Publications

2022
Kevin Gozzi, Ngat Tran, Joshua W. Modell, Tung Le, and Michael T. Laub. 11/3/2022. “Prophage-like gene transfer agents promote Caulobacter crescentus survival and DNA repair during stationary phase.” PLoS Bio.
Kevin Gozzi, Raul Salinas, Viet D. Nguyen, Michael T. Laub, and Maria A. Schumacher. 2022. “ssDNA is an allosteric regulator of the C. crescentus SOS-independent DNA damage response transcription activator, DriD.” Genes & Development, 36, 9-10, Pp. 618–633.Abstract
DNA damage repair systems are critical for genomic integrity. However, they must be coordinated with DNA replication and cell division to ensure accurate genomic transmission. In most bacteria, this coordination is mediated by the SOS response through LexA, which triggers a halt in cell division until repair is completed. Recently, an SOS-independent damage response system was revealed in Caulobacter crescentus. This pathway is controlled by the transcription activator, DriD, but how DriD senses and signals DNA damage is unknown. To address this question, we performed biochemical, cellular, and structural studies. We show that DriD binds a specific promoter DNA site via its N-terminal HTH domain to activate transcription of genes, including the cell division inhibitor didA . A structure of the C-terminal portion of DriD revealed a WYL motif domain linked to a WCX dimerization domain. Strikingly, we found that DriD binds ssDNA between the WYL and WCX domains. Comparison of apo and ssDNA-bound DriD structures reveals that ssDNA binding orders and orients the DriD domains, indicating a mechanism for ssDNA-mediated operator DNA binding activation. Biochemical and in vivo studies support the structural model. Our data thus reveal the molecular mechanism underpinning an SOS-independent DNA damage repair pathway.
2021
Gabriel T. Filsinger, Timothy M. Wannier, Felix B. Pedersen, Isaac D. Lutz, Julie Zhang, Devon A. Stork, Anik Debnath, Kevin Gozzi, Helene Kuchwara, Verena Volf, Stan Wang, Xavier Rios, Christopher J. Gregg, Marc J. Lajoie, Seth L. Shipman, John Aach, Michael T. Laub, and George M. Church. 2021. “Characterizing the portability of phage-encoded homologous recombination proteins.” Nature Chemical Biology, 17, 4.Abstract
Efficient genome editing methods are essential for biotechnology and fundamental research. Homologous recombination (HR) is the most versatile method of genome editing, but techniques that rely on host RecA-mediated pathways are inefficient and laborious. Phage-encoded single-stranded DNA annealing proteins (SSAPs) improve HR 1,000-fold above endogenous levels. However, they are not broadly functional. Using Escherichia coli, Lactococcus lactis, Mycobacterium smegmatis, Lactobacillus rhamnosus and Caulobacter crescentus, we investigated the limited portability of SSAPs. We find that these proteins specifically recognize the C-terminal tail of the host's single-stranded DNA-binding protein (SSB) and are portable between species only if compatibility with this host domain is maintained. Furthermore, we find that co-expressing SSAPs with SSBs can significantly improve genome editing efficiency, in some species enabling SSAP functionality even without host compatibility. Finally, we find that high-efficiency HR far surpasses the mutational capacity of commonly used random mutagenesis methods, generating exceptional phenotypes that are inaccessible through sequential nucleotide conversions. [Figure not available: see fulltext.]
2019
Jennifer Greenwich, Alicyn Reverdy, Kevin Gozzi, Grace Di Cecco, Tommy Tashjian, Veronica Godoy-Carter, and Yunrong Chai. 2019. “A decrease in serine levels during growth transition triggers biofilm formation in bacillus subtilis.” Journal of Bacteriology, 201, 15.Abstract
Biofilm development in Bacillus subtilis is regulated at multiple levels. While a number of known signals that trigger biofilm formation do so through the activation of one or more sensory histidine kinases, it was discovered that biofilm activation is also coordinated by sensing intracellular metabolic signals, including serine starvation. Serine starvation causes ribosomes to pause on specific serine codons, leading to a decrease in the translation rate of sinR, which encodes a master repressor for biofilm matrix genes and ultimately triggers biofilm induction. How serine levels change in different growth stages, how B. subtilis regulates intracellular serine levels, and how serine starvation triggers ribosomes to pause on selective serine codons remain unknown. Here, we show that serine levels decrease as cells enter stationary phase and that unlike most other amino acid biosynthesis genes, expression of serine biosynthesis genes decreases upon the transition into stationary phase. The deletion of the gene for a serine deaminase responsible for converting serine to pyruvate led to a delay in biofilm formation, further supporting the idea that serine levels are a critical intracellular signal for biofilm activation. Finally, we show that levels of all five serine tRNA isoacceptors are decreased in stationary phase compared with exponential phase. However, the three isoacceptors recognizing UCN serine codons are reduced to a much greater extent than the two that recognize AGC and AGU serine codons. Our findings provide evidence for a link between serine homeostasis and biofilm development in B. subtilis.
