i) is strictly greater
when player i reports honestly because sm is based on a
strictly proper scoring rule. It is left to show that player
i maximizes si+1 by routing to the player in S>i with the
most coin flips; this follows from Lemma 2.

4.2 General networks
We now turn to consider routing games on general net-

works, with missing edges; e.g., only managers can route
tasks between teams, only professors can route questions to
other professors, and only friends can route to friends.

We can state the algorithmic problem of finding the opti-
mal route in terms of collecting coin flips:

Problem 1. Consider the routing graph G = (V,E),
where nodes are assigned non-negative integer weights wi

(coin flips). Given a starting node o, find a path of length
at most k such that the sum of weights on the path is maxi-
mized.

Note that a player can route to another player who have
received the task before (e.g., the path need not be simple),
but no additional information is collected in subsequent vis-
its.

Immediately, we see that myopic routing will not always
find the optimal solution to this problem, as routing to the
neighbor with the most coin flips does not consider the con-
sequence on future routing decisions and can now convey an
opportunity cost.

We can show that this problem is NP-hard for variable
path length k:

Lemma 3. Problem 1 is NP-hard.

Proof. Consider a reduction from the Hamiltonian Path
problem. Let all nodes have weight 1, and set k = |V |. The
solution path has total weight |V | if and only if all nodes are
visited within k steps, that is, a Hamiltonian Path exists.

While the problem is NP-hard for a variable path length
k, for small constant k the optimal path may be tractable
to compute via exhaustive search.

Intractability is not the only difficulty faced. Even if play-
ers can compute the optimal path, we still need to find incen-
tives that induce players to honestly report their information
and to route along the optimal path. The path-rewarding
routing scoring rule does just that.

Theorem 2. Assume the number of coin flips of each
player is common knowledge, and that players are risk neu-
tral. Let S>i denote the set of players who have yet to receive
the task after i rounds. Let Qi denote a solution to problem 1
for which k = R − i, o = i, and wm = lm if m ∈ S>i and
0 otherwise. Under the path-rewarding routing scoring rule,
it is a PBE for each player i to truthfully update the poste-
rior probability, and to route the task to the next player in
the path provided by Qi, with the belief that all other players
follow this strategy.

Since PRSR rewards each agent’s routing decision based on
the final score, it is in each agent’s interest to maximize the
number of coin flips collected along the entire routing path.
We can show that reporting honestly and routing this way
is the only behavior that can be supported in equilibrium
under PRSR:



Theorem 3. The set of PBE identified in Theorem 2
(corresponding to possible ties in the solution to problem 1)
are the only PBE of the routing game under PRSR.

Proof. (sketch) Given any routing path, by backward
induction every player should update the posterior proba-
bility truthfully because agents’ scores are computed using
a strictly proper scoring rule. Given that players update
truthfully, by backwards induction every player i should
route along the path identified by some solution Qi because
maximizing the number of coin flips collected maximizes the
routing portion of each player’s score (Lemma 2).

5. LOCAL COMMON KNOWLEDGE
Although people may know one another’s expertise in

small organizations, the common knowledge assumption be-
comes unreasonable for larger organizations and social net-
works. Any given individual will not necessarily know every-
one else, and may only have summary information about the
expertise and connectivity of individuals outside of a local
neighborhood.

We replace the common knowledge assumption with a re-
quirement that individuals all attain the same minimal level
of knowledge about each others’ expertise within a partic-
ular size of local neighborhood, defined by the number of
hops between agents. For example, all friends of a partic-
ular person are aware of his expertise, and friends of his
friends may also be aware; people may know a local portion
of the routing graph, e.g., individuals typically know not
only their friends but also their friends’ friends.

Definition 2. A routing game satisfies the local com-
mon knowledge assumption within m-hops if, for all
nodes (individuals) i, (a) li is common knowledge to all in-
dividuals connected to i via some path of length at most m,
and (b) i knows all paths of length at most m connecting i
to other individuals, and this is common knowledge.

