Fracton phases of matter


Michael Pretko, Xie Chen, and Yizhi You. 2020. “Fracton phases of matter.” International Journal of Modern Physics A, 35, Pp. 2030003.


Fractons are a new type of quasiparticle which are immobile in isolation, but can often move by forming bound states. Fractons are found in a variety of physical settings, such as spin liquids and elasticity theory, and exhibit unusual phenomenology, such as gravitational physics and localization. The past several years have seen a surge of interest in these exotic particles, which have come to the forefront of modern condensed matter theory. In this review, we provide a broad treatment of fractons, ranging from pedagogical introductory material to discussions of recent advances in the field. We begin by demonstrating how the fracton phenomenon naturally arises as a consequence of higher moment conservation laws, often accompanied by the emergence of tensor gauge theories. We then provide a survey of fracton phases in spin models, along with the various tools used to characterize them, such as the foliation framework. We discuss in detail the manifestation of fracton physics in elasticity theory, as well as the connections of fractons with localization and gravitation. Finally, we provide an overview of some recently proposed platforms for fracton physics, such as Majorana islands and hole-doped antiferromagnets. We conclude with some open questions and an outlook on the field.