Leonor García-Bayona, Kevin Gozzi, and Michael T. Laub. 2019. “Mechanisms of resistance to the contact-dependent bacteriocin CdzC/D in Caulobacter crescentus.” Journal of Bacteriology, 201, 8, Pp. e00538–18.Abstract
The Cdz bacteriocin system allows the aquatic oligotrophic bacterium Caulobacter crescentus to kill closely related species in a contact-dependent manner. The toxin, which aggregates on the surfaces of producer cells, is composed of two small hydrophobic proteins, CdzC and CdzD, each bearing an extended glycine-zipper motif, that together induce inner membrane depolarization and kill target cells. To further characterize the mechanism of Cdz delivery and toxicity, we screened for mutations that render a target strain resistant to Cdz-mediated killing. These mutations mapped to four loci, including a TonB-dependent receptor, a three-gene operon (named zerRAB for zipper envelope resistance), and perA (for pentapeptide envelope resistance). Mutations in the zerRAB locus led to its overproduction and to potential changes in cell envelope composition, which may diminish the susceptibility of cells to Cdz toxins. The perA gene is also required to maintain a normal cell envelope, but our screen identified mutations that confer resistance to Cdz toxins without substantially affecting the cell envelope functions of PerA. We demonstrate that PerA, which encodes a pentapeptide repeat protein predicted to form a quadrilateral $\beta$-helix, localizes primarily to the outer membrane of cells, where it may serve as a receptor for the Cdz toxins. Collectively, these results provide new insights into the function and mechanisms of an atypical, contact-dependent bacteriocin system. IMPORTANCE Bacteriocins are commonly used by bacteria to kill neighboring cells that compete for resources. Although most bacteriocins are secreted, the aquatic, oligotrophic bacterium Caulobacter crescentus produces a two-peptide bacteriocin, CdzC/D, that remains attached to the outer membranes of cells, enabling contact-dependent killing of cells lacking the immunity protein CdzI. The receptor for CdzC/D has not previously been reported. Here, we describe a genetic screen for mutations that confer resistance to CdzC/D. One locus identified, perA, encodes a pentapeptide repeat protein that resides in the outer membrane of target cells, where it may act as the direct receptor for CdzC/D. Collectively, our results provide new insight into bacteriocin function and diversity.
2018
Kevin Gozzi and Yunrong Chai. 2018. “Acetic acid is an important modulator for intracellular function and interspecies communication in bacteria.” In Acetic Acids: Advances in Research and Applications.Abstract
Acetic acid, a major byproduct of overflow metabolism, is a conserved metabolite found across all kingdoms of life. Due to its conservation and unique chemical features, acetic acid can be an ideal candidate as an interspecies communication signal in bacteria in addition to its intracellular function. Some recent advances in acetic acid research focus on the use of acetic acid as such a signal. Acetic acid has been shown to act as a volatile organic compound (VOC), mediating microbemicrobe and microbe-host interactions. VOCs control many different functions in both hosts and microbes. Acetic acid is converted from the central metabolite acetyl-CoA in glycolysis, in a pathway also involving the intermediate product, acetyl-phosphate. In recent studies, acetic acid (upon conversion to acetyl-CoA) has been shown to play a role in protein lysine acetylation of metabolic enzymes and phosphorylation (via acetylphosphate) of major phospho-regulators. Due to the role of acetic acid in acetylation, the levels of acetic acid may have profound impacts on the metabolic state of the cell, acetylating upstream glycolytic enzymes to control their activity, allowing for feedback regulation of glucose metabolism. In phosphorylation, levels of acetic acid may inform the cell on multiple fronts, e.g., cell-fate decision-making and environmental adaptation. To conclude, recent studies demonstrated that acetic acid has a much broader role in signaling, regulation of social behaviors, bacteriahost interactions, than what was suggested in previous work.