For example, 1-hop local common knowledge assumes all
friends of a particular person know the person’s level of ex-
pertise, and 2-hop local common knowledge extends this
shared knowledge to his friends of friends. Note that the
local common knowledge assumption within m-hops is just
a minimal requirement, and does not preclude a player hav-
ing more information.

Given that a player may only have m-hop local common
knowledge, let’s consider the problem facing such a player in
deciding how to route to maximize the final prediction qual-
ity after R steps. Routing optimally may require a player to
use the history of routing decisions to infer why certain peo-
ple were not routed the task (but could have been), based
on which to perform inference about the amount of informa-
tion of different agents in the network. Furthermore, opti-
mal routing requires a player to make inferences about the
value that can be generated from the routing decisions of
subsequent players beyond his locality. Not only is such
reasoning complex and likely impractical, any equilibrium
to induce optimal routing is likely to be fragile as it requires
players to adopt priors on other players’ beliefs.

An attempt to avoid such issues may suggest incentivizing
players based on a m-step routing rule whenever the local
common knowledge assumption holds for m-hops. The prob-
lem with this suggestion is that a player still has to consider
routing decisions of players outside its locality because max-
imizing its payoff requires considering the routing decisions
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Figure 1: Illustration of the 2-1-2-1 and 2-step rout-
ing rules. Arrows depict dependencies in routing
payments.

of the chain of players within its locality. For example, con-
sider the two-step routing rule (see bottom of Figure 1). For
any player, the score two steps forward will depend in part
on the routing decision of the next player. But since the next
player is also paid by the two-step routing rule, his routing
decision will depend not only on the amount of information
held by the player after him, but also that player’s routing
decision. Since each player has to consider the routing de-
cision of the next player, each player has to reason about
the future routing decisions of all players down the routing
path, just to compute the expected score after two steps.

This motivates the family of local routing rules, under
which players’ strategies in equilibrium rely only on com-
putations based on local information, but nevertheless take
advantage of the available local common knowledge. We
define the notion of a local strategy as follows:

Definition 3. A player i in a routing game adopts a m-
local strategy if its routing decision depends only on m-hop
local common knowledge and is invariant to any beliefs the
player might have about players outside of its own locality.

Let us first consider the following local routing rule, de-
signed to be useful with 2-hop local common knowledge:

Definition 4. The 2-1-2-1 routing rule is a routing
scoring rule which sets ki = 2 if i is odd and i < R− 1, and
ki = 1 otherwise.

The 2-1-2-1 routing rule incentivizes players to compute
locally optimal paths of length two (see top of Figure 1),
which can be computed with local common knowledge, and
so inference is not required. As even players are paid based
on the myopic routing scoring rule, they will route to the
available player with the most number of coin flips. Since
each odd player knows the number of coin flips that can be
collected from the next even player and also from the odd
player that is then routed the task, he can compute the best
local path without regard to routing decisions beyond his
locality. Note that players still need to take into account
which other players have already participated, but no other
inference based on history is necessary.

Expanding on the idea, we construct a class of routing
scoring rules (e.g., MRSR, 2-1-2-1, 3-2-1-3-2-1, . . .) that in-
centivize players to compute locally optimal paths for m-hop
local common knowledge:

Definition 5. The m-hop routing rule is a routing
scoring rule which sets ki = min[m− (i− 1) mod m,R− i].

We can characterize the equilibrium behavior as follows:



Theorem 4. Assume that players are risk neutral and m-
hop local common knowledge holds. Let S>i denote the set of
players who have yet to receive the task after i rounds. Let
Qi denote a solution to problem 1 for which k = min[m−(i−
1) mod m,R − i], o = i, and wj = lj if j ∈ S>i and 0 oth-
erwise. Under the m-hop routing rule, it is a PBE for each
player i to truthfully update the posterior probability, and to
route the task to the next player in the path provided by Qi,
with the belief that all other players follow this strategy.

Proof. (sketch) Using similar arguments as the proof
sketch for Theorem 1, we can show that players should
truthfully update the posterior probability. To show player
i should route based on Qi, we first note that Qi is com-
putable given m-hop local common knowledge. Since Qi

maximizes the number of coin flips collected in the next k
steps, Lemma 2 proves the point, and the theorem.