Yinghao He, Kevin Gozzi, Yuxuan Qin, and Yunrong Chai. 2018. “Investigating a novel regulation on a checkpoint protein Sda that is essential for biofilm formation and sporulation in Bacillus subtilis.” The FASEB Journal, 32, S1.
Alicyn Reverdy, Yun Chen, Evan Hunter, Kevin Gozzi, and Yunrong Chai. 2018. “Protein lysine acetylation plays a regulatory role in bacillus subtilis multicellularity.” PLoS ONE, 13, 9.Abstract
Protein lysine acetylation is a post-translational modification that alters the charge, conformation, and stability of proteins. A number of genome-wide characterizations of lysine-acetylated proteins, or acetylomes, in bacteria have demonstrated that lysine acetylation occurs on proteins with a wide diversity of functions, including central metabolism, transcription, chemotaxis, and cell size regulation. Bacillus subtilis is a model organism for studies of sporulation, motility, cell signaling, and multicellular development (or biofilm formation). In this work, we investigated the role of global protein lysine acetylation in multicellular development in B. subtilis. We analyzed the B. subtilis acetylome under biofilm-inducing conditions and identified acetylated proteins involved in multicellularity, specifically, swarming and biofilm formation. We constructed various single and double mutants of genes known to encode enzymes involved in global protein lysine acetylation in B. subtilis. Some of those mutants showed a defect in swarming motility while others demonstrated altered biofilm phenotypes. Lastly, we picked two acetylated proteins known to be important for biofilm formation, YmcA (also known as RicA), a regulatory protein critical for biofilm induction, and GtaB, an UTP-glucose-1-phosphate uridylyltransferase that synthesizes a nucleotide sugar precursor for biosynthesis of exopolysaccharide, a key biofilm matrix component. We performed site-directed mutagenesis on the acetylated lysine codons in ymcA and gtaB, respectively, and assayed cells bearing those point mutants for biofilm formation. The mutant alleles of ymcA(K64R), gtaB(K89R), and gtaB(K191R) all demonstrated a severe biofilm defect. These results indicate the importance of acetylated lysine residues in both YmcA and GtaB. In summary, we propose that protein lysine acetylation plays a global regulatory role in B. subtilis multicellularity.
2017
Kevin Gozzi, Carly Ching, Srinand Paruthiyil, Yinjuan Zhao, Veronica Godoy-Carter, and Yunrong Chai. 2017. “Bacillus subtilis utilizes the DNA damage response to manage multicellular development.” npj Biofilms and Microbiomes, 3, 1.Abstract
Bacteria switch between free-living and a multicellular state, known as biofilms, in response to cellular and environmental cues. It is important to understand how these cues influence biofilm development as biofilms are not only ubiquitous in nature but are also causative agents of infectious diseases. It is often believed that any stress triggers biofilm formation as a means of bacterial protection. In this study, we propose a new mechanism for how cellular and environmental DNA damage may influence biofilm formation. We demonstrate that Bacillus subtilis prevents biofilm formation and cell differentiation when stressed by oxidative DNA damage. We show that during B. subtilis biofilm development, a subpopulation of cells accumulates reactive oxygen species, which triggers the DNA damage response. Surprisingly, DNA damage response induction shuts off matrix genes whose products permit individual cells to stick together within a biofilm. We further revealed that DDRON cells and matrix producers are mutually exclusive and spatially separated within the biofilm, and that a developmental checkpoint protein, Sda, mediates the exclusiveness. We believe this represents an alternative survival strategy, ultimately allowing cells to escape the multicellular community when in danger.
Cameron Habib, Yiyang Yu, Kevin Gozzi, Carly Ching, Moshe Shemesh, and Yunrong Chai. 2017. “Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis.” PLoS ONE, 12, 6.Abstract
The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer $\beta$-1,4-galacto-biose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded $\beta$-galactosidase GanA (by ganA), which hydrolyzes $\beta$-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms.
Fang Yan, Yiyang Yu, Kevin Gozzi, Yun Chen, Jianhua Guo, and Yunrong Chai. 2017. “Genome-wide investigation of biofilm formation in Bacillus cereus.” Applied and Environmental Microbiology, 83, 13.Abstract
Bacillus cereus is a soil-dwelling Gram-positive bacterium capable of forming structured multicellular communities, or biofilms. However, the regulatory pathways controlling biofilm formation are less well understood in B. cereus. In this work, we developed a method to study B. cereus biofilms formed at the air-liquid interface. We applied two genome-wide approaches, random transposon insertion mutagenesis to identify genes that are potentially important for biofilm formation, and transcriptome analyses by RNA sequencing (RNA-seq) to characterize genes that are differentially expressed in B. cereus when cells were grown in a biofilm-inducing medium. For the first approach, we identified 23 genes whose disruption by transposon insertion led to altered biofilm phenotypes. Based on the predicted function, they included genes involved in processes such as nucleotide biosynthesis, iron salvage, and antibiotic production, as well as genes encoding an ATP-dependent protease and transcription regulators. Transcriptome analyses identified about 500 genes that were differentially expressed in cells grown under biofilm-inducing conditions. One particular set of those genes may contribute to major metabolic shifts, leading to elevated production of small volatile molecules. Selected volatile molecules were shown to stimulate robust biofilm formation in B. cereus. Our studies represent a genome-wide investigation of B. cereus biofilm formation.
Jacob Barlow, Kevin Gozzi, Chase P. Kelley, Benjamin M. Geilich, Thomas J. Webster, Yunrong Chai, Srinivas Sridhar, and Anne L. van de Ven. 2017. “High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation.” Applied Microbiology and Biotechnology, 101, 1.Abstract
Encapsulating bacteria within constrained microenvironments can promote the manifestation of specialized behaviors. Using double-emulsion droplet-generating microfluidic synthesis, live Bacillus subtilis bacteria were encapsulated in a semi-permeable membrane composed of poly(ethylene glycol)-b-poly(d,l-lactic acid) (mPEG-PDLLA). This polymer membrane was sufficiently permeable to permit exponential bacterial growth, metabolite-induced gene expression, and rapid biofilm growth. The biodegradable microparticles retained structural integrity for several days and could be successfully degraded with time or sustained bacterial activity. Microencapsulated B. subtilis successfully captured and contained sodium selenite added outside the polymersomes, converting the selenite into elemental selenium nanoparticles that were selectively retained inside the polymer membrane. This remediation of selenium using polymersomes has high potential for reducing the toxicity of environmental selenium contamination, as well as allowing selenium to be harvested from areas not amenable to conventional waste or water treatment.
Jacob Barlow, Kevin Gozzi, Chase P. Kelley, Benjamin M. Geilich, Thomas J. Webster, Yunrong Chai, Srinivas Sridhar, and Anne L. van de Ven. 2017. “High throughput microencapsulation of Bacillus subtilis in semi-permeable biodegradable polymersomes for selenium remediation.” Applied Microbiology and Biotechnology, 101, 1.Abstract
Encapsulating bacteria within constrained microenvironments can promote the manifestation of specialized behaviors. Using double-emulsion droplet-generating microfluidic synthesis, live Bacillus subtilis bacteria were encapsulated in a semi-permeable membrane composed of poly(ethylene glycol)-b-poly(d,l-lactic acid) (mPEG-PDLLA). This polymer membrane was sufficiently permeable to permit exponential bacterial growth, metabolite-induced gene expression, and rapid biofilm growth. The biodegradable microparticles retained structural integrity for several days and could be successfully degraded with time or sustained bacterial activity. Microencapsulated B. subtilis successfully captured and contained sodium selenite added outside the polymersomes, converting the selenite into elemental selenium nanoparticles that were selectively retained inside the polymer membrane. This remediation of selenium using polymersomes has high potential for reducing the toxicity of environmental selenium contamination, as well as allowing selenium to be harvested from areas not amenable to conventional waste or water treatment.