The main idea behind the m-hop routing rule is that each
player can compute his best routing action with respect to
the decisions in his locality and without regard to routing
decisions beyond his locality. This property can be satis-
fied by other local routing rules as well. For example, when
m = 3, the 3-1-1-3-1-1 routing rule is one in which the first
of three players in sequence is paid by the score three steps
forward, but in which the next two players are each paid
myopically. Note that here the first player can still compute
its optimal routing decision using only local common knowl-
edge, by computing the routing decisions of others in its
locality via backwards induction. We can thus characterize
the entire family of local routing rules:

Definition 6. Given m-hop local common knowledge, the
family of local routing rules contains routing scoring rules
k1, . . . , kR−1 that satisfies local reasoning, that is, ki+j +
j ≤ m for all i and 0 ≤ j < ki.

The local reasoning condition ensures that local routing
rules can only reward players whose routing decisions may
affect the payoff of an earlier player based on the routing
decisions of future players that are within m hops of that
earlier player. In other words, it considers the set of routing
scoring rules for which the payment to any player should
only depend on the local information that player is guaran-
teed to hold. For example, the 2-1-2-1 routing rule satisfies
local reasoning for m = 2 because for an odd i, ki ≤ 2 ≤ m
and ki+1 + 1 = 2 ≤ m, and for an even i, ki = 1 ≤ m. How-
ever, the two-step routing scoring rule violates local reason-
ing, because for all i < R− 2, ki+1 + 1 = 3 > m. Note that
the m-hop routing rule satisfies local reasoning, since ki is
set such that ki+j + j = m for all appropriate i and j in the
above definition.

We argue that using a local routing rule is necessary and
sufficient for the existence of an equilibrium in which agents
follow m-local, truthful strategies. We first show sufficiency:

Theorem 5. Assume that risk neutrality and m-hop local
common knowledge holds. For any node i and possible path
ni+1, . . . , ni+ki from i, let the weights wj on node j be lj if j
has yet to be visited up until then, and 0 otherwise. For any
local routing rule, consider the following dynamic program:

V (nj+1, . . . , nj+kj |n1, . . . , nj) = max
j+1,...,j+kj+1

[

kj+1X
b=1

wj+b

+ V (nj+kj+1+1, . . . , nj+kj |n1, . . . , nj+kj+1)]

V (∅|n1, . . . , nj+kj ) = 0 ∀n1, . . . , nj+kj

Let n∗i+1, . . . , n
∗
i+ki

= argmaxV (ni+1, . . . , ni+ki |n1, . . . , ni)
denote a solution of the dynamic program. It is a PBE for
each player i to truthfully update posterior probabilities and
to route the task to n∗i+1, with the belief that all other agents
follow this strategy.

Proof. (sketch) To prove the theorem, we first note that
all players would truthfully update the posterior probabil-
ity along the path as we had previously argued, as doing
so maximizes the scores computed, based on its assessment
and based on the assessments collected from those routed
the task via the routing payment. Second, as the variables
and parameters of the dynamic program are only the nodes
in paths of length at most ki from i, and by the local rea-
soning assumption ki ≤ m, players follow m-local strate-
gies in which the information that each player i needs to
compute the dynamic program is within m hops and thus
known to player i. Finally, given the routing decisions of
others down the path, the number of coin flips collected is
by definition maximized by the routing decisions along the
computed path. Applying Lemma 2 proves the point, and
the theorem.

Theorem 6. For any local routing rule, the set of PBE
identified in Theorem 5 (corresponding to possible ties in the
optimal solution to the dynamic program) are the only PBE
of the routing game under that local routing rule.

Theorem 7. The only routing scoring rules that induce
for every routing game a truthful PBE (where players hon-
estly update probability assessments) in m-local strategies are
local routing rules.

Proof. (sketch) Assume for sake of contradiction that
there exists a routing scoring rule that induces a truthful
PBE for all routing games in m-local strategies but is not
a local routing rule. Since this routing scoring rule violates
local reasoning, there must be some i in the sequence for
which there exists some j such that ki+j +j > m, 0 ≤ j < ki.
Consider the first such i and j.