Carly Ching, Kevin Gozzi, Björn Heinemann, Yunrong Chai, and Veronica G. Godoy. 2017. “RNA-mediated cis regulation in Acinetobacter baumannii modulates stress-induced phenotypic variation.” Journal of Bacteriology, 199, 11.Abstract
In the nosocomial opportunistic pathogen Acinetobacter baumannii, RecAdependent mutagenesis, which causes antibiotic resistance acquisition, is linked to the DNA damage response (DDR). Notably, unlike the Escherichia coli paradigm, recA and DDR gene expression in A. baumannii is bimodal. Namely, there is phenotypic variation upon DNA damage, which may provide a bet-hedging strategy for survival. Thus, understanding recA gene regulation is key to elucidate the yet unknown DDR regulation in A. baumannii. Here, we identify a structured 5= untranslated region (UTR) in the recA transcript which serves as a cis-regulatory element. We show that a predicted stem-loop structure in this 5= UTR affects mRNA half-life and underlies bimodal gene expression and thus phenotypic variation in response to ciprofloxacin treatment. We furthermore show that the stem-loop structure of the recA 5= UTR influences intracellular RecA protein levels and, in vivo, impairing the formation of the stem-loop structure of the recA 5= UTR lowers cell survival of UV treatment and decreases rifampin resistance acquisition from DNA damage-induced mutagenesis. We hypothesize that the 5= UTR allows for stable recA transcripts during stress, including antibiotic treatment, enabling cells to maintain suitable RecA levels for survival. This innovative strategy to regulate the DDR in A. baumannii may contribute to its success as a pathogen.
2015
Yun Chen, Kevin Gozzi, Fang Yan, and Yunrong Chai. 2015. “Acetic acid acts as a volatile signal to stimulate bacterial biofilm formation.” mBio, 6, 3.Abstract
Volatiles are small air-transmittable chemicals with diverse biological activities. In this study, we showed that volatiles produced by the bacterium Bacillus subtilis had a profound effect on biofilm formation of neighboring B. subtilis cells that grew in proximity but were physically separated. We further demonstrated that one such volatile, acetic acid, is particularly potent in stimulating biofilm formation. Multiple lines of genetic evidence based on B. subtilis mutants that are defective in either acetic acid production or transportation suggest that B. subtilis uses acetic acid as a metabolic signal to coordinate the timing of biofilm formation. Lastly, we investigated how B. subtilis cells sense and respond to acetic acid in regulating biofilm formation. We showed the possible involvement of three sets of genes (ywbHG, ysbAB, and yxaKC), all encoding putative holin-antiholin-like proteins, in cells responding to acetic acid and stimulating biofilm formation. All three sets of genes were induced by acetate. A mutant with a triple mutation of those genes showed a severe delay in biofilm formation, whereas a strain overexpressing ywbHG showed early and robust biofilm formation. Results of our studies suggest that B. subtilis and possibly other bacteria use acetic acid as a metabolic signal to regulate biofilm formation as well as a quorum-sensing-like airborne signal to coordinate the timing of biofilm formation by physically separated cells in the community. IMPORTANCE Volatiles are small, air-transmittable molecules produced by all kingdoms of organisms including bacteria. Volatiles possess diverse biological activities and play important roles in bacteria-bacteria and bacteria-host interactions. Although volatiles can be used as a novel and important way of cell-cell communication due to their air-transmittable nature, little is known about how the volatile-mediated signaling mechanism works. In this study, we demonstrate that the bacterium Bacillus subtilis uses one such volatile, acetic acid, as a quorum-sensing-like signal to coordinate the timing of the formation of structurally complex cell communities, also known as biofilms. We further characterized the molecular mechanisms of how B. subtilis responds to acetic acid in stimulating biofilm formation. Our study also suggests that acetic acid may be used as a volatile signal for cross-species communication.
Yun Chen, Kevin Gozzi, and Yunrong Chai. 2015. “A bacterial volatile signal for biofilm formation.” Microbial Cell 2 (10).Abstract
Bacteria constantly monitor the environment they reside in and respond to potential changes in the environment through a variety of signal sensing and transduction mechanisms in a timely fashion. Those signaling mechanisms often involve application of small, diffusible chemical molecules. Volatiles are a group of small air-transmittable chemicals that are produced universally by all kingdoms of organisms. Past studies have shown that volatiles can function as cell-cell communication signals not only within species, but also cross-species. However, little is known about how the volatile-mediated signaling mechanism works. In our recent study (Chen, et al. mBio (2015), 6: e00392-15), we demonstrated that the soil bacterium Bacillus subtilis uses acetic acid as a volatile signal to coordinate the timing of biofilm formation within physically separated cells in the community. We also showed that the bacterium possesses an intertwined gene network to produce, secrete, sense, and respond to acetic acid, in stimulating biofilm formation. Interestingly, many of those genes are highly conserved in other bacterial species, raising the possibility that acetic acid may act as a volatile signal for cross-species communication.