First consider the case where j = 0. We construct a graph
with two paths (top and bottom), as is shown in Figure 2:

Figure 2: Routing game construction for j = 0 case.

Based on the construction, consider two routing games G
and G′, where in game G the coin flips held by U and V are
1.5ε and 1.6ε respectively and in game G′ the coin flips at U
and V are reversed. Due to the violation of local reasoning
at i for j = 0, by construction U and V are more than m
hops from player i. In a PBE with m-local strategies, it
is thus necessary for the routing decisions of player i to be
independent of the number of coin flips held by players at
U and V , that is, for the routing decision to be the same for
these two games G and G′.

We show that player i’s best response to the equilibrium
strategies of the other agents depends on G or G′. For both
games, using backwards induction, all players strictly prefer



to route the task forward (to the right) instead of backwards
at any given point in time and for any lookahead depth as
induced by their routing payment, because its expected pay-
ment is based on the number of coin flips collected and one
can always collect more coin flips in the forward direction
(because for any player, going backwards would necessitate
visiting a node that’s been visited before and thus has no
new coin flips to share). Since in game G player i would
collect more coin flips by routing up due to the higher value
at U over V and the reverse is true in game G′, player i’s
best response would be different, which contradicts our as-
sumption.

Now consider the case where j > 0. We construct a graph
with three paths (top, middle, and bottom), as is shown in
Figure 3:

Figure 3: Routing game construction for j > 0 case.

Based on the construction, consider two routing games
G′′ and G′′′, where in game G′′ the coin flips held by A,
B, and C are ε, ε, and ε respectively, and in game G′′′ are
ε, 1.7ε, and 1.7ε, respectively. Due to the violation of local
reasoning, by construction A, B, and C are more than m
hops from player i. In a PBE with m-local strategies, it
is thus necessary for the routing decisions of player i to be
independent of the number of coin flips held by players at
A, B, and C, that is, for the routing decision to be the same
for G′′ and G′′′.

We show that player i’s best response to the equilibrium
strategies of the other agents depends on G′′ or G′′′. We
first consider game G′′. Using backwards induction, note
that each player must strictly prefer to route the task for-
ward (to the right) instead of backwards at any given point
in time, regardless of the lookahead induced by their rout-
ing payment, because its expected payment is based on the
number of coin flips collected and, as before, one can always
collect more coin flips in the forward direction (as going
backwards necessitates visiting a node that’s been visited
before). In this case, the top player at i+ j would route up
because the i+ ki-th player will have more coin flips (1.6ε)
and is within the scope of the routing payment. Given this,
it is strictly better for player i to route up instead of down,
given knowledge of the values at A and B.

Consider now game G′′′. By backwards induction, each
player strictly prefers to route forward because doing so
guarantees the largest payment along the way for any looka-
head. The top player at i + j will route along the middle
path in equilibrium because he would receive ε + 1.7ε from
coin flips at the middle path of i + ki and i + j + ki+j vs.
the 1.6ε +ε along the top path. In this case, player i would
rather route down instead of up because it would collect
0.5ε more coin flips due to the 1.5ε at i+ ki on the bottom
path. However, since player i’s best response routing deci-
sion should be the same for game G′′ and G′′′, we have a
contradiction.

d = 4 d = 10

β Dist. MRSR m=2 m=3 MRSR m=2 m=3

.03 U 69 71 72 83 84 85
0.1 U 71 72 75 85 86 87
1.0 U 76 78 80 89 89 90
.03 S 80 87 104 150 183 227
0.1 S 88 109 146 181 226 259
1.0 S 120 155 183 227 258 278

Table 1: Comparison of routing performance after
10 steps on connected Watts-Strogatz graphs based
on uniform (U) and skewed (S) coin flip distributions
with fixed mean (5.5).

6. SIMULATION RESULTS
The equilibrium strategies induced by local routing rules

can be considered to provide a heuristic algorithm for com-
puting an optimal route over a network. We now demon-
strate via simulations that routing decisions based on local
rules can effectively aggregate information as a task is routed
through the network.

We consider connected random graphs with 100 nodes
and average degree d ∈ {4, 10}, generated using the Watts-
Strogatz model [17]. By varying the re-wiring probability β,
the model allows us to generate graphs that interpolate be-
tween a regular lattice (β = 0) and a G(n, p) random graph
(β = 1), with small-world networks emerging at interme-
diate values of β. We associate each node with a number
of coin flips, which is drawn independently either discretely
from U[1,10], or from a skewed distribution where the value
is 1 with probability 0.9 and 46 with probability 0.1. Note
that the distributions have equal mean (5.5), but that the
skewed distribution more closely resembles a setting where
there are few experts. For graphs generated in this man-
ner, we simulate player strategies under local routing rules
(MRSR, and m-hop with m = 2, m = 3) by computing
local paths in the manner noted in Theorem 4, where revis-
ited nodes are treated as having no value. As a baseline,
we consider a random routing rule that routes to a random
neighbor, and whenever possible, to a random neighbor who
has yet to be assigned the task. Note that the expected
performance of the baseline is bounded by 5.5 coin flips per
round, as we would expect from randomly picking unvisited
nodes in the graph.

Table 1 shows the average number of coin flips collected
after 10 steps by players following local routing rules on
graphs with varying β, average degree, and coin flip distri-
bution over 100 trials (standard errors are small and hence
not reported). We see that routing rules are particularly ef-
fective in cases where there are few experts (S), and when the
graph has a sufficiently high connectivity (higher d and β)
that there exist paths through which experts can be routed
the task. But even in cases with uniformly distributed coin
flips (U) and low average degree (d = 4), local routing rules
collect significantly more coin flips than the upper bound
of 55 we would expect from randomly choosing nodes, and
that despite connectivity constraints the paths include many
high valued nodes (recall the max per node is 10).

The difference in routing performance among local rout-
ing rules is rather small for uniformly distributed values,
but is more significant when the distribution is skewed. In
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Figure 4: Comparison of routing performance
among local routing rules for graphs with β = 0.1,
d = 10, and skewed coin flip distributions. Values
are averaged over 100 trials.

this case, effective routing may require finding short paths
to experts who are not neighbors. That said, this differ-
ence shrinks for graphs with higher degree, as high-value
nodes become more easily reachable (recall that as graphs
approach cliques, myopic is optimal). Figure 4 shows the
average number of coin flips collected by local routing rules
as we progress through the routing game on graphs with
β = 0.1, d = 10, and skewed coin flip distributions. We
see that for m ≥ 2 the performance under the routing rules
are essentially the same, suggesting that we can sometimes
achieve near-optimal performance globally with just two-hop
local common knowledge. Note that for all local routing
rules the rate of information aggregation eventually slows
down, which denotes the point at which virtually all experts
have been routed the task.

7. CONCLUSION
We consider the opportunity for incentivizing the joint

refinement and routing of tasks among agents within a net-
work, focusing on prediction tasks. We introduce and study
routing scoring rules which, in equilibrium, support agents
truthfully contributing information, and routing tasks based
on simple computations that nevertheless lead to effective
information aggregation. Future work on task routing for
prediction tasks includes efforts to integrate additional in-
formation structures and study routing performance under
specialized network topologies, consideration of intrinsic val-
ues for solving or routing, and introduction of communica-
tion or sensing mechanisms coupled with means of tracking
costs for acquiring additional bits of signal. There are mul-
tiple opportunities to address task-level issues, and also or-
ganizational issues related to distributing streams of tasks
in a manner that takes into account people’s solving and
routing abilities over a spectrum of tasks, as well as partic-
ipants’ changing levels of attention, motivation, and avail-
ability, and the corresponding need for balancing the load
across participants. We envision numerous potential appli-
cations of methods for jointly solving and routing tasks and
foresee an ongoing need to strike insightful balances between
principled procedures and designs that rise from intuitions
about practical implementations.
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